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Abstract

Background: Leucine-rich repeat kinase 2 (LRRK2) is the gene responsible for autosomal-dominant Parkinson’s
disease (PD), PARK8, but the mechanism by which LRRK2 mutations cause neuronal dysfunction remains unknown.
In the present study, we investigated for the first time a transgenic (TG) mouse strain expressing human LRRK2 with
an I2020T mutation in the kinase domain, which had been detected in the patients of the original PARK8 family.

Results: The TG mouse expressed I2020T LRRK2 in dopaminergic (DA) neurons of the substantia nigra, ventral
tegmental area, and olfactory bulb. In both the beam test and rotarod test, the TG mice exhibited impaired
locomotive ability in comparison with their non-transgenic (NTG) littermates. Although there was no obvious loss of
DA neurons in either the substantia nigra or striatum, the TG brain showed several neurological abnormalities such
as a reduced striatal dopamine content, fragmentation of the Golgi apparatus in DA neurons, and an increased
degree of microtubule polymerization. Furthermore, the tyrosine hydroxylase-positive primary neurons derived from
the TG mouse showed an increased frequency of apoptosis and had neurites with fewer branches and decreased
outgrowth in comparison with those derived from the NTG controls.

Conclusions: The I2020T LRRK2 TG mouse exhibited impaired locomotive ability accompanied by several
dopaminergic neuron abnormalities. The TG mouse should provide valuable clues to the etiology of PD caused by
the LRRK2 mutation.
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Background
Leucine-rich repeat kinase 2 (LRRK2) is the gene respon-
sible for autosomal-dominant Parkinson’s disease (PD),
PARK8, which originally has been defined by linkage
analysis of a Japanese family (Sagamihara family) [1-4].
LRRK2 is a complex kinase consisting of LRR, ROC,
COR, kinase, and WD40 domains [5]. The Sagamihara
family patients have the I2020T mutation in the kinase
domain [2]. Accumulated evidence suggests that LRRK2
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may play a key role in axonal extension, autophagy, pro-
liferation, and survival of neurons through its kinase ac-
tivity [6-9]. In spite of the proposed mechanisms for
neurodegeneration in vitro, the mechanism by which
LRRK2 mutations affect DA neurons in patients and
model animals in vivo is still far from conclusive.
As a mammalian PD model, transgenic (TG) mice

expressing the R1441G mutation at the LRRK2 ROC do-
main reportedly show reduction of locomotive ability and
diminished dopamine release [10]. The R1441C knock-in
(KI) mouse, on the other hand, appears normal in steady-
state, although a reduction of amphetamine-induced loco-
motor activity and impaired D2 receptor function have
been observed [11]. Four different TG mouse lines
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expressing the G2019S mutation in the LRRK2 kinase do-
main, have been reported [12-15]. Two of them displayed
increased ambulatory activity but the others did not. In
terms of pathology, only one of them showed degeneration
of DA neurons accompanied by abnormal autophagy,
whereas two others showed increased tau-phosphorylation
or promotion of tubulin polymerization associated with
Golgi fragmentation. Temporal overexpression of G2019S
LRRK2 in rat reportedly impairs dopamine reuptake, lead-
ing to enhanced locomotive activity [16].
In contrast to the extensive analysis of R1441G, R1441C,

and G2019S TG mice, no LRRK2 TG rodent model with
the I2020T mutation has ever been reported. G2019S and
I2020T, despite being mutations affecting neighboring resi-
dues, have been known to have distinctive effects on the
LRRK2 molecule, as reflected in kinase activity and suscep-
tibility to post-translational degradation [17,18]. In Dros-
ophila, TG flies expressing the I2020T LRRK2, or its
homologue I1915T LRRK, have been reported to show ei-
ther DA neuron loss leading to unusual locomotive activity
or a decrease of neuromuscular junction boutons [19-21].
In the present study, we investigated a TG mouse strain
expressing I2020T LRRK2 in DA neurons. The TG mouse
exhibits impaired locomotive ability, a reduced striatum
dopamine content, fragmented Golgi apparatus, and an
elevated degree of tubulin polymerization. Furthermore,
the tyrosine hydroxylase-positive (TH+) primary neurons
of the TG mouse show increased vulnerability and shor-
tened neurites.

