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Abstract

Uncovering the underlying genetic component of any disease is key to the understanding of its pathophysiology
and may open new avenues for development of therapeutic strategies and biomarkers. In the past several years,
there has been an explosion of genome-wide association studies (GWAS) resulting in the discovery of novel
candidate genes conferring risk for complex diseases, including neurodegenerative diseases. Despite this success,
there still remains a substantial genetic component for many complex traits and conditions that is unexplained by
the GWAS findings. Additionally, in many cases, the mechanism of action of the newly discovered disease risk
variants is not inherently obvious. Furthermore, a genetic region with multiple genes may be identified via GWAS,
making it difficult to discern the true disease risk gene. Several alternative approaches are proposed to overcome
these potential shortcomings of GWAS, including the use of quantitative, biologically relevant phenotypes. Gene
expression levels represent an important class of endophenotypes. Genetic linkage and association studies that
utilize gene expression levels as endophenotypes determined that the expression levels of many genes are under
genetic influence. This led to the postulate that there may exist many genetic variants that confer disease risk via
modifying gene expression levels. Results from the handful of genetic studies which assess gene expression level
endophenotypes in conjunction with disease risk suggest that this combined phenotype approach may both
increase the power for gene discovery and lead to an enhanced understanding of their mode of action. This
review summarizes the evidence in support of gene expression levels as promising endophenotypes in the
discovery and characterization of novel candidate genes for complex diseases, which may also represent a novel
approach in the genetic studies of Alzheimer’s and other neurodegenerative diseases.

Introduction
It is well established that the risk for many neurodegen-
erative diseases such as Alzheimer’s disease (AD) [1,2],
Parkinson’s disease (PD) [2,3], frontotemporal dementia
(FTD) and amyotrophic lateral sclerosis (ALS) [4,5] is
under substantial genetic control. Identification of deter-
ministic mutations with a Mendelian pattern of inheri-
tance in familial forms of these diseases has led to
significant progress in our understanding of their under-
lying pathophysiology. Nonetheless, such monogenic
forms constitute only a fraction of these conditions (e.g.
< 1% of all AD [1], 5-10% of all PD [2]); and risk for
most neurodegenerative diseases, like other common

diseases/traits, is thought to arise from multiple genetic
variants and their interaction with each other, as well as
environmental factors. Whereas investigation of large
families with Mendelian inheritance patterns, using link-
age followed by sequence analyses have generally proven
useful in gene discoveries for monogenic forms of neu-
rodegenerative diseases [1,5], association studies in unre-
lated case-control series have emerged as a more viable
strategy in the common, multigenic and complex forms
of these conditions [1-3]. The relative lack of success
from candidate gene association studies coupled with
technologic advances led to the emergence of genome-
wide association studies (GWAS) as a promising
approach in gene discovery for common, complex dis-
eases/traits with heterogeneous and multigenic
underpinnings.Correspondence: taner.nilufer@mayo.edu
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The past several years have witnessed an explosion of
GWAS that survey hundreds of thousands of genetic
variants across the whole genome for association with
disease risk in a hypothesis-independent manner. The
recent widespread use of this approach became possible
with the generation of a linkage disequilibrium (LD)
map of common single nucleotide polymorphisms
(SNPs) across the whole genome as part of the Interna-
tional HapMap Project [6,7]. This effort combined with
the technological advances in high-throughput genotyp-
ing allowed for the production of chips that contain up
to 1 million SNPs which provide information about
most (but not all) of the common genetic variation
(usually defined as having a minor allele frequency >
0.05) in the genome by tagging (marking) the un-geno-
typed SNPs through LD. GWAS emerged based on the
underlying “common disease-common variant” hypoth-
esis which posits that the risk for many common dis-
eases such as coronary artery disease, diabetes mellitus
and AD is conferred by multiple common variants [8].
This approach proved to be successful in the discovery
of candidate risk variants or regions for many common
diseases, including neurodegenerative diseases [1-3].
It became evident from these studies that although

GWAS have identified numerous genetic loci for com-
mon diseases, they fell short of accounting for all of the
genetic component of these conditions [8,9]. The rea-
sons for this have been discussed in recent reviews [8,9]
and include a) modest power of GWAS that utilize dis-
ease phenotype given relatively small effect sizes of risk
variants, genetic heterogeneity of the disease (different
disease risk variants at play in different subjects), and
heterogeneity of the populations (different extent of
LD); b) presence of rare disease risk variants or struc-
tural variants (such as insertions and deletions) that are
not captured by the GWAS SNP platforms, c) presence
of gene-gene and/or gene-environment interactions that
are yet unexplored.
The SNPs identified through GWAS may reside near

genes with no known or disease-relevant function. Some
disease-associating variants may reside in LD regions
harboring multiple genes, making it impossible to dis-
cern the true disease-risk gene. These represent relative
weaknesses of GWAS resulting in part from the hypoth-
esis-independent nature of this approach. On the con-
trary, this may also be perceived as a relative strength,
since it may allow for the discovery of unexpected genes
that would have been missed with a hypothesis-based
approach. Nevertheless, the plethora of loci identified
through GWAS need both functional confirmation and
characterization, since their roles in disease risk are
usually not inherently obvious.
Multiple different approaches are proposed to over-

come these shortcomings of GWAS that are beyond the

scope of this review. One of the proposed approaches
involves the use of biologically relevant, quantitative
phenotypes (endophenotypes) for discovery and charac-
terization of disease risk genes [8,9]. This review focuses
on gene expression levels as a potentially powerful
group of endophenotypes and discusses the endopheno-
type concept, the evidence in support of a substantial
genetic component for human gene expression, the
GWAS examples that combine disease phenotype and
expression endophenotypes, the use of gene expression
endophenotype in the Alzheimer’s and other neurode-
generative disease literature to-date and future
directions.

The Endophenotype Concept
The term “endophenotype” was first introduced in 1966
in the context of Drosophila genetics to contrast the
phenotypes that are “obvious and external” (i.e. exophe-
notypes) with those that are “microscopic and internal”
(i.e. endophenotypes) [10]. The term was applied in psy-
chiatric genetics in the 1970s, specifically in schizophre-
nia genetics to describe molecular outcomes of gene
activity, which lead to disease [11]. It was not until the
21st century that this term reached more widespread
usage, mainly in psychiatric genetics initially, but subse-
quently also in other complex conditions such as neuro-
degenerative [12,13], cardiovascular [14] and atopic [15]
diseases. That the endophenotype approach was first
advocated in psychiatric disorders partly stems from the
need to have objectively quantifiable phenotypes asso-
ciated with disease to avoid the imprecise and therefore
heterogeneous nature of psychiatric diagnostic criteria
[16], which is thought to contribute to the failure of
genetic studies of psychiatric disorders. In a hypothetical
construct that defines genotype-disease relationship,
endophenotypes were proposed as quantitative pheno-
types that are intermediate between genes and the dis-
ease outcome, that are directly influenced by a smaller
number of genes than the disease phenotype, and that
represent one of many facets of a disease [17]. Thus,
another premise for this approach is the assumption
that the underlying genetic architecture of the endophe-
notype will be simpler than that of the disease pheno-
type [17], though this may clearly not be the case [16].
Nevertheless, their closer proximity to gene action could
lead to greater “genetic signal-to-noise” ratios [17,18],
which may translate into larger effect sizes for the
genetic variants under investigation, and thereby
increased power to detect genetic loci of interest.
Furthermore, given that endophenotypes are measurable
traits regardless of disease state, their use can allow the
inclusion of unaffected as well as affected subjects in
genetic studies, which can also enhance power, espe-
cially in family-based studies [18,19].
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Genes identified via the endophenotype approach may
be more amenable to the study and discovery of genetic
pathways underlying disease. This is partly due to the
quantifiable nature of the endophenotype, which makes
possible objective testing of the downstream effects of
genetic perturbations, including development of animal
models [20]. A potential caveat of the endophenotype
approach is the fact that it represents only one of many
aspects of the disease pathology. This may be a limita-
tion for animal models that study the endophenotype
rather than disease symptomatology as the outcome.
That said, given the improbability of recapitulating the
complete spectrum of a complex disease in an animal
model and the potential difficulty in drawing parallels
between animal and human symptomatology [20], a
focused study of a “good” endophenotype could enhance
our understanding of complex disease pathophysiology.
What constitutes a “good” endophenotype? A variety

