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Abstract
Background: The pathological hallmarks of transmissible spongiform encephalopathy (TSE) diseases are the deposition of a
misfolded form of a host-encoded protein (PrPres), marked astrocytosis, microglial activation and spongiosis. The development
of powerful gene based technologies has permitted increased levels of pro-inflammatory cytokines to be demonstrated.
However, due to the use of assays of differing sensitivities and typically the analysis of a single model system it remained unclear
whether this was a general feature of these diseases or to what extent different model systems and routes of infection influenced
the relative levels of expression. Similarly, it was not clear whether the elevated levels of cytokines observed in the brain were
accompanied by similar increases in other tissues that accumulate PrPres, such as the spleen.

Results: The level of expression of the three interferon responsive genes, Eif2ak2, 2'5'-OAS, and Mx2, was measured in the
brains of Syrian hamsters infected with scrapie 263K, VM mice infected with bovine spongiform encephalopathy and C57BL/6
mice infected with the scrapie strain ME7. Glial fibrillary acidic expression confirmed the occurrence of astrocytosis in all models.
When infected intracranially all three models showed a similar pattern of increased expression of the interferon responsive
genes at the onset of clinical symptoms. At the terminal stage of the disease the level and pattern of expression of the three
genes was mostly unchanged in the mouse models. In contrast, in hamsters infected by either the intracranial or intraperitoneal
routes, both the level of expression and the expression of the three genes relative to one another was altered. Increased
interferon responsive gene expression was not observed in a transgenic mouse model of Alzheimer's disease or the spleens of
C57BL/6 mice infected with ME7. Concurrent increases in TNFα, TNFR1, Fas/ApoI receptor, and caspase 8 expression in ME7
infected C57BL/6 mice were observed.

Conclusion: The identification of increased interferon responsive gene expression in the brains of three rodent models of TSE
disease at two different stages of disease progression suggest that this may be a general feature of the disease in rodents. In
addition, it was determined that the increased interferon responsive gene expression was confined to the CNS and that the TSE
model system and the route of infection influenced the pattern and extent of the increased expression. The concurrent increase
in initiators of Eif2ak2 mediated apoptotic pathways in C57BL/6 mice infected with ME7 suggested one mechanism by which
increased interferon responsive gene expression may enhance disease progression.
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Background
Transmissible spongiform encephalopathies (TSEs) are
slowly progressive, invariably fatal degenerative disorders
of the central nervous system. The hallmark of these dis-
eases is the accumulation of misfolded isoforms of a host-
encoded protein, PrP or prion protein. The disease related
isoforms, PrPres, are derived from the host PrPc protein by
a post-translational process and can be distinguished
from the endogenous protein by their partial resistance to
digestion by proteinase K [1,2].

TSEs share similarities with a 'family' of neurodegenera-
tive diseases, including Alzheimer's, that are characterized
by the deposition of insoluble amyloid plaques com-
posed of host encoded proteins, astrocytosis and micro-
glial activation [3-5]. TSE diseases are distinguished by the
fact that in addition to familial and spontaneous forms of
the disease they can be transmitted iatrogenically or
through dietary exposure to contaminated tissue [6].
Another feature specific to TSEs is the existence of multi-
ple strains, each having a distinct incubation period, pat-
tern of PrPres deposition and vacuolation profile in a given
host [7-10].

Studies examining TSE disease induced gene expression
have demonstrated an increased expression of markers for
astrocyte and microglial activation and proliferation, as
well as pro-inflammatory cytokines [11-17]. Collectively,
these studies are in part responsible for the view that TSE
diseases evoke an atypical inflammatory response. Unfor-
tunately, due to the use of assays of differing sensitivities
and typically the analysis of a single model system it is
unclear to what extent different model systems and routes
of infection influence the relative levels of expression. In
addition, it is unknown whether there is a coincident
increase in expression of some of the same genes in
peripheral tissues, such as the spleen, where significant
amounts of PrPres are observed [18]. To explore these
issues we chose to examine the expression of two inter-
feron responsive genes, 2'5'-oligoadenylate synthetase
(2'5'-OAS) and myxovirus resistance gene 2 (Mx2) whose
increased expression had previously been described in
one or more models of TSE disease [19,20]. The expres-
sion of an additional interferon responsive gene not pre-
viously analyzed and key mediator of apoptotic pathways,
eukaryotic translation initiation factor 2 alpha kinase 2
(Eif2ak2), was also determined [21].