Results
Generation of I2020T LRRK2 TG mice
We obtained 9 independent mouse lines harboring the
V5-tagged human LRRK2 cDNA with the I2020T muta-
tion and single nucleotide polymorphisms (SNPs) of the
Sagamihara family patients (Figure 1A). One of them (line
41) was found by genomic Southern analysis to harbor
about 5 copies of the transgene at two insertion sites, one
of which had multiple tandem insertions (Additional file 1.
figures S1A and S1B). Although some other lines harbored
more copy numbers than line 41, the latter line was the
only line stably expressing the full-length I2020T LRRK2
in brain, and was therefore used throughout in this study.
The line 41 TG mice appear healthy from birth and de-
velop with normal weight and fertility, and live births show
the expected Mendelian ratio. The TG mice expressed
I2020T LRRK2 mRNA in all of the tissues analyzed
(Figure 1B). Western analysis of whole brain using an anti-
V5 antibody detected the I2020T LRRK2 full-length pro-
teins (Figure 1C). Immunofluorescence staining of brain
tissues using anti-V5, anti-TH, and anti-β-III tubulin anti-
bodies indicated that the neuronal cells including TH+

neurons of the substantia nigra compacta (SNc), ventral
tegmental area, and olfactory bulb expressed the I2020T
LRRK2 proteins (Figure 1D). Quantitative PCR revealed
that the level of expression of LRRK2 mRNA in the line 41
TG mice was about 1.5-, 1.4-, and 1.2-fold that of NTG
control mice in the whole brain, striatum, and midbrain,
respectively (Additional file 1. figure S2). Measurement of
the immunofluorescence intensity of individual TH+-neu-
rons in the substantia nigra with MJFF2 recognizing both
human LRRK2 and mouse LRRK2 revealed that the level
of LRRK2 protein expression in TH+-neurons of TG mice
was about 1.3-fold that of TH+-neurons in NTG control
mice (Additional file 1. figure S3).

I2020T LRRK2 TG mice exhibit impaired locomotive ability
To assess the locomotive ability of I2020T LRRK2 TG
mice, we subjected them to the beam test. While TG
mice aged 23 weeks traversed the narrow beam, they
exhibited slips more frequently (in terms of both per
time and per step) than their non-TG (NTG) littermates
(Figure 2A). This impaired locomotive ability was also
observed in 43-week-old TG mice (slips per time), but
was undetectable in 73-week-old TG mice. In the
rotarod test, I2020T TG mice aged 34 weeks were un-
able to keep walking for as long as their NTG littermates
during the training sessions on days 3, 4, and 5
(Figure 2B). Older TG mice (aged 42 and 59 weeks)
showed a non-significant tendency to perform more
poorly than NTG mice in the rotarod test (Additional
file 1. figure S4). The TG mice exhibited normal wire-
grasp ability and a normal skeletal muscle histology
(data not shown), indicating that their impaired locomo-
tive ability was not attributable to muscle deterioration.
In the cylinder test, the I2020T TG mice exhibited a
higher frequency of rearing than the NTG controls
(Figure 2C; 22 weeks). The TG mice also showed a non-
significant tendency to exhibit a higher frequency of
rearing and grooming in the open-field test (Additional
file 1. Figure S5). The I2020T TG mice did not show
any significant difference in olfactory function from the
NTG controls (Additional file 1. figure S6).

Golgi apparatus fragmentation in DA neurons of I2020T
LRRK2 TG mice
Anatomic evaluation of the I2020T LRRK2 TG mouse
brain with Nissl staining showed no obvious abnormal-
ities in any area, including the cortex, midbrain, and
cerebellum (data not shown). Immunohistochemical
staining for TH revealed no loss of TH+ DA neurons in
the SNc in either young (10 weeks) or old (18 months)
TG mice, and the optical density of TH staining in the
dorsal striatum showed no difference between NTG and
TG mice (Figures 3A and 3B). Notably, immunofluores-
cence staining indicated that the I2020T LRRK2 TG
mice had more TH+ DA neurons with severely fragmen-
ted Golgi apparatus than those of the NTG controls