of criteria have previously been proposed to define
“valid and useful” endophenotypes in a review, where a
core set of “necessary and sufficient” criteria was identi-
fied [16]. Although a detailed discussion of these criteria
is beyond the scope of this review, we will briefly men-
tion those that are commonly proposed. Endopheno-
types should be measured reliably and reproducibly
upon multiple measurements of the same subject/sam-
ple. Given the proposition that endophenotypes are
traits that can be used to map genetic variants underly-
ing disease risk, heritability or having a measurable
genetic component is a sine qua non of a useful endo-
phenotype. Neuroimaging [18] and cognitive [17,21]
endophenotypes are examples of heritable traits that are
proposed for genetic studies of neuropsychiatric dis-
eases. The underlying assumption is that genes influence
the endophenotype in a way that is detectable prior to
the clinical onset of disease. These changes in the endo-
phenotype in turn leads to increased disease risk. Conse-
quently, endophenotypes should be associated with the
disease in the general population and also co-segregate
with it within families. They should manifest changes
that are detectable in the clinically-unaffected but at-risk
subjects, such as family members of patients. We deter-
mined that plasma Ab levels, which show variation in
the general population, show significant elevations in
cognitively-normal first-degree relatives of patients with
late-onset AD [22] and are highly heritable traits [23].
Thus, we used plasma Ab as an excellent endopheno-
type in a linkage study of late-onset AD pedigrees and
mapped an AD risk locus on chromosome 10 [19].
Endophenotypes need not, however, be disease-specific.
For example, both neuroimaging and cognitive endophe-
notypes are quantitative traits that are variable and
detectable in the general population. These endopheno-
types may show changes that are associated with more

than one psychiatric or neurologic disorder. Ideally,
endophenotypes should be state-independent, and not
change with the disease state or environmental factors.
For example, although potentially useful endopheno-
types for AD and possibly also other neurodegenerative
diseases, both neuroimaging and cognitive endopheno-
types are influenced by the disease state, as well as other
variables such as age and gender [24]. It is therefore
important to recognize and either statistically or techni-
cally control for such variables in genetic analysis of
endophenotypes.
The evidence supporting a strong genetic component

that influences human gene expression is discussed in
the next section.

Genetics of Human Gene Expression
In this section, 15 key studies using expression levels as
an endophenotype to identify genetic loci or variants
that influence human gene expression are reviewed
(Tables 1 and 2). This approach is known as expression
quantitative trait locus (eQTL) mapping via genetic link-
age in families or association studies in unrelated popu-
lations. This section describes these studies highlighting
their results which provide support for the existence of
a substantial genetic component for gene expression in
humans and how this component could be utilized to
study the genetics of complex diseases and traits.
Genetic linkage analysis of whole transcriptome expres-

sion levels in yeast determined that 1,528 of the 6,215
genes tested had natural variation in their expression levels
and 570 of these gene expression phenotypes showed link-
age to ≥ 1 loci in the yeast genome [25]. This study
demonstrated that genetic factors account for a substantial
proportion of variation in gene expression levels, even in a
single cell organism. The first study in humans to evaluate
genetics of gene expression (also known as the genetical
genomics approach [26]) utilized lymphoblastoid cell lines
(LCL) from the CEPH [27] (Centre d’Etude du polymor-
phisme humain) repository of Caucasian, multi-genera-
tional families [28]. Yan et al. screened 96 subjects and
identified 17-37 individuals who were heterozygous for a
SNP in 13 target genes. Measuring the mRNA of these 13
genes in the same cellular sample, they assessed relative
expression of the two alleles of the SNPs and identified
evidence of allele-specific expression for 6 of 13 genes in a
subset of their samples. Examining the gene expression
levels as a phenotype, they identified evidence of Mende-
lian inheritance for two expression phenotypes that co-
segregated with nearby genetic markers in two families.
These results provided the foundation to utilize the
“genetical genomics” approach in a more high-throughput
and systematic fashion.
Schadt et al. provided a comparative analysis of gene

expression genetics in mouse, Zea mays and human, in
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Table 1 Summary of studies on geneticsof human gene expression: Study characteristics

Reference Reference
ID

Organism Tissue Sample
Size

Samples Transcript Platform Genotyping Platform

Yan et al.,
2002

[28] Human Lymphoblastoid
cell lines (LCL)

96 Subjects from the CEPH
families (17-37 subjects
who were heterozygouse

for any given gene)

ABI Prism SNaPshot
Multiplex Kit for 13

genes.

SNPs for 13 genes.

Schadt
et al., 2003

[29] Mouse Liver 111 F2 mice constructed from
two standard inbred

strains, C57BL/6J and DBA/
2J

23,574 transcripts
(Rosetta

Inpharmatics Merck).

>100 microsatellite
markers.

Z. mays
(corn)

Ear leaf tissue 76 An F3 cross constructed
from standard inbred lines

of Z. mays

24,473 transcripts
(Rosetta

Inpharmatics Merck).

NA

Human Lymphoblastoid
cell lines (LCL)

56 Subjects from four CEPH
families

24,479 transcripts
(Rosetta

Inpharmatics Merck).

NA

Cheung
et al., 2003

[30] Human Lymphoblastoid
cell lines (LCL)

45 35 unrelated subjects from
CEPH families vs. 1
reference pool of 10

subjects. 5 genes assessed
in a larger sample size (49
unrelated CEPH subjects,
41 sibs from 5 CEPH

families and 10
monozygotic twin pairs).

5000 random cDNA
clones from IMAGE

consortium.

Not done.

Morley
et al., 2004

[31] Human Lymphoblastoid
cell lines (LCL)

234 94 unrelated grandparents
from CEPH families and
~140 subjects from 14
large CEPH families.

8,500 transcripts
(Analysis restricted

to 3554 most
variable expression

phenotypes).

2,756 autosomal SNP
markers (SNP Consortium).

Monks
et al., 2004

[32] Human Lymphoblastoid
cell lines (LCL)

167
subjects

From 15 CEPH families 23,499 transcripts
(25K human gene
oligonucleotide
microarray)

346 autosomal genetic
markers.

Cheung
et al., 2005

[33] Human Lymphoblastoid
cell lines (LCL)

57 Unrelated CEPH subjects. 374 transcripts
(subset of Morley

et al. 2004);
Affymetrix Human
Genome Focus

arrays.

770,394 SNPs.

Stranger
et al., 2005

[34] Human Lymphoblastoid
cell lines (LCL)

60 HapMap Unrelated
Caucasian Subjects (CEU)

1,433 transcripts for
630 genes (Illumina
BeadArray, custom).

753,712 SNPs

Stranger
et al., 2007
(Nature
Genetics)

[35] Human Lymphoblastoid
cell lines (LCL)

270 HapMap Subjects, 4
populations (30 Caucasian
trios (CEU), 45 unrelated

Chinese (CHB), 45
unrelated Japanese (JPT),
and 30 Yoruba trios (YRI)).

14,456 transcripts for
13,643 genes

(Illumina, Sentrix
Human Whole
Genome-6

Expression BeadChip
version 1).

>2.2 million SNPs per
population.

Stranger
et al., 2007
(Science)

[36] Human Lymphoblastoid
cell lines (LCL)

210 HapMap unrelated subjects,
4 populations (60

Caucasians (CEU), 45
Chinese (CHB), 45 Japanese
(JPT), 60 Yoruban (YRI)).

14,925 transcripts for
14,072 genes

Phase 1 HapMap SNPs and
CNV data from

comparative genomic
hybridization (CGH) array of

26,574 clones.

Dixon et al.,
2007

[37] Human Lymphoblastoid
cell lines (LCL)

400 Affected and unaffected
children from families with

an asthma proband.

54,675 transcripts
representing 20,599
genes (Affymetrix
HG-U133 Plus 2.0

chip).

109,157 SNPs for 830
subjects (Illumina Sentrix
Human-1 Genotyping
BeadChip) and 299,116
SNPs for 378 subjects