In this study, we take advantage of the fact that each TSE
strain, once adapted to a particular host, follows a very
predictable disease course [22-26]. The expression levels
of 2'5'-OAS, Mx2 and Eif2ak2 genes were measured at the
time of the onset of symptoms as well as at the terminal
stage of disease in four TSE models as well as a transgenic
model of Alzheimer's disease by quantitative real-time

PCR (qPCR). qPCR is a highly sensitive method of deter-
mining the cycle numbers at which exponential amplifica-
tion occurs and the amplification of a single specified
product can be confirmed by gel electrophoresis. Unlike
conventional PCR and Northern blot analysis, the qPCR
results, based solely upon the cycles during which expo-
nential amplification occurs, enable the relative or abso-
lute template copy numbers to be determined from a
standard curve [27-29]. This permits a direct comparative
measurement of the influence of TSE model system, route
of infection, and tissue specific effects on the level of
expression of these three genes, even if the differences are
minute.

Results
The increased expression of the interferon (IFN) respon-
sive genes, 2'5'-OAS, and Mx proteins previously reported
in mouse models suggested that the induction of inter-
feron responsive genes may be a general response to TSE
infection [19,20]. To investigate this possibility we com-
pared the whole brain gene expression profiles observed
in Syrian hamsters infected with scrapie 263K, VM mice
infected with bovine spongiform encephalopathy (BSE)
and C57BL/6 mice infected with the scrapie strain ME7. In
order to check the expression of Eif2ak2 in all three mod-
els a fragment of the hamster Eif2ak2 mRNA was ampli-
fied and cloned, using primers based on homologous
sequences found in the human, mouse and rat.

In the three model systems infected via the IC route a sta-
tistically significant (p < 0.008) increase in the expression
of all three IFN responsive genes was observed at the onset
of clinical disease (Figure 1A). In addition, the pattern of
increased expression was similar in the three IC infected
rodent models. The greatest increase in expression was
exhibited by 2'5'-OAS followed by Mx2 and Eif2ak2. No
statistically significant increase in the expression of the
three interferon responsive genes was observed in either
the hamster IP model or the transgenic mouse model of
Alzheimer's disease at the onset of clinical symptoms.

At the terminal stage of the disease a statistically signifi-
cant (p ≤ 0.002) increased expression of the three IFN
responsive genes was observed in all three rodent models
of TSE disease and by both routes of infection (Figure 1B).
In the mouse models of TSE disease the levels of 2'5'-OAS
and Mx2 expression did not increase further as the mice
progressed from the onset of clinical signs to the terminal
stage of the disease. Similarly, no further increase in
Eif2ak2 expression was observed in the mouse model of
BSE, but a statistically significant 67% increase in Eif2ak2
expression (p = 0.00052) was observed in the scrapie
mouse model. The pattern of increased expression of the
interferon responsive genes relative to one another in
these two models remained the same as that observed at
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Expression levels of interferon responsive genes in four different models of amyloid diseaseFigure 1
Expression levels of interferon responsive genes in four different models of amyloid disease. Pooled samples of 
total RNA isolated from the whole brains of diseased or age-matched control animals were used to determine relative gene 
expression levels by quantitative real-time PCR. The histograms represent the average of the means of three independent 
quantitative real-time PCR reactions, done in duplicate, for each gene ± standard deviation. All plotted data represent gene 
expression levels in diseased animals relative to gene expression levels in age and strain-matched control animals. The days 
post infection (dpi) indicated correspond to the times at which the onset of clinical symptoms and terminal stage disease are 
observed in the different model systems. At the onset of clinical symptoms (panel A) significantly higher expression levels of 
the three interferon responsive genes were observed in all the models of TSE disease via the IC route (p ≤ 0.008). No signifi-
cant increase was observed in the hamster scrapie 263K 63 day IP sample or the similar disease stage transgenic mouse model 
of Alzheimer's disease. At the terminal stage of disease (panel B) the expression of the three interferon responsive genes was 
significantly increased in all rodent models of TSE disease (p ≤ 0.002) but not in the Alzheimer's disease model (p ≤ 0.32).
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the onset of clinical signs. In contrast, in the IC hamster
model all three genes increased more than twofold as the
animals progressed on to the terminal stage of disease and
therefore to a significantly higher level than that observed
in the mouse models. The more than three fold increase
in Mx2 expression over this period also caused the pattern
of increased interferon responsive gene expression in the
IC hamster model to change from that observed at the
onset of disease (Figure 1). In terminal stage hamsters
infected with the scrapie strain 263K, Mx2 exhibited the
greatest increase in expression followed by 2'5'-OAS and
Eif2ak2 respectively. The pattern of interferon responsive
gene expression displayed by the IC infected hamsters at
the terminal stage of the disease was shared by terminal
stage hamsters infected with the same scrapie strain via
the IP route. The absolute levels of increased expression in
the IP model were less than that observed when adminis-
tered via the IC route. No significant change in the expres-
sion of the three IFN responsive genes was observed in
this transgenic mouse model of Alzheimer's disease at the
terminal stage of the disease when compared to age
matched isogenic controls (Figure 1B).