Figure 1 Expression of I2020T LRRK2 in the TG mouse. (A) Schematic representation of the LRRK2 cDNA transgene. (B) RT-PCR analysis of
I2020T LRRK2 TG (line 41) and non-transgenic littermate mice. The amplified regions are shown in (A). (C) Western blotting analysis of whole
brain. Lysates prepared from the whole brain of NTG and TG mice were subjected to Western analysis using anti V5-tag antibody. β-actin was
used as a protein loading control. (D) Confocal immunostaining images of LRRK2 (V5), neurons (β-III tubulin), and dopamine neurons (TH) in the
substantia nigra compacta, ventral tegmental area, and olfactory bulb of TG and NTG mice. Scale bar: 30 μm.
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Figure 2 Impaired locomotive ability of I2020T LRRK2 TG mice. (A) Beam test. Each mouse was forced to walk on a narrow square beam
(100 cm long, 5 mm wide). The time taken, the number of steps required to reach the platform, and the frequency of slips, were recorded. Left:
number of slips normalized by time spent. Right: number of slips normalized by total steps: 23 weeks (NTG, n=13; TG, n=11), 43 weeks (NTG,
n=13; TG, n=11), 73 weeks (NTG, n=6; TG, n=9). (B) Rotarod test. The time until the mouse fell from the rotating rod (16 rpm, 3 cm diameter) was
recorded. The averages of three trials in one day are shown. The test was continued for 5 days (NTG, n=14; TG, n=11; 34 weeks). (C) Cylinder test.
The frequency of rearing in the cylinder (9.5 cm diameter) during 20 min is shown (NTG, n=13; TG, n=11; 22 weeks). In all graphical
representations, data are expressed as mean ± SEM and were assessed by Student’s t test at each time point; * p<0.05. ** p<0.01.
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(Figure 3C; 10 weeks). Immunostaining using the anti-V5-
tag antibody revealed that I2020T LRRK2 was located in
the Golgi apparatus, suggesting that it may have a deleteri-
ous role in this location (Additional file 1. figure S7).

Tubulin of the I2020T TG brain shows greater
polymerization
It has been shown that microtubules play a critical role
in organization of the Golgi complex [22]. To examine
whether microtubules of the I2020T LRRK2 TG brain
have any unusual features, we performed an in vitro
polymerization assay. Tubulin isolated from TG brains
(10 and 32 weeks) exhibited an increased degree of
polymerization – although not statistically significant at
32 weeks – in comparison with that isolated from the
corresponding littermate NTG brains (Figure 4). To in-
vestigate whether tau phosphorylation affects micro-
tubule polymerization status, Western analysis and
immunostaining for phosphorylated Thr181, Ser202,
Ser202/Thr205, Ser212/Thr214, Ser262, Ser396, and
Ser404 were performed using TG mice aged 12 weeks.
However, no particular difference was observed between
the TG and NTG brains (data not shown). Immunos-
taining for phosphorylated α-synuclein (Ser129) and
analysis of protein carbonyls as a general marker of oxi-
dative damage in TG mice aged 22 weeks revealed no
abnormal features in the TG brain (data not shown).
Reduced striatal dopamine level in I2020T LRRK2 TG mice
The concentrations of dopamine and its metabolites,
3,4-dihydroxyphenylacetic acid (DOPAC) and homova-
nillic acid (HVA), in the striatum of the I2020T LRRK2
TG mice were measured by high-performance liquid
chromatography (HPLC). This revealed that the TG
mice had significantly lower levels of striatal dopamine
and its metabolites than the NTG controls (Figure 5A;
10 weeks). This low dopamine content, despite the lack
of obvious DA neuron loss, may explain the impaired
locomotive ability of the TG mice. The low dopamine
content of the TG brain was not likely due to increased
dopamine metabolism because the levels of DOPAC and
HVA were also low, nor was it due to diminished TH
enzymatic activity, as this was found to be equivalent to
that in the NTG controls (Figure 5B; 10 weeks).

Primary TH+ neurons of I2020T LRRK2 TG mice are
vulnerable to apoptosis and have defective neurites
Finally, to understand the cellular characteristics of TH+

neurons of the I2020T LRRK2 TG mouse, we prepared
primary neuron cultures from the fetal midbrain. TH+