(Illumina Sentrix
HumanHap300 BeadChip).
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a pioneering study which showed the generalizability of
this approach to different organisms [29]. In this study,
an eQTL linkage analysis was performed using 23,574
transcript expression levels measured in livers of 111
mice from the F2 generation of two standard inbred
strains, C57BL/6J and DBA/2J and >100 microsatellite
markers. Differential gene expression was detected for
>33% of the genes in the parental and ≥10% genes in
the F2 strain. 9-16% genes have eQTLs with LOD scores
> 4.3. To identify transcripts that influence the complex
obesity trait in these mice, the authors compared the
gene expression profiles of mice at the lower vs. upper
25th percentile of an obesity trait and identified three
distinct expression patterns for 280 genes. Importantly,
these 280 genes were enriched for eQTLs and linkage
analysis of the obesity trait performed on the subgroups
with distinct expression patterns improved the linkage
signal. These results established a paradigm for the
combined use of gene expression traits and another
complex trait of clinical relevance for improved mapping
of genetic factors that influence the complex clinical
trait by affecting gene expression levels.
Analysis of corn (Z. mays) ear leaf tissue using the

eQTL approach in the same study [29] identified that
77% of genes had differential expression in this organ-
ism, 26% had ≥ 1 eQTL with LOD score > 3.0 and there
appeared to be genetic interactions between some of the
eQTLs. Schadt et al. also studied a small number of
human LCLs of 56 subjects from four CEPH families by
variance components analysis and identified differential

expression for 11% of the genes assayed of which about
a third had detectable heritability. Overall, these findings
demonstrate the complexity of gene expression genetics
ranging from a “simpler” plant organism to humans, but
also the applicability of genetical genomics approach in
tracking eQTLs in different organisms.
One of the first studies which established the natural

variation of gene expression levels in humans, evaluated
LCLs of 35 unrelated subjects from CEPH families vs. 1
reference pool of 10 subjects [30] utilizing 3-4 replicate
measurements per person. They determined that for
many genes (n = 813) between-person gene expression
variations were higher than within-person variations,
which are due to technical variability. Evaluation of 5
genes, which revealed highest variance among unrela-
teds, then sibs then monozygotic twins, provided proof
of principle for a genetic component underlying at least
some of the variability in human gene expression.
Seven of the studies [31-37] following these initial

reports utilized human LCL for eQTL mapping. Three
of these studies [31-33] assessed cell lines from the
CEPH repository [27], similar to the prior reports
[28-30], three utilized LCL from the HapMap consor-
tium [6,34-36] and one studied samples from families
with an asthma proband [37]. Morley et al. [31] mea-
sured levels of 8,500 transcripts in 94 unrelated subjects
from CEPH families and identified 3,554 (42%) tran-
scripts with greater between-subject (biological) varia-
tion than within-subject (technical). Genome-wide
linkage analysis of these 3,554 expression phenotypes in

Table 1 Summary of studies on geneticsof human gene expression: Study characteristics (Continued)

Goring
et al., 2007

[38] Human Lymphocytes
(not

transformed
cells)

1240 Multigenerational Mexican-
American families from the
San Antonio Family Heart

Study (SAFHS).

19,648 transcripts for
18,519 genes

(Illumina, Sentrix
Human Whole
Genome-6

Expression BeadChip
version 1).

432 highly polymorphic
microsatellite markers.

Emilsson
et al., 2008

[39] Human Blood and
adipose tissue

1,002
blood
and 673
adipose
cohorts.

Icelandic Family Blood (IFB)
cohort (N = 1,002) and the
Icelandic Family Adipose
(IFA) cohort (N = 673).

20,877 transcripts 1,732 microsatellite markers
for linkage analysis and

317,503 SNPs for
association analysis (150
unrelated subjects).

Schadt
et al., 2008

[40] Human Liver 427 Unrelated subjects. 39,280 transcripts for
34,266 genes

(Custom Agilent
microarray).

782,476 unique SNPs
(Affymetrix 500 K and

Illumina 650Y)

Myers et al.,
2007

[41] Human Brain 193 Human brain samples that
are neuropathologically

normal.

14,078 transcripts
(Illumina

HumanRefseq-8
Expression
BeadChip).

366,140 SNPs (Affymetrix
500 K).

Webster
et al., 2009

[42] Human Brain 176
cases

and 188
controls.

Human brain samples that
are neuropathologically

normal and with
pathological Alzheimer’s

disease (AD).

8,650 transcripts
(Illumina

HumanRefseq-8
Expression
BeadChip).

380,157 SNPs (Affymetrix
500 K).
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Table 2 Summary of studies on geneticsof human gene expression: Analyses, results, conclusions.

Reference Reference
ID

Analytic Approach Results Conclusion

Yan et al.,
2002

[28] Comparison of relative allelic expression
levels within the same cellular sample.

Significant differences in allele-
specific expression observed for 6 of
13 genes. Mendelian inheritance
detected for expression levels,
inherited together with genetic

markers.

Gene expression levels can be used
to detect genetics of disease

susceptibility.

Schadt
et al., 2003

[29] eQTL (expression quantitative trait locus)
linkage analysis.

Differential expression detected for
7,861 of 23,574 (>33%) genes in the
parental and ≥10% genes in the F2
strain. 9-16% genes have eQTLs with
LOD scores > 4.3. Gene expression
profiling identified three distinct
expression patterns for 280 genes
that distinguish mice at the lower
25th percentile of an obesity trait
(fat-pad mass = FBM) and two

groups at the upper 25th percentile
of the FPM trait. These 280 genes
were enriched for eQTLs. Linkage
analysis of the obseity trait focused
on groups with distinct expression

patterns improved the signal.

Gene expression levels can be used
to identify more refined disease sub-
groups, genes and pathways that are
implicated in the disease phenotype.

These have implications in
understanding genetics of complex
diseases and drug discovery aimed at
more homogeneous sub-groups of

distinct expression patterns.

eQTL (expression quantitative trait locus)
linkage analysis.

18,805 (77%) genes with differential
expression. Of these, 6,481 genes

with ≥ 1 eQTL with LOD score > 3.0.
Total of 7,322 eQTLs. Interactions

detected in <10% of eQTL.

Variance components analysis to test
heritability.

2,726 genes with differential
expression (11%). Of those 29% have

a detectable heritability.

Cheung
et al., 2003

[30] Utilized 3-4 replicate measurements per
person. Calculated variance ratio of each
gene expression by dividing the variance
of expression levels among subjects by
that within subjects (using replicates).

50% of genes on the arrays are
expressed in the LCLs. 813 genes

with valid observations had variance
ratios of 0.4-64. 5 genes evaluated in
larger group and found to have

highest variance among unrelateds,
then sibs then monozygotic twins

(10 pairs).

There is natural variation to gene
expression levels which is at least in
part determined genetically. Genetic
differences among individuals may
account for variations in gene

expression and suggest underlying
heritability.

Morley
et al., 2004

[31] Variance of expression levels detected
from 94 unrelated subjects. 3554

expression phenotypes with greater
variation between subjects than within
subjects (replicates) were used for further
analysis. Genome-wide linkage analysis
conducted for these phenotypes in 14

CEPH families.

Found 984 expression phenotypes
with pointwise linkage p < 0.05
genome-wide, more than the 178
false positives expected by chance

alone. 142 phenotypes have
pointwise p < 0.001, which exceeds
chance (3.5 false positives expected).
Of the top 142, 27 have a cis-(within
5 Mb) and 110 have a trans-regulator.

Of the 984, 164 have multiple
regulators (152 with multiple trans
and both cis+trans for 12). There are

linkage regions with multiple
expressions linking to it, called

“hotspots”. Genes that map to one
hotspot have expression levels with
higher than expected correlations.
Some of these genes have close
physical locations. Some cis-SNPs
show differential allelic expression.

Genetic factors that influence
variation in human gene expression
can act in cis (5 Mb) or trans. There
are transcriptional “hotspots”, which
may contain “master regulators” of
multiple genes. Mapping genetic

factors that influence gene
expression could help with the

understanding of human biology and
disease.
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Table 2 Summary of studies on geneticsof human gene expression: Analyses, results, conclusions. (Continued)

Monks
et al., 2004

[32] Variance components analysis to test
heritability and eQTL analysis. Comparison
of biological pathways within GO and
KEGG, using genes clustered by genetic

correlations (GC) and Pearson’s correlations
(PC). Correction for multiple testing with
Bonferroni and false discovery rate (FDR).

2,430 of 23,499 genes differentially
expressed in ≥50% of children. Of

these, 762 were heritable with FDR of
0.05 and median heritability of 0.34.
These genes were enriched for

immunity-pathways. 22 genes have
significant eQTLs at genome-wide
level. Did not detect “hotspots”. 574

genes analyzed for GC and PC
showed that both clusters have

similar pathway coherence for GO,
but GC has better pathway

coherence for KEGG pathways.

Genetic factors influence gene
expression in LCL. Important to test
other tissues. Random samples may
not have transcriptional “hotspots”.
Gene expression genetics may

identify novel biological pathways.

Cheung
et al., 2005

[33] Follow-up association study for the
significant linkage findings from Morley
et al. (2004). Linear regression association

for 374 expression levels with prior
evidence of cis-linkage, using SNPs near
linkage peaks (± 50 kb). Expression GWAS
(eGWAS) for 27 top cis-linkage phenotypes,
using >770,000 SNPs. Comparison of prior

linkage and association results.

65 of 374 expression levels have ≥1
SNP that associates at p < 0.001, 12
with p < 1E-10 and 133 with p <

0.01. Same proportions of
associations found for the 5’, 3’ and
genic regions. 14 out of top 27 cis-
linkage regions showed genome-
wide associations. 12 of those were
cis only, 1 was cis+trans and 1 was
trans only. One gene with strong cis-

linkage and association was
submitted to two functional assays
which confirmed presence of a
functional variant that influenced
gene expression by modifying
strength of RNA polymerase II

binding.

Strong linkage predicts strong
association for expression levels.

eSNPs NOT enriched for 5’ or 3’ end.
eGWAS is feasible and may lead to
genetic determinants of expression

phenotypes.