To test the specificity of the interferon responsive gene up
regulation in the models of TSE disease and not the mouse
model of Alzheimer's disease the level of glial fibrillary
acidic protein (GFAP) mRNA was determined (Figure 2).
The four fold or more increase in GFAP expression
observed in all models is consistent with the well estab-
lished astrocytosis known to occur in the mouse model of
Alzheimer's disease as well as the models of TSE disease
[30].

The above results were generated using pooled total RNA
derived from whole brain samples. In order to determine
how consistently the increased expression of the IFN
responsive genes would be observed in individual mice, a
panel of 9 terminal stage ME7 infected C57BL/6 mice and
10 mock-infected age-matched controls were analyzed.
An additional sample consisting of a pool of the 10 con-
trol samples was also used. In Figure 3A it can be seen that
using the mean value of all the samples as the delineation
mark resulted in two distinct groups, one consisting of 9
samples and the other consisting of 11 samples. All the
samples that fell above the mean value represented
infected samples and those below represented mock
infected control samples. A two-way two-sample T-test
assuming equal variance was used to determine the degree
of significant difference between the infected and control
groups for each of the three IFN responsive genes. The cal-
culated p-values for these groupings were p = 1.39E-23 for
Eif2ak2, p = 7.04E-21 for 2'5'-OAS and p = 7.08E-26 for Mx2
as calculated using the Data Analysis package in Microsoft
Excel©. Therefore, with a high degree of confidence, indi-
vidual infected samples at the terminal stage of disease

can be distinguished from uninfected samples based upon
qPCR expression analysis of Eif2ak2, 2'5'-OAS, and Mx2.

In order to determine if a change in the interferon respon-
sive gene expression levels could be seen in a peripheral
tissue known to accumulate high levels of PrPres, total
RNA isolated from the spleens of the same 9 ME7 infected
C57BL/6 mice and 10 mock infected C57BL/6 controls
were used to create a second panel. These samples were
analyzed in the same manner as the brain samples and
this result demonstrated that the levels of mRNA for
Eif2ak2, 2'5'-OAS and Mx2 in the spleen were not signifi-
cantly affected by TSE disease (Figure 3B).

In addition to their antiviral roles, both Eif2ak2 and 2'5'-
OAS are known mediators of stress induced apoptosis
[31,32], the major type of cell death associated with TSE-
induced neurodegeneration. Eif2ak2 in particular has
been implicated in the induction of the pro-apoptotic fac-
tors Fas/ApoI receptor and TNFR1 as well as their respec-
tive ligands FasL and TNFα [33,34] potentially through
the Eif2ak2 mediated activation of NF-κB [35]. In addi-
tion, it has been reported that Eif2ak2 is able to trigger
apoptosis through the FADD mediated activation of cas-
pase 8 in a manner independent of Fas/ApoI and TNFR1
receptors [36]. To determine the most likely downstream
signalling effects of Eif2ak2 influencing disease progres-
sion the levels of expression of these pro-apoptotic genes
was measured in the panel of 9 terminal stage ME7
infected C57BL/6 mice and 8 mock-infected age-matched
controls. In Figure 4 it can be observed that there is a clear
and consistent induction of TNFα, TNFR1, Fas/ApoI
receptor and caspase 8 in the panel of infected mice. In
contrast, no significant induction of FasL was observed.
The calculated p-values for these groupings were p =
3.74E-32 for TNFα, p = 1.03E-25 for TNFR1, p = 0.07 for
FasL, p = 6.62E-27 for Fas/ApoI receptor and p = 1.37E-15

for caspase 8 as calculated using the Data Analysis package
in Microsoft Excel©.

Discussion
To the best of our knowledge, this is the first comparative
study based upon quantitative real-time PCR analysis
measuring the influence of model system, route of infec-
tion, and tissue on TSE induced expression of Eif2ak2,
2'5'-OAS, and Mx2 mRNA. Transgenic mice that develop
Alzheimer's disease like pathology were included in the
study to determine whether changes in the levels of
expression of these interferon responsive genes were a
general feature of amyloid diseases of the central nervous
system. TSE disease and Alzheimer's disease are both
slowly progressive diseases where the formation of amy-
loid deposits is accompanied by an inflammatory
response, and extensive gliosis [37-39]. The three rodent
models of TSE disease and the Tg2576 mouse model of
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Alzheimer's disease used in this study have all previously
been shown to exhibit these characteristics, however, sig-
nificant neurodegeneration is restricted to the models of
TSE disease [37,40-44]. Despite the gliosis demonstrated
in all the rodent disease models, no statistically significant
increase in expression of the three IFN responsive genes
was observed in the mouse model of Alzheimer's disease
(Figure 1 and Figure 2). This indicated that increased
expression of the three IFN responsive genes in brain tis-
sue was not a general feature of these amyloid diseases.