neurons accounted for about 6 % of all primary midbrain
neurons. During 8 days of culture, the primary TH+ neu-
rons prepared from the TG brain exhibited a signifi-
cantly higher ratio of TUNEL-positive apoptotic cells
than those prepared from the NTG control (Figures 6A
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Figure 3 TH-immunostaining and fragmentation of Golgi apparatus in I2020T LRRK2 TG mice. (A) TH staining of DA neurons in the
substantia nigra compacta (SNc). A series of midbrain sections from I2020T LRRK2 TG and NTG littermate mice of 18 months were stained with
antibody against TH. Higher-magnification views of the boxed area show the morphology of TH-immunoreactive neurons. Scale bar: 50 μm. Right
panel shows quantification of TH-immunoreactive neurons in the SNc by stereological counting. 10 weeks (NTG, n=3; TG, n=3), 18 months (NTG,
n=3; TG, n=3). (B) TH staining of DA neurites in the dorsal striatum of TG and NTG littermate mice of 18 months. Right panel shows optical
density analysis. 10 weeks (NTG, n=3; TG, n=3), 18 months (NTG, n=3; TG, n=3). (C) Immunostaining of TH and GM130 (cis-Golgi) in the SNc. TH-
positive neurons were classified into three groups – normal, partial fragmentation, and severe fragmentation – depending on the degree of
fragmentation of Golgi structures (50 neurons were counted for each mouse; NTG, n=3; TG, n=3; 10 weeks). Scale bar: 10 μm. Quantitative data
are expressed as mean ± SEM and were analyzed by Student’s t test; *p<0.05.
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Figure 4 Increased microtubule polymerization in I2020T LRRK2 TG mice. Upper: Brain microtubules of I2020T LRRK2 TG and NTG littermate
mice were subjected to in vitro polymerization assay and analyzed by Western blotting. 10 weeks (NTG, n=6; TG, n=6), 32 weeks (NTG, n=4; TG,
n=4). Lower: The degree of tubulin polymerization expressed as mean ± SEM and were analyzed by Student’s t test at each time point; *p<0.05.
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and 6B). Furthermore, morphological analysis of the
TUNEL-negative TH+ neurons revealed that neurites of
the TG-derived TH+ neurons had fewer branches and a
decreased total outgrowth in comparison with those
derived from the NTG controls (Figures 6C and 6D).
These results suggested that although the adult TG brain
has no obvious neuronal loss or morphological alter-
ation, the TH+ neurons of the I2020T TG mouse have
intrinsic vulnerability and neurite deficiency.

Discussion
In the present study, we investigated for the first time a
TG mouse strain expressing human LRRK2 with the
I2020T mutation, which affects the kinase domain in the
patients of the original PARK8 family (Sagamihara
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TH+ neurons derived from the TG brain showed high
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tics. Our study provides the first in vivo evidence that
expression of I2020T LRRK2 in mouse brain causes
impaired locomotive ability and neurophysiological
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Importantly, the I2020T TG mice exhibited motor

dysfunction in the beam test and rotarod test under
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atal dopamine content. On the other hand, it has been
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Figure 6 Vulnerability and defective neurites of primary TH+ neurons derived from I2020T LRRK2 TG brain. (A) Anti-TH immunostaining
of primary neurons prepared from the midbrain of I2020T LRRK2 TG and NTG mice. Apoptotic neurons were visualized by TUNEL assay. Scale bar:
30 μm. (B) Ratio of TUNEL-positive cells among TH+ neurons during culture. (C) Anti-TH immunostaining of primary neurons and the tracing
image of neurites. Scale bar: 30 μm. (D) Left: number of neurite branches of TUNEL-negative TH+ neurons. Right: total neurite outgrowth of
TUNEL-negative TH+ neurons (NTG, n=15; TG, n=15). Quantitative data are expressed as mean ± SEM and were assessed by Student’s t test at
each time point; *p<0.01.
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reported that animals showing striatal dopamine loss do
not necessarily exhibit motor deficits in behavioral tests
[23-25]. Although the beam test (narrow beam-traverse
test) has been employed as a useful behavioral test for
model animals with genetic and drug-induced PD [26-28],
in the present study we further refined the experimental
conditions of the test (width, form, and height of beam,
etc.) to detect the abnormality present in the I2020T TG
mouse. In addition, the improved rotarod test (high-pos-
ition rotarod and continuous day trial) used in this study
has been reported to have high sensitivity for detecting
presymptomatic or early-stage PD, i.e., Parkin-KO mice
showing no abnormality in the typical rotarod test report-
edly exhibited an obvious motor deficit in the improved
rotarod test [29], and model rats with presymptomatic PD
induced by intracranial injection of 6-hydroxydopamine
also exhibited a motor deficit in the improved rotarod test
[30]. Thus, these sensitive behavioral tests appear to be
capable of detecting the motor deficits in I2020T TG
mice. On the other hand, neither the beam test nor the
rotarod test detected a significant difference between aged
TG and NTG mice. Further investigations including
methodological refinements will be necessary before it can
be proved that locomotive ability is restored with aging. In
the cylinder test, the I2020T TG mice showed an
increased frequency of rearing. This is in contrast to
R1441G TG mice, which reportedly exhibit decreased
rearing [10]. The TG mice also showed a non-significant
tendency to exhibit a higher frequency of rearing and
grooming in the open-field test.
We did not detect any obvious DA neuron loss in the