Stranger
et al., 2005

[34] Analyzed 374 of 630 genes with
expression signals above background and
most variable. Linear regression association

for these genes (688 probes in total).
Three methods for multiple-test correction:

Bonferroni, FDR and permutations.

Good concordance between the 3
multiple test correction methods. For
10-40 of 374 genes, cis-SNPs (1 Mb
from genomic midpoint of gene) are
detected at genome-wide level by
≥1 statistical method. Only 3 trans
hits were observed which are more

likely to be false positive.

eGWAS can identify variants with
regulatory activity

Stranger
et al., 2007
(Nature
Genetics)

[35] Linear regression association analysis in 4
ethnic populations. Heritability estimates in
Caucasian and Yoruba trios. Tested for
significance by 10,000 permutations and
FDR. Candidate trans-SNP analysis (SNPs
with cis-effects, non-synonymous, splicing,

microRNA SNPs).

10% (4,829) and 13% (6,482) of all
probes analyzed has heritability >0.2
in CEU and YRI trios, respectively,

with 958 overlapping genes. 154 CEU
and 217 YRI genes have heritability
>0.5, with overlap of 9 genes. 831

genes with significant cis in at least 1
population; 310 in at least 2; 62 in all

four. Most detected genes have
heritability estimates above 0.2.

Pooling populations captures some
additional genes with smaller effect
size. Most cis-associations are in
genic and immediate intergenic

regions. 108 genes with significant
trans association in ≥1 population, 16

genes in ≥2 and 5 in all 4
populations. Most trans-SNPs also

have cis-effects. CEU population had
most divergent expression profile

from other populations, likely due to
age of cell lines. There were 60 cell
lines that were measured on 2
different arrays, which had high
correlations in overlapping results,
suggesting transcript measurements

are stable across different
experiments, measurement times and

platforms.

There is a substantial number of
heritable expression traits detectable
in small population (30 trios), but

also substantial non-genetic variation.
Substantial overlap between different
ethnic groups for significant eSNPs.
Ethnic differences could in part be

due to differences in SNP
frequencies. Most eSNPs act in-cis.
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Table 2 Summary of studies on geneticsof human gene expression: Analyses, results, conclusions. (Continued)

Stranger
et al., 2007
(Science)

[36] Linear regression association analysis in 4
ethnic populations. Cis-SNPs defined as 1
Mb from midpoint of probe and cis-CNVs
within 2 Mb. Permutation-based p values
≤ 0.001 deemed significant. Overlap with

Nature Genetics study unclear.

Of 14,072 genes, 888 have ≥1 SNPs
with significant association in ≥1
ethnic group, 331 of which were
significant in ≥2 ethnic groups and
67 of which in all 4 populations. Of
14,072 genes, 238 have ≥1 CGH

clone with significant association in
≥1 ethnic group, 28 of which were
significant in ≥2 ethnic groups and 5
of which in all 4 populations. Not all
CGH clones have detectable CNVs.
1322 CNV clones detected. 99 genes
associate with ≥1 CNV clone, in ≥1
ethnic group, 34 of which with ≥2

ethnic groups, and 7 in all 4
populations. Most CNV associations
cannot be detected by SNPs (87%).

Both SNP and CNV associations
replicate across ethnic groups. CNVs

appear to exert their effects by
disrupting both regulatory regions as
well as the genic regions. Survey of
structural variants in addition to SNPs

is important in eGWAS.

Dixon
et al., 2007

[37] Variance components analysis to test
heritability and eQTL analysis on the

subset of transcripts with heritabilities >
0.3. Multiple testing corrections by FDR.

No significant differences between
asthmatics and non-asthmatics
(unchallenged cells). 15,084

transcripts (28%) = 6,660 genes have
heritabilities > 0.3. Traits with higher
heritability have SNPs that explain a
bigger percentage of their heritability
and therefore also have a larger lod
score of association (on average peak
SNP explains 18.2% heritability). SNP
interactions could explain transcript
levels not explained by single SNPs.
Trans effects weaker than cis. Highly

heritable traits enriched for
chaperonins, heat shock proteins, cell
cycle progression, RNA processing,
DNA repair, immune response.

Joint analysis of disease GWAS and
eGWAS identified potential candidate
genes for asthma (ORMDL3), Crohn’s
disease (PTGER4), NIDDM (PHACS),
thalassemia (HBS1L). eGWAS is a
useful approach to detect disease

SNPs with a functional role.

Goring
et al., 2007

[38] Variance components analysis to test
heritability and eQTL analysis. Cis-QTL =
multipoint lod score at the location

nearest the underlying structural gene.
Trans-QTL = located on a different

chromosome than its transcript. Multiple
testing correction by FDR. Tested HDL-C
concentrations for correlations with cis-
regulated transcripts to identify cis-SNPs

that also influence HDL-C.

16,678 transcripts (84.9%) were
heritable with median heritability

estimate of 22.5%. RefSeq transcripts
have higher heritability estimates
than non-RefSeq transcripts. At an
FDR of 5%, identified 1,345 cis-
regulated transcripts (6.8%) with
median effect size of 24.6%. More
significant cis- than trans-QTLs.
Strongest QTLs tend to be cis.
Identified a functional cis-SNP in
VNN1 that associate with its
expression and HDL-C levels.

Lymphocytes may provide more
accurate representation of natural

gene expression state than
lymphoblasts, though there is

overlap. Cis-regulation more stable
across studies, tissues and stronger.
No evidence of master regulators in

this study.

Emilsson
et al., 2008

[39] Correlations between obesity traits and
blood and adipose tissue expression levels.

Variance components analysis to test
heritability and eQTL analysis. Linear

regression association analysis. Multiple
testing correction by FDR. Generated
connectivity matrix of genes with high

correlation of expression in adipose tissue,
compared human and mouse data,

identified GO categories enriched for co-
regulated genes.

Adipose tissue expression levels (63-
72%) correlate better with obesity

traits than do blood expression levels
(3-9%). 55% of blood and 75% of
adipose tissue transcripts are

significantly heritable, with average
heritability of 30%. 2,529 (12%)

significant cis-eQTLs in blood, and
1,489 (7%) in adipose tissue. >50% of
significant adipose tissue cis-eQTLs
also significant in blood. Traits with

higher heritability of greater
reproducibility. Much less significant
trans-eQTLs. No evidence of master-
regulators. 2,714 (12.9%) significant
cis-SNPs in blood and 3,364 (16%) in
adipose tissue. Identified genes that
are correlated in both human and
mouse adipose tissue and enriched
in macrophage activation pathways.
cis-eSNPs for the expression traits in
this network also influence obesity

traits.

Significant overlap in genetic factors
underlying gene expression in two
different tissue types, but expression
levels from clinically-relevant tissue

correlates better with clinical-
phenotypes. Expression correlation
networks combined with cis-eSNPs
could potentially identify genes/

pathways underlying complex clinical
phenotypes.

Ertekin-Taner Molecular Neurodegeneration 2011, 6:31
http://www.molecularneurodegeneration.com/content/6/1/31

Page 8 of 18



14 CEPH families (n~140) detected evidence of signifi-
cant linkage for 984 (28%) transcripts with genome-wide
p < 0.05 and for 142 (~4%) with genome-wide p <
0.001, which far exceeds the numbers expected by
chance alone. When these eQTLs were distinguished as
cis- or trans-regulators, defined in this study as linkage
regions within or outside 5 Megabases (5 Mb) of the
target gene, respectively, most of the top 142 eQTLs
were found to be trans-regulators. Some expression

traits had multiple significant eQTLs. There were link-
age regions with multiple expressions linking to it,
termed as expression “hotspots” or “master regulators”.
Importantly, genes that map to one hotspot had expres-
sion levels with higher than expected correlations and
some of them had close physical locations.
Monks et al. [32], also assessed LCLs from CEPH

families (n = 167), though they measured a larger num-
ber of transcripts than Morley et al. [31], with 23,499

Table 2 Summary of studies on geneticsof human gene expression: Analyses, results, conclusions. (Continued)

Schadt
et al., 2008

[40] Linear regression association analysis. Cis
eQTL defined as being 1 Mb from

transcription start or stop site of the gene.
Multiple testing corrected by Bonferroni or
FDR approaches. Compared significant
eQTL results to those from published
disease GWAS for Type 1 diabetes and

coronary artery disease.

At Bonferroni adjusted p < 0.05,
1,350 expression traits (1,273 genes);
at FDR <10%, 3,210 traits (3,043

genes) identified to have at least one
significant cis eSNP, which explain 2-
90% expression variation. Of the

blood and adipose expression traits
present on the liver expression

microarrays, 30% had cis eQTLs that
overlapped with the 3,210 significant
liver cis eQTLs. Trans eQTLs significant
at Bonferroni p < 0.05 were 242 traits
(236 genes), and at FDR <10% were
491 traits (474 genes). Identified
SORT1 and CELSR2 as candidate

genes for coronary artery disease and
LDL cholesterol levels, and RPS26 for

Type 1 diabetes.