TSE disease transmission, incubation period and disease
phenotype are regulated by complicated interactions
between the host genes and the specific TSE strain, how-
ever, when a TSE agent is serially passaged within a given
host these disease characteristics are very stable. Using
well characterized host adapted strains of TSE disease per-
mitted tissue samples to be collected at similar stages of

disease progression [22-26] leaving disease phenotype as
the principle factor determining gene expression. Despite
different neuropathological features, based on the pattern
and degree of increased expression of the three interferon
responsive genes used in this study no difference was
observed between the three IC infected models at the
onset of clinical symptoms (Figure 1A). Only at the termi-
nal stage of the disease did the magnitude of the increase
and the relative amounts of the three genes to one another
distinguish the IC infected hamster model from the two
mouse models that remained remarkably similar to one
another (Figure 1B).

In the hamster model the route of infection played a dom-
inant role in the magnitude of the increase in expression
observed. Following peripheral infection no statistically
significant increase in interferon responsive gene expres-
sion was observed until the terminal stage of the disease.

Expression level of GFAP in four different models of amyloid diseaseFigure 2
Expression level of GFAP in four different models of amyloid disease. Pooled samples of total RNA isolated from the 
whole brains of diseased or age-matched control animals were used to determine relative GFAP expression levels by quantita-
tive real-time PCR. The histograms represent the average of the means of three independent quantitative real-time PCR reac-
tions, done in duplicate, ± standard deviation. All plotted data represent expression levels in diseased animals relative to gene 
expression levels in age and strain-matched control animals. A statistically significant increase in GFAP expression was 
observed in all terminal disease models (p = 3.44E-5 for Alzheimer's model, p = 0.000364 for VM BSE mice, p = 3.24E-5 for 
Hamster 263K 56 IC, p = 0.0068 for Hamster 263K IP, and p = 0.0014 for C57BL/6 ME7 mice).
Page 5 of 13
(page number not for citation purposes)



Molecular Neurodegeneration 2007, 2:5 http://www.molecularneurodegeneration.com/content/2/1/5

Page 6 of 13
(page number not for citation purposes)

IFN responsive gene expression in the brains and spleens of individual ME7 infected and mock infected C57BL/6 miceFigure 3
IFN responsive gene expression in the brains and spleens of individual ME7 infected and mock infected C57BL/
6 mice. cDNA from whole brains and spleens of 9 ME7 infected and 10 mock infected C57BL/6 mice that were analyzed in a 
blinded fashion. Equal amounts of cDNA from the 10 mock infected samples were pooled to make an eleventh sample. Each 
data point represents the mean of three independent quantitative real-time PCR reactions for each gene normalized to the 
average level of expression exhibited by the mock infected samples. Filled diamonds represent those samples obtained from 
brains of ME7 infected C57BL/6 mice. The shaded circles represent cDNA samples obtained from age-matched mock infected 
C57BL/6 mice. The lines represent the mean value of the 20 samples for each gene. A clear segregation of the infected and 
mock-infected samples based upon the relative expression of any of the three interferon responsive genes was observed in 
brain tissue (A, Eif2ak2 p = 1.39E-23, 2'5'-OAS p = 7.04E-21, Mx2 p = 7.08E-26). A random distribution of infected and mock 
infected samples derived from the corresponding spleen tissue relative to the mean of the sample set was observed (B, Eif2ak2 
p = 0.75, 2'5'-OAS p = 0.80, Mx2 p = 0.48).
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Though the increase observed in the terminal stage IP
infected hamsters was less robust than that exhibited by
the IC infected animals the pattern of expression
remained the same and suggested that the interaction of
TSE strain and host dependent factors, rather than the
route of infection, governed the pattern of expression of
the three interferon responsive genes analyzed (Figure
1B). The increased expression of the interferon responsive
genes following IP infection also indicated that their
induction was a result of the disease rather than the IC
infection procedure and the associated T lymphocytes
observed up to 12 weeks post inoculations at the IC injec-
tion site[39].

The 2.0–6.5 fold increase in Mx2 and 2'5'-OAS detected
by qPCR is relatively modest, but comparable to values
reported previously [19,20]. In contrast, microarray pro-
filing of scrapie infected brain tissue has not identified the
three IFN responsive genes reported here as differentially
expressed though increased expression of other interferon
responsive genes was observed [45,46]. The method prob-
ably had more influence than TSE strain differences on the
discrepancies observed as one of these studies included
C57BL/6 mice infected I.C. with the scrapie strain ME7. In
addition, the prior detection of increased expression of
Eif2ak2 in TSE infected brain tissue by conventional PCR
required the isolation of activated microglia [19]. Both