I2020T TG mouse brain like that reported in most other
LRRK2 TG mice, except for one G2019S TG line [15].
The I2020T TG brain did not form α-synuclein- or tau-
positive aggregated materials. These neuropathological
features may not be discordant from those of the Saga-
mihara patients harboring the I2020T mutation, whose
postmortem brains have revealed only mild loss of DA
neurons and no detectable Lewy bodies or neurofibril-
lary tangles [31,32]. On the other hand, the TG mouse
expressing I2020T LRRK2 in the olfactory bulb had a
sense of smell similar to that of control mice, whereas
the Sagamihara patients show a degree of olfactory dys-
function ranging from slight impairment to anosmia
[32].
The DA neurons of I2020T LRRK2 TG mice showed

increased fragmentation of the Golgi apparatus. The
structure of the Golgi apparatus is maintained by an
appropriate microtubule polymerization status [22].
Microtubule-polymerizing reagents such as taxol and
microtubule-depolymerizing reagent such as vinblastine
reportedly disrupt the Golgi apparatus [33]. Our find-
ing that brain tubulin in I2020T TG mice had a ten-
dency to be excessively polymerized suggests that one
of the mechanisms responsible for Golgi fragmentation
could be impaired tubulin stability. These features of
this TG mouse strain are very similar to those of one of
the reported G2019S LRRK2 TG mouse strains showing a
fragmented Golgi apparatus and an increased insoluble
tubulin fraction [13]. Although we did not detect any al-
teration of tau phosphorylation in the LRRK2 TG brain,
other microtubule-associated proteins such as CRMP-2, a
known substrate for LRRK2 [34], could influence the
polymerization of tubulin in the TG brain. Alternatively,
the mutant LRRK2 might have a directly deleterious effect
on the Golgi apparatus, because we found that I2020T
LRRK2 is located there, in accord with other studies of
mouse neurons and C. elegans (in this case, a LRRK2-
homolog LRK-1) [35,36]. In any event, the Golgi fragmen-
tation appears to have resulted in some sort of defective
characteristic of DA neurons in I2020T TG mice, as has
been reported in brain tissues of patients with various
neurodegenerative diseases, those of animal PD models,
and even in neurons at the pre-apoptotic stage [37-40].
In accordance with their impaired locomotive ability,

I2020T TG mice exhibited a reduced striatal dopamine
content. Analysis of the TH enzymatic activity and dopa-
mine metabolites revealed that this low dopamine content
might not be ascribable to either reduced synthesis or
increased metabolism. It has been proposed that LRRK2
plays a key role in the trafficking of pre-synaptic vesicles
by regulating membrane dynamics [41-43]. In the DA
neurons of I2020T TG mice, fragmentation of the Golgi
apparatus might hamper the maturation of some vesicle
proteins, and hyper-polymerization of tubulin might dis-
rupt their proper organization into membranes and vesi-
cles [43,44]. Although the exact mechanism responsible
for the reduced dopamine content of the I2020T TG stri-
atum is unknown, a possible distortion of membrane/
vesicle dynamics might affect the consumption and recyc-
ling of synaptic dopamine.
Although no significant neuronal loss was obvious in

the adult brain up to 18 months old, the primary TH+

neurons derived from the I2020T TG midbrain showed
a higher degree of apoptosis than those from the NTG
controls, indicating that the I2020T mutation might
confer intrinsic vulnerability on TH+ neurons. This find-
ing is consistent with reports demonstrating that overex-
pression of I2020T LRRK2 in primary neurons induces
neurotoxicity [46]. Also, we and other groups have
demonstrated that neuroblastoma cell lines expressing
I2020T LRRK2 are more susceptible to oxidative stress
than those expressing wild-type LRRK2, although no
consensus has been established regarding the molecular
mechanism involved [19,46,47]. The neurites of primary
TH+ neurons in the TG mouse also exhibited abnormal
features, i.e., few branches and decreased outgrowth,
consistent with one of the reported G2019S TG mouse
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strains whose cultured TH+ neurons also showed a re-
duction of neurite complexity [48]. These intrinsic
defects detectable in primary TH+ neurons may play
some role in the neural dysfunction observed in adult
I2020T TG mice.