Evidence of common genetic control
between tissues as well as tissue-

specific genetic control of expression.
Significant trans eQTLs only a fraction
(15%) of cis eQTLs. Increase in sample
size bigger impact on power than

increasing genetic coverage by SNPs.
Cis eQTLs combined with expression
networks in humans and rodents and
known biological pathways (such as
KEGG) may help identify disease-

susceptibility genes in regions of LD.
Not all disease-SNPs will be eSNPs
but strong expression association for
disease-SNPs provides additional
confidence for the candidates.

Myers
et al., 2007

[41] Linear regression association analysis. Cis
eSNPs defined as being within the gene
or 1 Mb its 3’ or 5’ end. Multiple testing
corrected by permutation approaches.

58% of the transcriptome has
expression in ≥5% of control brains.
Of these 21% correlate with a cis or
trans eSNP. 433 significant cis eSNPs
(99 transcripts), and 16,701 significant

trans eSNPs (2,876 transcripts).
Enrichment of significant cis vs. trans
associations maximized within ~70
kb of transcripts. MAPT cis eSNPs

with alleles on the major haplotype
(H1) are associated with higher

transcript levels. Few common results
with lymphoblast eGWAS.

Evidence for genetic control of
human brain gene expression. Brain
eSNPs may be used in conjunction
with disease-SNPs for neurologic or

psychiatric illnesses to identify
functional variants.

Webster
et al., 2009

[42] Linear regression association analysis. Cis
eSNPs defined as being within the gene
or 1 Mb of its 3’ or 5’ end. Analyzed cases
and controls both separately and jointly. In
the combined analysis, tested for diagnosis
effects on expression by comparing model
with diagnosis only vs. one with diagnosis,

SNP and diagnosis × SNP interaction.
Multiple testing corrected by permutation
approaches. Network analysis was done on
the transcripts with a significant eQTL (p ≤
0.01) and those without a significant eQTL
but were differentially expressed between

ADs and controls.

58% of the transcriptome has
expression in ≥5% of AD brains.
Hybridization date and APOE had

strongest influence and post-mortem
interval least influence on brain

expression levels. 1,829 significant cis
eSNPs in the combined sample and
656 trans eSNPs. 27% of all eQTLs

with significant interaction term with
diagnosis. 37% of cis eSNPs that

interact with diagnosis overlap with
those found in just the control brains
(Myers et al). 18% overlap between
previous report and cis+trans effects
without diagnosis interaction and 9%
overlap for those with interaction.

Effect size of eSNPs that are closer to
the transcription start sites are larger.
Identified clusters of transcripts that
are enriched for certain ontology

groups and that contain “hub” genes
with expression levels that correlate

with many other transcripts.

Transcriptome measurements in
disease-relevant tissue is important.
Brain transcriptome appears to be
unique. eQTLs may be used as

biomarkers for classifying preclinical
subgroups. eQTL approach may help
distinguish true disease risk variants.
Using tissue from subjects with

disease may be needed to capture
most eSNPs that have disease

interactions, though significant eSNPs
without disease interactions and

some with disease interactions can
be identified in control and disease

tissue equally well.
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expression phenotypes that were evaluated by variance
components analysis for their heritability, as well as
eQTL analysis. They determined that 10% of the genes
were differentially expressed in ≥50% of children, and a
third of these were heritable at a false discovery rate
(FDR) of 0.05 and median heritability of 0.34. The heri-
table transcripts were enriched for immunity pathways.
Twenty-two genes had significant eQTLs at genome-
wide level, eight of which were within 5 Mb of the gene
(i.e. cis-regulating). In contrast to Morley et al. [31],
Monks et al. [32] did not find an enrichment for tran-
scription “hotspots” over what would be expected by
chance alone, based on simulation studies. The authors
studied a subset of 574 transcripts with heritability for
pairwise genetic correlations (GC) and Pearson’s correla-
tions (PC), which does not account for a genetic compo-
nent, followed by pathway analysis using the Gene
Ontology (GO; http://www.geneontology.org/) and
Kyoto Encyclopedia of Genes and Genomes (KEGG;
http://www.genome.jp/kegg/) databases. This analysis
revealed that genes clustered by both GC and PC had
similar pathway coherence for GO, but that GC gene
clusters had better pathway coherence for KEGG path-
ways. This suggests that analysis of pairwise genetic cor-
relations between gene expression phenotypes may
identify novel biological pathways that may not be possi-
ble by approaches which neglect the genetic component
of correlations.
In a follow up to their prior linkage study [31],

Cheung et al. [33] assessed 57 unrelated CEPH subjects
in an association study for 374 expression phenotypes
with prior evidence of linkage at p < 0.02 and cis-SNPs
near linkage peaks (± 50 kb of target gene). Additionally,
they evaluated the top 27 cis-linkage expression pheno-
types (p < 3.7 × 10-5), in a GWAS using >770,000 SNPs.
They determined that 65 of 374 expression levels have
≥1 SNP that associates at nominal p < 0.001, 12 with p
< 10-10 and 133 with p < 0.01. Same proportions of
associations were found for the 5’, 3’ and genic regions.
Fourteen out of the top 27 cis-linkage regions showed
associations significant at the genome-wide level after
Bonferroni corrections for the number of SNPs tested.
Twelve of those top 14 associations were cis only, one
was cis+trans and one was trans only. The authors also
performed functional analysis for one of the top genes
and confirmed the presence of a functional variant that
influenced gene expression by modifying strength of
RNA polymerase II binding. This study demonstrated
that strong linkage also predicts strong association for
expression levels and expression GWAS (eGWAS) may
be a feasible and powerful approach to identify genetic
determinants of expression phenotypes.
In the first of three studies [34-36] performed using

HapMap LCL, Stranger et al. [34] analyzed 60 samples

for levels of 1,433 transcripts (630 genes), then per-
formed eGWAS for 688 transcripts (374 genes) with
highly variable expression signals above the background.
They compared and identified good concordance
between three methods for multiple corrections: Bonfer-
roni, FDR and permutations. There were 10-40 genes
which had cis-SNPs (defined as 1 Mb from genomic
midpoint of gene) significant at genome-wide level by
≥1 statistical method, whereas trans signals were
detected only for 3 genes.
In a subsequent larger study, Stranger et al. [35],

investigated LCL from four HapMap populations: 30
Caucasian trios (CEU), 30 Yoruba trios (YRI), 45 unre-
lated Chinese (CHB) and 45 unrelated Japanese (JPT).
Analysis of 14,456 transcripts (13,643 genes) revealed a
genetic component with heritabilities > 0.2 in 10%
(4,829) and 13% (6,482) of the transcript probes ana-
lyzed in the CEU and YRI trios, respectively, with 958
overlapping genes. There were 154 CEU and 217 YRI
genes with substantial heritability >0.5, with overlap of 9
genes. There were 831 genes (6% genes tested) with a
cis-association significant in at least 1 population at p <
0.001 after 10,000 permutations; 310 in at least 2 and 62
in all four populations. There were many less trans-
associations, with 108 significant genes in ≥1 population,
16 genes in ≥2 and 5 in all 4 populations. These findings
demonstrate the presence of both overlap and diversity
in significant eSNPs across different ethnic groups.
More than 50% of the significant eQTLs had heritability
estimates > 0.2, though pooling populations to increase
sample size captured some additional genes with smaller
effect sizes. Most trans-SNPs were also found to have
cis-effects and most cis-associations were in genic and
immediate intergenic regions, suggesting that cis-var-
iants may be more abundant and/or may have stronger
effects than trans-variants. This study also evaluated the
influence of technical variability on gene expression
measurements by testing 60 cell lines on two different
arrays, that led to results with high correlations, suggest-
ing that transcript measurements are stable across dif-
ferent experiments, measurement times and platforms.
They also identified that CEU population, which had the
most aged cell lines, also had the most divergent expres-
sion profile from other populations, drawing attention to
the potential technical concerns with LCL.
To investigate the contribution of a different type of

genetic variation, namely copy number variants (CNVs)
to gene expression levels, Stranger et al. [36], performed
association of 14,925 transcripts (14,072 genes) with
CNVs in the same four HapMap populations [35] and
determined that there are significant CNV associations
that replicate across ethnic groups as well as those that
are unique to one ethnic group. Mapping of CNVs vis à
vis the genes suggested that CNVs exert their effects by
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disrupting both regulatory regions as well as the genic
regions and altering gene dosage. Notably, most CNV
associations cannot be detected by SNPs (87%), indicat-
ing the importance of the survey of structural variants
in addition to SNPs in eGWAS.
In a study of 400 LCL from affected and unaffected