Increase pro-apoptotic gene expression in the brains of individual ME7 infected and mock infected C57BL/6 miceFigure 4
Increase pro-apoptotic gene expression in the brains of individual ME7 infected and mock infected C57BL/6 
mice. cDNA from whole brains of 9 ME7 infected and 8 mock infected C57BL/6 mice were analyzed in a blinded fashion. Each 
data point represents the mean of three independent quantitative real-time PCR reactions for each gene normalized to the 
average level of expression exhibited by the mock infected samples. Filled diamonds represent those samples obtained from 
brains of ME7 infected C57BL/6 mice. The shaded circles represent cDNA samples obtained from age-matched mock infected 
C57BL/6 mice. The lines represent the mean value of the 17 samples for each gene. A clear segregation of the infected and 
mock-infected samples based upon the relative expression of TNFα, TNFR1, Fas/ApoI and caspase 8 was observed in brain tis-
sue. In contrast, FasL was not significantly differentially expressed between infected and mock infected samples (TNFα p = 
3.74E-32, TNFR1 p = 1.03E-25, FasL p = 0.071, Fas/ApoI p = 6.62E-27, and caspase 8 p = 1.37E-15).
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instances attest to the sensitivity of the qPCR method. The
ability to detect small differences in mRNA expression in
whole brain also avoids the potential introduction of
sample bias during the isolation of a particular cell type or
brain region.

To demonstrate that the differential expression observed
was not due to a subset of samples within the pooled RNA
a set of 10 biological replicates were analyzed. The results
obtained from individual ME7 infected brain samples
confirmed that they all clearly exhibited increased expres-
sion of the three interferon responsive genes relative to
mock infected controls (Figure 3A). In addition each bio-
logical replicate exhibited the same pattern of expression
as was observed with the pooled mRNA derived from ME7
infected samples. The mRNA with the highest relative
increase in expression was 2'5'-OAS followed by Mx2 and
Eif2ak2 respectively. This set of experiments further sup-
ported the suggestion that TSE induced induction of these
interferon responsive genes in brain tissue is a general fea-
ture of the disease in rodents.

Although the principal effects of the disease are limited to
the CNS, there is considerable deposition of the mis-
folded PrPc isoform, PrPres, in peripheral lymphoreticular
tissue and in particular the spleen [47,48]. The suggestion
that it is the microglial cells of the brain that are primarily
responsible for the expression of Eif2ak2 and 2'5'-OAS
made us question whether the cells of macrophage lineage
present in the spleen would respond similarly to infective
PrPres deposition. To answer this question the spleens of
the biological replicates described above were tested for
expression levels of these three interferon responsive
genes. No differential expression of Eif2ak2, 2'5'-OAS or
Mx2 was observed following qPCR analysis of mRNA iso-
lated from the spleens (Figure 3B). Despite the sensitivity
of qPCR demonstrated in the analyses of the brain, we
cannot exclude the possibility that these genes are
induced in some minor spleen cell population. Nonethe-
less, the results obtained suggest that induction of the
three interferon responsive genes is not a generalized
response to PrPres deposition, but instead appears to be
confined to the primary site of the disease, the CNS.

In a disease where the infectious agent is widely accepted
to be an aberrantly folded isoform of the host encoded
protein, PrPc [49], the consequence of the induction of
potent anti-viral factors on disease progression is
unknown. Our results suggest that one consequences of
increased Eif2ak2 expression is a positive effect on disease
progression through the activation of the stress induced
TNFα/TNFR1 apoptotic pathway. The abundance of FasL
is regulated by post translation mechanisms [50,51] that
would go unnoticed in our screen of mRNA levels. There-
fore, the increased expression of Fas/Apo1 could be

accompanied by increased FasL abundance resulting in
the activation of both external apoptotic pathways.

Conclusion

The results suggested that the induction of the interferon
responsive genes, Eif2ak2, 2'5'-OAS, and Mx2, may be a
general feature of rodent models of TSE disease that may
contribute to disease progression through the activation
of stress induced apoptotic pathways. Based upon the TSE
models analyzed the route of infection primarily influ-
enced the extent of the increased expression observed
while strain and host specific factors determined the pat-
tern of expression

The absence of an induction of the interferon responsive
genes in either the Alzheimer's disease model or the
spleens of infected animals indicated that amyloid depo-
sition in the brain or an accumulation of PrPres in the lym-
phoreticular system are not sufficient to elicit this
response. Instead the induction of the interferon respon-
sive genes must result from an interaction of the infectious
agent with as yet unidentified host specific factors in the
CNS.

Methods
Experimental animals
An internal review of all animal experiments was done
prior to the commencement of the work to ensure that the
procedures were carried out in accordance with the guide-
lines of the Canadian Council on Animal Care.

Inoculated infective material for all experiments consisted
of rodent-adapted TSE strains corresponding to the appro-
priate rodent model. Isolation of RNA from animals at a
specific age were based upon previously determined age
of disease onset studies [22-26].