Conclusions
We have established a TG mouse strain expressing the
I2020T mutant human LRRK2. The TG mouse exhibits
impaired locomotive ability and several neurological ab-
normalities. This strain should provide valuable clues to
the etiology of PD caused by the LRRK2 mutation, as well
as data relevant to the future development of therapeutic
approaches.

Methods
Animals
Mice were housed in a light- and temperature-controlled
room with water and food available ad libitum. For sacri-
fice, mice were euthanatized by cervical dislocation or
exsanguination. All procedures had been approved by
the Animal Experimentation and Ethics Committee of
Kitasato University.

Generation of I2020T LRRK2 transgenic mice
The V5-tagged human LRRK2 cDNA with the I2020T
mutation and SNPs of the Sagamihara family patient has
been described previously [8]. The 8,958-bp DNA frag-
ment containing the CMV promoter and the LRRK2
cDNA including the tag was cut with Ahd I and Fsp I
from the plasmid and microinjected into fertilized eggs
of C57BL/6 J x C3H F1 female mice. The eggs were then
transferred to the oviducts of pseudo-pregnant foster
mothers of random-bred ICR. The founder TG mouse
was back-crossed with the C57BL/6 J mouse more than
9 times, and their offspring were genotyped by polymer-
ase chain reaction (PCR). The TG mice were back-
crossed at least 9 times before being used for
experiments. Methods for Southern blotting and RT-
PCR are described in Additional file 2.

Western Blotting
Mouse brains were homogenized in TNE buffer [10 mM
Tris–HCl buffer (pH 7.6) containing 150 mM NaCl, 1 %
Nonidet P-40, 1 mM EDTA, 1 mM phenylmethylsulfonyl
fluoride, and protease inhibitor cocktail (Roche)] and kept
gently agitated by slow rotation at 4 °C for 1 hour. The
brain lysate was obtained by centrifugation at 13,000 rpm
for 15 min at 4 °C, and its protein concentration was
determined using BCA protein assay reagents (Thermo-
scientific). The lysates (40 μg) were subjected to sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) using 5-20 % gradient e-PAGEL (ATTO) or 10 %
gels, and blotted onto polyvinylidene fluoride (PVDF)
membranes. The membranes were blocked in 2 % skim
milk or 2 % ECL Advance Blocking Agent (GE Health-
care) in phosphate-buffered saline (PBS)-0.1%Tween 20
for 60 min at room temperature and probed with the ap-
propriate primary antibodies overnight at 4 °C. After incu-
bation with secondary antibodies for 30 min at room
temperature, protein bands were visualized using an ECL-
or ECL-Advance Western Blotting Detection Kit (GE
Healthcare).

Immunostaining
Mice were subjected to flush-perfusion with hepari-
nized saline, followed by perfusion-fixation with 4 %
paraformaldehyde. The brains were removed, immersed
in 4 % paraformaldehyde overnight, and subsequently
in 30 % sucrose for 48 h at 4 °C. Brain sections 30 μm
thick were subjected to H2O2-inactivation of endogen-
ous peroxidase activity and treated with 2 % BSA in
PBS-0.2 % Triton X-100 for 60 min at room
temperature to block non-specific protein binding. For
immunofluorescence staining, the tissue sections were
incubated with rabbit polyclonal antibody against V5-
tag (MBL), rabbit polyclonal antibody against TH
(Millipore), mouse monoclonal antibody against β-III
tubulin (R&D Systems), mouse monoclonal antibody
against GM130 (BD Transduction Laboratories), and
mouse monoclonal antibody against TH (Millipore) for
48 h at 4 °C, and subsequently with fluorescein isothio-
cyanate (FITC) or phycoerythrin (PE)-conjugated ap-
propriate secondary antibodies for 120 min at room
temperature. For TH-immunohistochemical analysis of
the substantia nigra and striatum, a biotinylated sec-
ondary antibody against rabbit IgG was used together
with an ABC kit (Vector Laboratories) for detection.
Optical density was analyzed using NIH ImageJ soft-
ware (http://rsbweb.nih.gov/ij/). Method for measure-
ment of LRRK2 immuno fluorescence intensity in TH
+-neurons is described in Additional file 2.