children of families with an asthma proband, Dixon et
al. [37], studied 54,675 transcripts (20,599 genes). First,
there were no significant differences in the expression
profiles between asthmatics and non-asthmatics (unchal-
lenged cells). Twenty-eight percent of the transcripts
(15,084) corresponding to 6,660 genes have heritabilities
> 0.3, which is in good agreement with prior reports
[29,32]. 1,989 transcripts had significant associations at
genome-wide level, where many of the strongest associa-
tions were in cis. This study did not identify master reg-
ulators with strong effects. Combined investigation of
these eGWAS results with those of published GWAS on
some diseases, identified potential candidate genes for
asthma, Crohn’s disease, diabetes and thalassemia imply-
ing that eGWAS is a useful approach to detect disease
SNPs with a functional role.
In one of the largest eQTL studies to date, Goring

et al. [38] analyzed 1240 lymphocyte (not LCL) samples
collected from multigenerational Mexican-American
families from the San Antonio Family Heart Study
(SAFHS) for 19,648 transcripts (18,519 genes). Nearly
85% of the transcripts (16,678) were significantly herita-
ble with a median heritability estimate of 22.5%. This
estimate is similar to those from some LCL studies
[29,32,37]. There were 1,345 significant cis-regulated
transcripts with median effect size of 24.6%. There were
many less trans-regulators, again reinforcing the idea
that trans effects likely have smaller effect sizes than
those in cis. This study was able to replicate the cis-find-
ings of Morley et al. [31], but not those in trans, which
suggests higher stability of cis-regulatory effects across
studies, populations and cell types, contrary to trans-
effects, which may either be more cell/tissue-specific,
may have smaller effect sizes or may be false positives.
There was also no evidence of “master regulators” in
this study. The authors demonstrated the utility of the
eQTL approach in complex trait mapping, by identifying
eSNPs which associate with HDL-cholesterol levels and
expression levels of VNN1. They ultimately identified
variants in this gene with functional consequences on
transcription binding.
The first eQTL study to systematically compare two

different tissues and pursue combined genetic analysis
of expression levels and complex traits -in this case obe-
sity-related phenotypes [39]- assessed 20,877 transcripts
in the blood (IFB cohort; n = 1,002) and adipose tissue
(IFA cohort; n = 673) of Icelandic families, genotyped
for 1,732 microsatellite markers for linkage analysis and

also for 317,503 SNPs for association analysis in a subset
of 150 unrelated subjects. In this study, adipose tissue
expression levels (63-72%) correlated better with obesity
traits than do blood expression levels (3-9%), and this
effect was more pronounced when the analysis was con-
fined to the subset of subjects that overlapped in the
blood and adipose tissue cohorts. Fifty-five percent of
blood and 75% of adipose tissue transcripts were signifi-
cantly heritable, with average heritability estimates of
30%, similar to the estimates from prior studies
[29,32,37,38]. Variance components linkage analysis
revealed 2,529 (12%) significant cis-eQTLs in blood, and
1,489 (7%) in adipose tissue, where cis-eQTL region cor-
responded to the microsatellite located nearest the
expression probe of interest. Greater than 50% of the
significant adipose tissue cis-eQTLs were also significant
in blood. Expression traits with higher heritability in
both tissues had greater reproducibility of eQTL signals.
Thus, although there is significant overlap in genetic
factors underlying gene expression in two different tis-
sue types, expression levels from the clinically-relevant
tissue appears to correlate better with clinical-pheno-
types. There were many less significant trans-eQTLs
and no evidence of “master regulators” above what
would be expected by chance alone. There were 2,714
(12.9%) significant cis-SNPs in blood and 3,364 (16%) in
adipose tissue, where cis-SNPs were defined as those
residing within a 2 Mb window centered at the location
of the probe corresponding to the transcript of interest.
This study, by Emilsson et al. [39], also characterized

the transcriptional network by evaluating all pair-wise
correlations in the most differentially expressed genes
and generated a “connectivity map”, which defined “con-
nectivity” of a given gene as “the sum of its connection
strengths with all other genes in the network”. This
approach identified a group of highly correlated gene-
expressions (termed “network module”) in human adi-
pose tissue, which significantly overlapped with a “net-
work module” in mouse adipose tissue. This module
was found to be significantly enriched for genes in
macrophage activation pathways. These genes also had
cis-eSNPs which significantly influenced expression
levels as well as obesity-related traits. These results col-
lectively demonstrate that expression correlation net-
works combined with cis-eSNPs could potentially
identify genes/pathways underlying complex clinical
phenotypes.
Using similar approaches with Emilsson et al. [39], but

human liver tissue from 427 unrelated subjects, Schadt
et al. [40], performed an eGWAS using levels of 39,280
transcripts (34,266 genes) and 782,476 SNPs. At Bonfer-
roni adjusted p < 0.05, there were 1,350 expression traits
(1,273 genes, 3.7%) and at FDR <10%, 3,210 traits (3,043
genes; 8.8%) which had ≥1 significant cis-eSNP,
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explaining 2-90% of variation in expression levels. In
contrast, significant trans-eQTLs were far fewer with
only 242 traits (236 genes) or 491 traits (474 genes)
showing significance after Bonferroni or FDR correc-
tions, respectively. Comparison of their former blood
and adipose tissue eQTLs [39] to the liver eQTLs deter-
mined 30% overlap of cis-eQTLs from each tissue with
significant liver cis-eQTLs. By combining their liver
eGWAS with publicly available disease GWAS data and
transcriptional network approach [39], Schadt et al. [40]
identified SORT1 and CELSR2 as candidate genes for
coronary artery disease and LDL cholesterol levels, and
RPS26 for Type 1 diabetes. These findings have implica-
tions for mapping those loci that influence disease risk
by affecting gene expression levels. They demonstrate
how the combined eQTL and disease mapping
approaches can help distinguish the actual disease sus-
ceptibility gene in regions of LD, where SNPs in more
than one gene may associate with disease risk, but only
the disease-related transcript levels will associate with
the eSNPs.
There are two published eGWAS utilizing transcript

levels from human brain tissue [41,42]. The first study
by Myers et al. [41] assessed neuropathologically “nor-
mal” cerebral cortical tissue from 193 subjects for
14,078 transcripts and 366,140 SNPs. They determined
that 58% of the transcriptome had expression in ≥5% of
control brains. Of these, 21% had significant associations
with a cis- or trans-eSNP. Contrary to prior studies
[34,35,37-40] performed in human LCL, lymphocyte,
adipose and liver tissue, human brain eGWAS identified
less significant cis-eSNPs (433 eSNPs for 99 transcripts)
than trans-eSNPs (16,701 eSNPs for 2,876 transcripts).
There was, nevertheless, enrichment of significant cis-
vs. trans-associations over chance expectations at dis-
tances close to the transcripts and maximizing at dis-
tances <70 kb. Myers et al. [41] determined that MAPT
cis-eSNP alleles that are on the major H1 haplotype are
associated with higher MAPT transcript levels, in agree-
ment with their prior study [43]. Compared to Cheung
et al. [33], and Stranger et al. [44], there were only two
common results (1 cis and 1 trans-association), in con-
trast to 30% overlap of cis-eQTLs between liver [40] and
blood or adipose tissue [39] transcriptomes. These dif-
ferences could arise from differences in platform and/or
may suggest a more distinct genetic control for the
brain transcriptome. Technical challenges arising from
measuring levels of potentially degraded transcripts in
post-mortem brain tissue [45], in comparison to other
tissues that may have more well-preserved RNA, may
also underlie some of these discrepancies.
In the follow-up brain eGWAS, Webster et al. [42],

assessed 176 brain samples with AD neuropathology,
and performed a joint evaluation with 188 control brains

from their prior study [41]. The analyses were restricted
to 8,650 transcripts out of 24,357 (35.5%), which were
detected in >90% of the cases and controls. Similar to
control brains, 58% of the transcriptome was detectable
in ≥5% of AD brains. Assessment of technical and biolo-
gical covariates revealed that hybridization date and
APOE had the strongest influence and post-mortem
interval had the least influence on brain expression
levels. There were 1,829 significant cis-eSNPs (within
gene ± 1 Mb of 3’ or 5’ end) in their combined sample
and 656 significant trans-eSNPs. Twenty-seven percent
of all eQTLs were found to have significant interaction
term with diagnosis. Of the cis-eSNPs with significant
diagnosis interaction, 37% were also found in just the
control brains. Thus, a subset of cis-eSNPs that influ-
ence transcript levels differentially for AD subjects, also
influence gene expression in control brains, suggesting
that a portion of disease-relevant eSNPs may be cap-
tured in disease-free tissue and also that presence of
other factors besides the disease-relevant eSNPs are
likely necessary to predispose to AD. The authors did
network analysis on transcripts with a significant eQTL
and those that were differentially expressed between
ADs and controls, but did not have a significant eQTL.
This led to the identification of some transcript clusters
that were significantly enriched for gene ontology
groups; and “hub” genes with expression levels that cor-
relate with many other transcripts. The authors high-
lighted their findings of significant cis-eSNPs that
influence expression of GSTO2, but not GSTO1, which
were previously implicated in AD risk [46,47], thereby
implicating GSTO2 as the likely AD risk gene in this
region.
Collective evidence from the eQTL studies discussed

in this section lead to the following conclusions:

1) Transcriptome expression levels can be repliably
and replicably detected in human cell lines and mul-
tiple types of tissues.
2) Genetic factors account for a substantial propor-
tion (3-85% depending on study size, tissue source,
expression platform) of the variation in human gene
expression, with median heritability estimates of 20-
30% in most studies. This is similar to the genetics
of gene expression for other organisms.
3) Expression QTLs can be mapped by linkage or
eGWAS approaches.
4) Most eQTLs appear to be cis-regulating, suggest-
ing that trans-eQTLs may have smaller effect sizes.
5) Both SNPs and structural variations, namely
CNVs, appear to underlie eQTL effects.
6) Many eQTLs are common across different ethnic
groups, though there appear to be eQTLs that are
unique to one ethnic group.
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7) Many eQTLs are common across different tissue
types, though there appear to be eQTLs that are
unique to one tissue type.
8) “Gene expression endophenotype” approach is
powerful and can detect hundreds to thousands of
significant eQTLs with hundreds of subjects, unlike
“complex disease mapping” approaches. Increasing
sample size has the most impact on power for eQTL
studies (vs. increasing SNP markers).
9) “Gene expression endophenotype” approach can
be utilized in conjunction with mapping for complex
diseases or other disease-related phenotypes to iden-
tify or confirm novel genes with functional eSNPs
that confer disease risk. “Network” analysis of
human eQTLs alone or in conjunction with those
from other organisms can identify novel biological
pathways that may be “disease-relevant”.
10) “Disease-relevant” eQTLs are more likely to be
captured in “disease-relevant” tissue (e.g. obesity-
related eQTLs in adipose tissue) [39], although many
such eQTLs may also be identified in other tissues.
There appears to be substantial overlap in eQTLs
detected from subjects with and without disease,
although detection of some eQTLs may require
assessment of “disease-relevant” tissue from subjects
with disease.

Gene Expression Endophenotypes in
Neurodegenerative Diseases-Current Status
Gene expression endophenotypes have thus far been uti-
lized in two types of studies in neurodegenerative dis-
eases: “Candidate gene” studies, where influence of
variants on expression levels of one or a few candidate
genes are assessed; and “Expression profiling” studies,
which compare levels of transcriptome expression in tis-
sues from patients vs. controls in an effort to identify
novel disease genes and pathways. This section provides
examples of both types of studies to demonstrate the
most common use of gene expression endophenotypes
in neurodegenerative diseases to date. While not a com-
prehensive review on these studies, it will provide
knowledge on these current approaches, including their
uses and limitations.

Gene Expression Endophenotypes in Neurodegenerative
Diseases-"Candidate gene” approach
The initial studies utilizing the gene expression endo-
phenotype in neurodegenerative diseases, have been
conducted for known disease risk genes. A prime exam-
ple of this is Apolipoprotein E gene (APOE), which is a
well-established risk factor for AD, where the coding
ApoEε4 polymorphism is associated with increased risk
[48], but is neither sufficient nor necessary for its devel-
opment (reviewed in [49]). Polymorphisms in the

promoter region of APOE, which influence its expres-
sion, have received some attention as potential modifiers
of AD risk that may be independent of ApoEε4
(reviewed in [50]). Although gene expression levels have
not been directly used as endophenotypes in most of
these studies, these polymorphisms were investigated
because of their predicted influence on ApoE expression
based on their location and in-vitro functional assays.
One of the most well-studied of these polymorphisms is
-491A/T, which was initially found to confer risk for
AD in its -491AA homozygote form, even in subjects
who lacked the risky ApoEε4 allele [51]. Functional
transcriptional studies identified a stronger promoter
activity for APOE -491A vs. -491T containing constructs
[51]. ApoEε4 with the -491AA genotype had greater AD
risk compared to those with one or no copies of the
-491A allele, suggesting that both the isoform and level
of expression of ApoE may be important in conferring
disease risk and that ApoEε4 subjects with higher
expression of this protein may be at highest risk [52].
While this notion is in agreement with findings from
animal studies [53], the influence of ApoE promoter
polymorphisms on brain ApoE levels have not been
conclusive [50].
Another gene implicated in multiple neurodegenera-

tive diseases, which was investigated with the expression
endophenotype approach, is microtubule associated pro-
tein tau (MAPT). Missense and exon 10 splicing muta-
tions in MAPT lead to frontotemporal dementia with
parkinsonism linked to chromosome 17 (FTDP-17),
whereas a region of LD within MAPT, known as the H1
haplotype is associated with increased risk of taupathies,
namely, corticobasal degeneration (CBD) and progres-
sive supranuclear palsy (PSP) compared with the
(reviewed in [54]). Given the increase in MAPT exon
10-containing transcripts (also known as 4 repeat or 4R
tau) in affected brain regions in PSP and CBD, Caffrey
et al. [55,56] performed allele-specific gene expression
studies in both human neuronal cell lines and brain tis-
sue of MAPT H1/H2 heterozygous subjects. They deter-
mined that the risky MAPT H1 haplotype is associated
with significantly higher MAPT exon 10-containing
transcript expression without significant total MAPT
levels compared to MAPT H2 haplotype. Myers et al.
identified MAPT H1c as the sub-haplotype associated
with an increase in both total and 4R tau levels in the
human brain, with higher in-vitro transcriptional activity
and with increased AD risk [43].
While the above examples demonstrate how the gene

expression endophenotypes can be exploited to uncover
the underlying biology of well-established genes in neu-
rodegenerative diseases, our work utilizing the cerebellar
expression levels of 12 late-onset AD (LOAD) candidate
genes in 200 AD brains illustrate the use of this
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approach in identification of novel functional disease
risk polymorphisms [12]. In this study, Zou et al. inves-
tigated association of 619 cis-SNPs with cerebellar
expression levels of 12 LOAD candidate genes and iden-
tified three significant cis-SNPs in insulin-degrading
enzyme (IDE). The top cis-SNP (rs7910977) reached
genome-wide significance where the minor allele led to
~twofold increase in cerebellar IDE mRNA levels,
reduced AD risk, and reduced plasma Ab levels [57],
which is biologically congruent. This IDE cis-SNP was
in complete LD with an IDE SNP in a conserved region
(rs6583817) and increased reporter gene expression in
an in-vitro assay, providing additional evidence for a
functional effect of this polymorphism on gene
expression.

Gene Expression Endophenotypes in Neurodegenerative
Diseases-"Expression Profiling” approach
Large-scale comparisons of gene expression levels in
subjects with disease vs. controls, known as “Expression
Profiling” is one of the most commonly used approaches
implementing the gene expression endophenotype.
While potentially illuminating, this approach is vulner-
able to technical confounders that may influence gene
expression differentially in subjects with disease vs. con-
trols, including tissue and RNA integrity [45]. To mini-
mize these confounds, disease vs. control tissues need to
be carefully matched and/or these variables need to be
accounted for in the statistical analyses. Additional tech-
nical confounders to consider and control are microar-
ray platform and quality and batch effects for
experiments conducted on different dates [58]. There
are important statistical considerations including varia-
bility in expression levels, which may lead to false posi-
tive findings especially for low expressing genes with
high variability, as well as false negative results for those
with small, but reproducible changes [58]. Perhaps the
most important biological caveat is that, expression pro-
filing design, especially if conducted in the disease-rele-
vant tissue, does not distinguish expression changes that
are a result of the disease process from those that are
underlying causes of it. In this aspect, it is inferior to
the eQTL approach, which can be designed to uncover
the genetic factors underlying expression changes and
disease risk. Despite these pitfalls, the potential utility of
the expression profiling approach will be discussed in
this section, highlighting the results from several expres-
sion profiling studies in neurodegenerative diseases.
In a hippocampal gene expression profiling study of 9

control and 22 AD subjects of various severity, determined
by the bedside cognitive test, Mini Mental State Examina-
tion (MMSE) [59], Blalock et al. [60] correlated expression
levels with both cognitive (MMSE) and neuropathology
(neurofibrillary tangle) scores, in all subjects as well as the