RNA samples extracted from the brains of scrapie 263K
infected and mock infected Syrian hamsters 42 and 56
days following intracerebral (IC) inoculation, scrapie
263K infected and mock infected Syrian hamsters aged 63
and 105 days following intraperitoneal (IP) inoculation,
and BSE infected and mock infected VM mice 84 and 127
days post IC inoculation were graciously provided by the
laboratory of Dr. Robert Rohwer (VAMC Baltimore, MD).
A total of 30 RNA samples from each group at each time
point were pooled together to control for biological vari-
ation. The RNA of brains and spleens of scrapie ME7
infected and mock infected C57BL/6 mice aged 120
(onset of symptoms) and 150 (terminal stage disease)
days post infection were prepared at the CSCHAH. The
pooled samples consisted of RNA isolated from 10 mice.
RNA samples from the brains of four Tg2576 transgenic
Alzheimer mice and isogenic controls (strain C57BL/6-
Page 8 of 13
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SJL) aged 350 days or from the brains of three 490 day old
mice were used as a pooled sample (Taconic) [52]. All
RNA was extracted from whole brains using RNeasy® Lipid
Tissue Midi Kit from Qiagen and reverse transcribed to
cDNA as described below.

C57BL/6 mice 6–8 weeks old were anaesthetized with iso-
flurane prior to being IC infected with 20 μL, 1% w/v
brain homogenate in phosphate buffered saline (PBS).
The brain homogenate used for scrapie infection was pre-
pared from terminal stage C57BL/6 mice that had been
previously IC infected with strain ME7 (TSE Resource
Centre, Newbury, U.K.). Age matched controls were inoc-
ulated with uninfected brain homogenate. Prior to injec-
tion the homogenates were prepared by sonicating three
times for 30 seconds at amplitude setting 40 (ColeParmer
Ultrasonic Processor, model CP-130), then centrifuged at
500 × g for 10 minutes.

Infected mice were observed for clinical signs throughout
the course of the disease. At the days indicated infected
mice and the corresponding mock infected mice serving as
controls were euthanized by cervical dislocation and the
brain and spleen tissue samples collected. RNA was
extracted from the brain and spleen tissues using Qiagen
RNeasy Lipid Tissue Midi kit according to manufacturers
specifications. Two micrograms of total RNA from each
sample was reverse transcribed as described below. Reac-
tions were then purified using Microcon 30 columns (Mil-
lipore Corp. Cat. #42410) according to the manufacturers
instructions. The resultant cDNA samples were quantified
on a NanoDrop ND-1000 (NanoDrop Technologies) and
the concentrations adjusted to 25 ng μl-1.

Generation of cDNA template from total RNA samples for 
calibrator construction
Two micrograms of total RNA from each sample was
reverse transcribed for 1 hour at 42°C in a 20 μL reaction
containing 50 mM Tris pH 8.3, 75 mM KCl, 3 mM MgCl2,
10 mM DTT, 0.5 μg oligo dT primer, 0.5 mM each dNTP,
40U RNaseOUT RNase inhibitor, and 200 U SuperScript
III RNase H- reverse transcriptase (Invitrogen Cat.#18080-
044). Reactions were inactivated by heating at 70°C for 15
minutes. RNA complimentary to the cDNA was removed
by the addition of 2 U of E. coli RNase H (Invitrogen
Cat.#18021-071) and incubation at 37°C for 20 minutes.
Reactions were then purified using a Qiagen PCR purifica-
tion kit according to manufacturers instructions. All
cDNA samples were adjusted to 25 ng μL-1.

Cloning of hamster Eif2ak2 for sequence determination
The sequence of the hamster Eif2ak2 gene was not availa-
ble in the GenBank database, requiring us to amplify,
clone and sequence a fragment of this gene. Regions of
complete sequence homology between mouse, rat and

human Eif2ak2 sequences (GenBank accession numbers
BC016422, NM_019335, and NM_002759 respectively)
were used to design the primer pair below to amplify an
834 base pair portion of the hamster Eif2ak2 gene.

Eif2ak2 forward: 5'-AGGTTTACATTTCAAGTT-3'

Eif2ak2 reverse: 5'-CTTTATCACAGAATTCC-3'

Using cDNA derived from Syrian hamster adult brain tis-
sue (reverse transcription as described above, RNA iso-
lated using the RNeasy® Lipid Tissue Midi Kit from
Qiagen), the fragment of interest was amplified using the
following protocol. Initial denaturation at 95°C for 5
mins, followed by 35 cycles at 95°C for 45 sec, annealing
at 50°C for 45 sec, extension at 72°C for 1 min, followed
by a final extension at 72°C for 10 minutes in a 100 μL
reaction containing 50 ng of each primer and 1.5 mM
MgCl2. The resulting fragment was visualized on a 1%
agarose gel, and then subsequently cloned into pCR® 2.1
vector using a TA cloning kit (Invitrogen Cat.#45-0046).
The 834 base pair hamster fragment was sequenced and
further analyzed using the NCBI GenBank database. It was
found to have homology to Eif2ak2 in mouse, rat and
human. The entire Syrian hamster Eif2ak2 sequence was
obtained using the Invitrogen GeneRacer™ Kit L1500-01,
and is available at GenBank: DQ645944. Primers to be
used in quantitative real-time PCR analysis were chosen
on the basis of this sequence (Table 1).