In vitro polymerization of brain tubulin
Brain tissues were homogenized in low-salt reassembly
buffer (RAB) [0.1 M Tris–HCl (pH 6.8), 0.5 mM MgSO4,
1 mM EGTA, and 2 mM dithiothreitol] at 4 °C, and cen-
trifuged at 15,000 rpm for 1 h at 4 °C [49]. The superna-
tants were supplemented with 4 M glycerol and 1 mM
GTP, and incubated for 90 min at 37 °C to polymerize
the microtubules. After centrifugation at 15,000 rpm for
60 min at 37 °C, the resulting pellets were resuspended
in 500μl RAB and incubated on ice for 30 min to
depolymerize the microtubules. The polymerization/
depolymerization cycle was repeated once, and the
resulting microtubule material was resuspended in
250 μl RAB and subjected to Western analysis using the
antibody against -III tubulin.
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Determination of catecholamines
The dorsal striatum was dissected out and quickly frozen
in liquid nitrogen. Samples were homogenized in 500 μl
of sample buffer for HPLC [0.2 M perchloric acid,
100 μM EDTA (pH 7.5)] and centrifuged at 15,000 rpm
for 5 min at 4 °C. The supernatants were analyzed for
dopamine, DOPAC, and HVA using HPLC coupled with
electrochemical detection. Levels of DA, DOPAC, and
HVA were determined by using standard curves, and
normalized by tissue weight.

TH activity assay
Striatal TH activity was determined as reported previously
[50]. Briefly, the dorsal striatum was homogenized in
10 mM potassium phosphate buffer (pH 7.4), centrifuged
at 3,000 rpm for 60 min at 4 °C, and the supernatant was
mixed with an equal volume of reaction buffer [100 mM
sodium acetic acid buffer (pH 6.0), 10 μg catalase, 1 mM
NSD-1015, an inhibitor of aromatic L-amino acid decarb-
oxylase, and 2 mM ferrous ammonium sulphate], and pre-
incubated at 37 °C for 5 min. The reaction was started by
adding 200 μM L-tyrosine and 10 mM (6R) tetrahydro-
biopterin (BH4). After incubation for 10 min at 37 °C, the
reaction was terminated by adding 100 μl of 0.1 M perchlo-
ric acid containing 0.4 mM sodium metabisulphite and
0.1 mM disodium EDTA. As the blank control, a similar
reaction mixture containing D-tyrosine instead of L-isomer
and 100 μM 3-iodo-L-tyrosine was used. The samples were
subjected to HPLC and the amount of L-DOPA was
measured.

Primary neuron culture
Fetal mice at embryonic day 14.5-15.5 were obtained from
the uterus and genotyped for the LRRK2 transgene. Fetal
midbrain sections were dissected under a microscope and
digested with papain at 37 °C for 20 min. The dispersed
cells were suspended in growth medium [F-12 HAM
(Sigma), B27 (Gibco), penicillin/streptomycin] and cul-
tured on polyethyleneimine-coated cover slips (Sigma)
placed in 24-well plastic tissue culture plates. Three days
after plating, Ara C (Sigma) was added to inhibit the
growth of glial cells and the medium was changed twice a
week. TH+ neurons were identified by immunostaining.
The numbers of branches and total outgrowth of neurites
were analyzed using NIH ImageJ software (NeuronJ).
Apoptotic cells were detected by TUNEL staining using
an In Situ Cell Death Detection Kit (Roche).