subset of nine controls or mild ADs with MMSE scores of
20-26 (collectively termed as the “Incipient ADs”). They
identified upregulation of genes that pertain to transcrip-
tion factor and tumor suppressor pathways among others.
The small sample size and the inability to discriminate
expression changes “due to” vs. “underlying” disease are
the main concerns with this otherwise novel approach,
which utilized three endophenotypes.
Bossers et al. [61] utilized a similar approach by gen-

erating expression profiles of 49 prefrontal cortex sam-
ples from subjects with different severity of underlying
AD neuropathology detected by Braak staging for neu-
rofibrillary tangles [62]. There were 1,071 transcripts
(922) genes which showed significant changes in their
expression levels with Braak stage. Some of these find-
ings were validated with quantitative PCR (qPCR).
There were clusters of genes which appeared to show
concerted changes with advancing Braak stage, such as
increasing early and then decreasing (UPDOWN clus-
ters) or vice versa (DOWNUP clusters), where the big-
gest changes coincide with the appearance of amyloid
plaques at Braak stage III. Functional annotation and
pathway analysis of these clusters, revealed an enrich-
ment for synaptic genes in the UPDOWN cluster and
those involved in proliferation, differentiation and
inflammation in the DOWNUP clusters. Importantly,
the synaptic gene expression changes correlated with Ab
levels, which led to the conclusion that synaptic activity
and Ab production may be part of a feed-back loop that
ultimately leads to AD. Given the appearance of changes
even before significant neuropathology or clinical
decline, the authors suggest that these findings are not a
result of neuronal loss due to disease process.
While the previous examples are aimed at understand-

ing the role of gene expression changes in the pathophy-
siology of a single neurodegenerative disease [60,61],
Bronner et al. [63] performed expression profiling in the
medial temporal cortex of 5 patients each from four dis-
tinct disease categories, namely, PSP, FTD, AD and PiD
(Pick’s disease) as well as a control group. Comparison
of gene expression profiles between each disease group
against controls identified a set of 166 transcript probes,
which could discriminate PSP, FTD/PiD from controls
and each other. The FTD and PiD groups have similar
gene expression profiles. AD had the most similar pro-
file to control group, in this small study. Although given
its very limited sample size, this study should be consid-
ered as a pilot, it also demonstrates another potential
application of gene expression profiling as a means to
discriminate between neurodegenerative disorders at a
molecular level.
Combining genetic association studies with gene

expression profiling represents another paradigm utiliz-
ing this approach [64,65]. Taguchi et al. identified 35
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genes that were significantly up- or down-regulated in
the hippocampus of AD vs. control subjects, which they
tested for genetic association with AD risk [64] in 376
AD patients vs. 376 controls. This study identified nine
nominally significant AD risk associations, a higher sig-
nificance rate than most such studies, with the POU2F1
association also reaching study-wide significance. Simi-
larly, Chapuis et al. [65] performed case-control genetic
association analysis for 82 genes that were found to be
differentially expressed between 12 control and 9 AD
brains, and determined nominally significant associa-
tions with AD risk for 17 genes. Of these, the associa-
tion for IL-33 achieved study-wide significance, which
was replicated in three additional series and was found
to interact with ApoEε4. The rare allelic variants in IL-
33 were associated with decreased risk of AD risk and
reduced levels of cerebral amyloid angiopathy. Further-
more, overexpression of IL-33 was associated with
decreased Ab40 secretion in-vitro. Though replication
studies are necessary, these studies illustrates the utility
of gene expression profiling studies in identifying candi-
date disease genes, some of which may subsequently be
shown to associate with both disease risk [64,65] and
other disease-related phenotypes [65].

Gene Expression Endophenotypes in
Neurodegenerative Diseases-The Future
Available eQTL studies reviewed above illustrate the
power of utilizing gene expression endophenotypes in
conjunction with the disease phenotype, to identify
novel genes, variants and pathways implicated in com-
plex diseases. This approach, already applied to HDL-
cholesterol levels [38] and obesity [39], can provide an
alternative to the current genetic mapping approaches
in neurodegenerative diseases. Distinct from candidate
gene and expression profiling studies, eQTL investiga-
tions in neurodegenerative diseases will aim to identify
genetic loci that influence both gene expression and dis-
ease risk at the genome-wide level.
The motivation to exploit the gene expression endo-

phenotype as an alternative in the genetic mapping of
neurodegenerative disease loci stems in part from the
relative shortcomings of GWAS of complex diseases [9].
First, though multiple genetic loci have been identified
for complex diseases through disease GWAS, these
genetic variants fail to account for a substantial propor-
tion of the underlying genetic risk [1,9]. To give AD as
an example, there are 12 published LOAD GWAS
[1,66], which led to the identification of a handful of
genes that achieved genome-wide significance. These
novel LOAD candidate loci collectively explain only a
modest proportion of AD risk (reviewed in [1]), despite
evidence that genetics account for ~80% of the risk for
AD [67]. Gene expression endophenotypes appear to be

more powerful than the disease phenotype, given the
identification of hundreds to thousands of eQTLs in stu-
dies of only hundreds of subjects and may therefore
identify genetic variants that may be missed by the clas-
sical disease mapping approach. Furthermore, they may
allow for selecting a subset of the suggestive disease risk
associations for further follow-up, by providing addi-
tional evidence for their functionality.
A relative concern with the eQTL approach is that

since genetic studies may well be powered to detect
eQTLs but underpowered to detect disease loci, comple-
mentary studies may be necessary to demonstrate that a
particular eQTL also confers disease risk. Such studies
may include concomitant mapping of other disease
QTLs (e.g. serum/CSF biomarkers such as Ab, neuro-
pathology scores, cognitive measures); identification of
eQTLs that are enriched for pathways previously impli-
cated in disease; accepting less stringent significance for
disease risk, but seeking replication in additional disease
cohorts; functional studies with the identified genes to
show their role in a disease-related in-vitro paradigm. It
should also be noted that the eQTL approach can only
capture those variants that confer disease risk via affect-
ing gene expression and will miss coding changes that
do not change transcript levels.
Another advantage of the eQTL approach is that the

mechanism of action of the identified variants is already
evident, which may allow for immediate downstream
validation experiments such as measurement of protein
levels in the brain or in-vitro transcriptional activity stu-
dies. Finally, combined eQTL and disease mapping
approaches may identify the true disease-risk gene in
regions of high LD spanning multiple genes, since the
gene with the transcript that is influenced by the risk
variant is most likely to be the disease-risk gene.
To achieve maximal benefit from the expression endo-

phenotype approach in mapping novel neurodegenera-
tive disease loci, attention should be given to technical
aspects of the study design to minimize experimental
confounds. These include choice and quality of tissue
and transcriptome measuring platform, RNA integrity,
statistical analysis to control for confounders and to
detect significance [45,58], to name a few.
It should be mentioned that in addition to eSNPs and

coding variants, epigenetic mechanisms are also recog-
nized as an additional source of influence for risk of
complex diseases such as cancer and AD [68,69]. Epige-
netics comprise those reversible and dynamic mechan-
isms that influence gene expression, usually independent
of DNA sequence, and include processes such as DNA
methylation, histone acetylation and microRNAs [68,69].
Seminal work in DNA methylation profiles from mono-
zygotic and dizygotic twins provided evidence for an
important role of epigenetics in heritability that is also
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environmentally regulated [70]. Genome-wide epige-
nomic approach of investigating DNA-methylation dif-
ferences in brains of subjects with schizophrenia and
bipolar disorder identified epigenetic differences at
numerous loci associated with psychosis, thereby provid-
ing evidence for the potential utility of this approach in
CNS diseases [71]. A comprehensive review of epige-
nomic approaches in gene discovery for neurodegenera-
tive diseases is beyond the scope of this review. Suffice
it to say that the combined eQTL and disease GWAS
approaches advocated in this review can be further
enhanced by additional incorporation of the epigenomic
approach as reviewed elsewhere [68,69].

Concluding Remarks
Understanding the underlying genetic component of
complex diseases, including Alzheimer’s and other neu-
rodegenerative diseases, has proven to be a challenge,
despite the advances made mainly via GWAS of the
dichotomous disease traits. Powerful approaches that
constitute an alternative and are complementary to the
current disease mapping algorithms are needed to over-
come this challenge. Gene expression endophenotypes,
which have a substantial genetic component, have
already been used in mapping and functional validation
of a few complex diseases and traits. While not all dis-
ease variants are expected to operate by changing tran-
script levels, it is expected that there will be many that
confer disease risk by influencing gene expression. Such
variants for neurodegenerative diseases may be captured
by combining gene expression endophenotypes with
existing disease GWAS to a) identify novel disease
genes/pathways; b) validate suggestive findings from dis-
ease GWAS; c) elucidate the mechanism of action of
newly discovered disease genes. Given their potential,
gene expression endophenotypes are expected to be uti-
lized in gene discovery for neurodegenerative diseases in
the years to come.
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