Construction of calibrator plasmids and standard curves 
for quantitative real-time PCR gene expression analysis
Plasmids containing each gene of interest were con-
structed and used as standards/calibrators in qPCR analy-
sis. Amplicons representing Mx2, 2'5'-OAS, GAPdH,
GFAP, Caspase 8, TNFα, TNFR1, FasL, and Fas/ApoI recep-
tor were generated using the primers listed in Table 1 on
an MJ Research thermocycler. The mouse Eif2ak2 ampli-
con was amplified using the forward primer 5'-GTA CAA
GCG CTG GCA GAA CTC AAT-3' and the reverse primer
5'-AAG AGG CAC CGG GTT TTG TAT-3'. cDNA was gen-
erated from mouse and hamster RNA as described above
to serve as template in all PCR reactions. Reaction condi-
tions for PCR reactions were an initial denaturation at
95°C for 5 minutes, then 35 cycles of 95°C for 30 sec-
onds, 55°C for 30 seconds, and 72°C for 45 seconds, fol-
lowed by 72°C for 10 minutes. All PCR reactions
contained 50 ng of forward and reverse primers, 15 mM
dNTPs, 1× PCR buffer (10 mM Tris-HCL, 50 mM KCl,
pH8.3), and 1 U of Taq DNA Polymerase (Roche Cat. #1
647 687). The amplicons were gel purified using
QIAquick Gel Extraction kit (Qiagen) according to manu-
facturers specifications, then cloned into the pCR® 2.1 vec-
tor using a TA cloning kit (Invitrogen). Each construct was
checked by restriction enzyme digestion with 20 U of
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EcoRI in 1× React3 buffer for 1 hour at 37°C (Invitrogen)
and restriction product pattern visualized on a 1% agarose
gel. All constructs were subsequently sequenced and con-
firmed to contain the correct gene fragment.

For generation of standard curves, plasmids were diluted
to 20 pg μL-1 in 10 mM Tris-HCl pH8.5. To each dilution
20 ng μL-1 pGEM-NZ empty vector was added to stabilize
the target plasmid concentration over time. The samples

were subsequently serially diluted and amplified on the
Roche LightCycler® Real-Time PCR machine according to
conditions in Table 1. Using the Roche LightCycler® 1.5
and the Relative Quantification Software version 1.0
(Roche Diagnostics), coefficient files were created from
exported standard curves of target genes Mx2, 2'5'-OAS,
Eif2ak2, GFAP, TNFα, TNFR1, FasL, Fas/ApoI receptor,
caspase 8 and the reference gene, GAPdH. The inclusion
of one dilution of the plasmid used to generate the corre-

Table 1: PCR conditions for quantitative real-time PCR analysis of hamster and mouse models of TSE disease.

Hamster

Gene Primer Pairs Size (bp) Denature 
95°C (sec)

Anneal (°C) Anneal Time 
(sec)

Extension 
72°C (sec)

Mg2+ (mM) Number 
Cycles

Mx2 5'-TGGCGGTAGGCATTCAGG-3'
5'-TGCCAGGACCAAGTTTACAGG-3'

161 5 54 5 7 4 40

2'5'-OAS 5'-AGCCGCTGCCCCCACTGTA-3'
5'-TCCGAGACTGCCCTGAAGC-3'

109 5 57 5 5 3 50

Eif2ak2 5'-
TAGGCCTTGTCAACAGTTATGCTCA-
3'
5'-GCTGCTTTGCCTCCTGCTTGGTAG-
3'

162 5 58 5 7 3 45

GAPdH 5'-
ATGGCAAGTTCAAAGGCACAGTCA-3'
5'-TGGGGGCATCAGCAGAAGG-3'

231 5 60 5 11 3 40

GFAP 5'-GGACATCGAGATTGCCACCTAT-3'
5'-CATCCCTCATCTCCACTGTCTTTA-
3'

176 5 60 5 8 3 45

Mouse

Gene Primer Pairs Size (bp) Denature 
95°C (sec)

Anneal (°C) Anneal Time 
(sec)

Extension 
72°C (sec)

Mg2+ (mM) Number 
Cycles

Mx2 5'-CCTGCCTGCCATCGCTGTC-3'
5'-GCCTCTCCACTCCTCTCCCTCATT-
3'