Behavioral tests
Beam test. First, mice were trained to walk on a wide
beam (100 cm long, 25 mm wide) to motivate walking
towards a dark platform. For the experimental test, each
mouse was forced to walk along a narrow square beam
(5 mm wide and 100 cm long, set at a height of 50 cm)
to reach the platform. The time taken and the number
of steps required to reach the platform, and the fre-
quency of slips, were recorded.
Rotarod test. Each mouse was placed on a rubber-

covered rod (3 cm in diameter) that was rotating at
16 rpm at a height of 50 cm (Shinano Seisakusho Co.).
The length of time taken until the mouse fell from the
rod was recorded (cut-off time: 180 s). The test was car-
ried out three times per day and continued for 5 days.
Cylinder test. Each mouse was placed individually in

an acrylic cylinder (25 cm high, 9.5 cm diameter) and
video-recorded for 20 min. The frequency of vertical
rearing by placing the forepaws on the wall was counted.
Methods for open-field test and olfactory testarede-

scribed in Additional file 2.
The numbers and genders of mice used for behavioral

tests were summarized in Additional file 3. The other
experiments were performed using only male mice.
Statistical analysis. All data are expressed as mean ±

SEM. Significance of differences was assessed by Student’s
t test.
Additional files

Additional file 1 Figure S1. Genomic Southern analysis of the I2020T
LRRK2 TG lines. (A) Copy number analysis of 9 TG lines. TG mouse
genomic DNA was cleaved with EcoRI and subjected to Southern
analysis using a probe hybridizing with the middle portion of the LRRK2
insert. The intensity of the 3,404-bp fragment of LRRK2 cDNA introduced
into the mouse genome was compared with that of a known amount of
LRRK2 cDNA. NTG: non-transgenic negative control. (B) Chromosomal
insertion-pattern analysis of TG line 41. Genomic DNA of TG line 41 was
cleaved with Bgl II and EcoRI, and subjected to Southern analysis using a
3'-terminal region probe hybridizing with genomic DNA fragments
having the insertion site-dependent size. The hybridization signals of
2,474 bp (Bgl II) and 2,310 bp (Eco RI) indicate tandem insertion, and the
other signals indicate single-copy insertion. Genomic DNA of TG line 74
was used as a control giving a different insertion pattern, and that of
C57BL/6 (B6) was employed as a negative control. Figure S2. Analysis
of I2020T LRRK2 mRNA expression. RNA was isolated from the whole
brain (Wb), striatum (St), and midbrain (Mb) region of TG line 41 and NTG
control mice, and subjected to quantitative RT-PCR using primers
annealing both human LRRK2 and mouse endogenous LRRK2. LRRK2
mRNA expression was normalized relative to that of GAPDH.Figure S3.
Measurement of LRRK2 immunofluorescence intensity in TH
+-neurons. The substantia nigra of TG and NTG control mice was
subjected to double immunofluorescence staining with an anti-TH
antibody and with MJFF2, recognizing both human LRRK2 and mouse
LRRK2. The intensity of LRRK2 immunofluorescence in individual TH
+-neurons (350 cells for TG and 533 cells for NTG) was measured using
ImageJ software. **p<0.005. Figure S4. Rotarod test for mice of
different ages. TG mice and their corresponding NTG littermates at
different ages (34, 42, and 59 weeks) mice were subjected to the rotarod
test for 5 continuous days. 34 weeks (NTG, n=14; TG, n=11), 42 weeks
(NTG, n=11; TG, n=11), 59 weeks (NTG, n=14; TG, n=11). Data are
expressed as mean ± SEM and were analyzed by Student’s t test at each
time point. * p<0.05. ** p<0.01. Figure S5. Open field tests. Upper left:
total distance walked. Upper right: percentage of time spent in the
center. Lower left: number of rearing episodes. Lower center: number of
grooming episodes. Lower right: number of stools produced (NTG, n=14;
TG, n=11; 29 weeks). Student’s t test demonstrated no significant
differences between TG and NTG mice for any of the measured
parameters. Figure S6. Olfactory test. The time taken for mice to find

http://www.biomedcentral.com/content/supplementary/1750-1326-7-15-S1.docx
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hidden feed was recorded. As a control, feed was placed on top of the
floor chips to make it visible, and the same trial was performed (NTG,
n=6; TG, n=9; 14 weeks). Data are expressed as mean ± SEM. Student’s t
test demonstrated no significant differences between TG and NTG mice.
Figure S7. Immunostaining of I2020T LRRK2 and the Golgi
apparatus. I2020T LRRK2 was stained with the anti-V5 tag antibody
together with the anti-GM130 antibody (cis-Golgi). Arrows indicate the
LRRK2 molecule co-localized with fragmented Golgi apparatus. Scale bar:
10 μm.

Additional file 2 Materials and Methods.

Additional file 3 Table S3. The numbers and genders of mice used for
the behavioral tests.
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