160 5 60 5 11 3 40

2'5'-OAS 5'-GAGGCGGTTGGCTGAAGAGG-3'
5'-GAGGAAGGCTGGCTGTGATTGG-3'

312 5 60 5 11 3 40

Eif2ak2 5'-
GTACAAGCGCTGGCAGAACTCAAT-3'
5'-AAGAGGCACCGGGTTTTGTAT-3'

124 5 60 5 11 4 40

GAPdH 5'-CACGGCAAATTCAACGGCACAGT-
3'
5'-TGGGGGCATCGGCAGAAGG-3'

232 5 60 5 11 3 40

GFAP 5'-GAGCGAGCGTGCAGAGATGATGG-
3'
5'-CTCCCGAAGCTCCGCCTGGTAGA-
3'

166 5 60 5 11 3 45

Caspase 8 5'-
TCTGCTGGGAATGGCTACGGTGAA-3'
5'-
GTGTGAAGGTGGGCTGTGGCATCT-3'

212 5 60 5 11 3 45

TNFα 5'-TGCTCTGTGAAGGGAATGGGTGTT-
3'
5'-
AGTCCTTGATGGTGGTGCATGAGA-3'

241 5 60 5 11 3 45

TNFα 
Receptor

5'-AACCAGTTCCAACGCTACCTGAGT-
3'
5'-AAGGGACGCACTCACTTTCTCTCA-
3'

157 5 60 5 8 3 45

Fas 
Ligand

5'-
ATCCCTCTGGAATGGGAAGACACA-3'
5'-ACCCAGTTTCGTTGATCACAAGGC-
3'

91 5 63 5 6 3 45

Fas/ApoI 
Receptor

5'-TCGCCTATGGTTGTTGACCATCCT-
3'
5'-TGGTATGGTTTCACGACTGGAGGT-
3'

136 5 57 5 7 3 45

Conditions outlined above were used to determine the relative expression levels of the genes Eif2ak2, 2'5'-OAS, Mx2, GFAP, TNFα, TNFR1, FasL, Fas/ApoI, and caspase 8, as 
well as the reference gene GAPdH using the Roche LightCycler® 1.5.
Page 10 of 13
(page number not for citation purposes)



Molecular Neurodegeneration 2007, 2:5 http://www.molecularneurodegeneration.com/content/2/1/5
sponding coefficient file in each run (calibrator) control-
led for run-to-run variation. The calibrator adjusted
coefficient files, used to analyze all qPCR results, represent
the standard curves from which the original template copy
number in each sample was calculated, permitting run-to-
run comparisons. The use of coefficient files also enabled
normalization to GAPdH expression, taking into account
any variation in the amount of cDNA added to reaction
tubes.

Real time quantification of interferon responsive genes in 
scrapie 263K infected Syrian hamsters, BSE infected VM 
mice, scrapie ME7 infected C57BL/6 mice and transgenic 
Alzheimer mice
Relative quantification of all cDNAs was performed using
the LightCycler® Fast Start DNA Master SYBR green kit, on
a LightCycler® 1.5 Real-time PCR instrument (Roche Diag-
nostics). Amplification conditions utilized for qPCR of
target cDNA are listed in Table 1. Subsequent to amplifi-
cation, product purity was confirmed by melt curve anal-
ysis and visualization on a 1% agarose gel for fragment
size. Relative expression levels were calculated using the
Relative Quantification software from Roche Diagnostics,
with interferon responsive gene expression levels normal-
ized relative to GAPdH expression levels. The average fold
increased expression shown in Figure 1 represents the
averages of duplicate reactions from three independent
trials (i.e. triplicates of duplicates). Interferon responsive
gene expression levels in control samples represent a base-
line expression of one, with infected sample gene expres-
sion compared to this baseline.

A two-sample two-tail t-test assuming equal variance was
used to determine if a significant difference in gene
expression existed between the control and infected/trans-
genic cDNA samples using the Data Analysis package in
Microsoft Excel©.

Analysis of individual ME7 infected and mock-infected 
C57BL/6 mouse samples
Triplicate of duplicate real time qPCR reactions were per-
formed as described above (primer sequences and reac-
tion conditions used are listed in Table 1). The relative
expression levels (normalized to GAPdH) of the Mx2,
2'5'-OAS, Eif2ak2, GFAP, TNFα, TNFR1, FasL, Fas/ApoI
receptor, caspase 8 genes were obtained using Relative
Quantification Software (Roche Diagnostics). The expres-
sion level relative to the control average for each individ-
ual run was determined, and the three runs were averaged.
A two-sample two-tail t-test assuming equal variance was
used to determine if a significant difference in gene
expression existed between the control and infected cDNA
samples using the Data Analysis package in Microsoft
Excel©.
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