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BACE1 is at the crossroad of a toxic vicious cycle
involving cellular stress and β-amyloid production
in Alzheimer’s disease
Linda Chami1,2,3 and Frédéric Checler1,2,3*
Abstract

Alzheimer’s disease (AD) is a complex age-related pathology, the etiology of which has not been firmly delineated.
Among various histological stigmata, AD-affected brains display several cellular dysfunctions reflecting enhanced
oxidative stress, inflammation process and calcium homeostasis disturbance. Most of these alterations are directly or
indirectly linked to amyloid β-peptides (Aβ), the production, molecular nature and biophysical properties of which
likely conditions the degenerative process. It is particularly noticeable that, in a reverse control process, the
above-described cellular dysfunctions alter Aβ peptides levels. β-secretase βAPP-cleaving enzyme 1 (BACE1) is a key
molecular contributor of this cross-talk. This enzyme is responsible for the primary cleavage generating the
N-terminus of “full length” Aβ peptides and is also transcriptionally induced by several cellular stresses. This review
summarizes data linking brain insults to AD-like pathology and documents the key role of BACE1 at the cross-road
of a vicious cycle contributing to Aβ production.
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The amyloid beta peptides
Alzheimer’s disease patients show progressive and irre-
versible memory and cognitive impairments, ultimately
leading to the loss of their autonomy. This disabling dis-
ease is the first cause of dementia in the elderly popula-
tion. Histopathological lesions include extracellular senile
plaques mainly composed of a set of hydrophobic peptides
referred to as amyloid β-peptides (A β), intracellular
neurofibrillary tangles due to abnormally phosphorylated
tau protein, local inflammation characterized by activated
microglia and astrocytes, and neuronal loss [1]. Several
risk factors such as aging, brain insults (stroke, traumatic
injury), cardiovascular diseases (hypertension), or meta-
bolic diseases (diabetes mellitus, hypercholesterolemia,
obesity) [2] as well as genetic risk factors [3] have been
identified but the etiology of the disease is far from being
fully understood.
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Aβ peptides composing the core of senile plaques are
mainly produced by neuronal cells [4] and are proteolytic-
ally derived from a transmembrane precursor protein, the
βamyloid precursor protein (βAPP). βAPP undergoes sub-
sequent cleavages by β- and γ-secretases that ultimately
generate Aβ peptides. An alternative and prominent pro-
cessing of βAPP by α-secretase takes place in the middle of
the Aβ domain of βAPP and is regarded as a physiological
non-amyloidogenic pathway [5].
Even if the etiology of AD is still a matter of discussion,

it is generally admitted that, if not acting as the initial trig-
ger, Aβ peptides at least contribute to AD pathogenesis
[6]. This reasonable statement is supported by genetic
data. Thus, mutations responsible for early onset and ag-
gressive AD cases affect three genes encoding proteins
involved in Aβ production, namely βAPP, and presenilin 1
and 2 [7]. All these mutations modulate the endogenous
levels or nature of Aβ peptides [5]. More recently, an add-
itional genetic clue came from the observation that a novel
mutation on βAPP that partly prevents its β-secretase-
mediated cleavage and thereby reducing Aβ load, indeed
protected bearers from AD in an Icelanders cohort [8].
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Various Aβ peptides species are found in senile depos-
its as well as inside cells. Their nature and length can
vary drastically. Genuine “full length” Aβ peptides, that
are Aβ1-40 or Aβ1-42, can undergo a variety of second-
ary proteolytic cleavages including N-terminal truncation
and cyclisation [9,10]. Moreover, monomeric soluble Aβ
peptides could associate to form small soluble aggregates
including oligomers and protofibrils. Soluble oligomeric
species apparently display higher toxic potential for cells
than Aβ monomers [11,12]. Therefore, the pathology
likely results from modifications of the nature and con-
centration of Aβ peptides, an alteration of their biophys-
ical properties and aggregated state, and a change in
their subcellular production and accumulation that are
likely underlying Aβ-associated toxicity.
In sporadic cases of AD, there is no evidence for an

up-regulation of Aβ production and it is widely admitted
that Aβ accumulation derives from impairment/alter-
ation of its degradation/clearance. Amyloid peptides
are mainly degraded enzymatically by neprilysin, but
also and, likely to a lesser extent, by insulin degrading
enzyme (IDE), endothelin-converting enzyme (ECE),
angiotensin-converting enzyme (ACE), and plasmin [13].
Neprilysin mRNA and proteins are reduced in brain
areas vulnerable to amyloid deposits [14] as is neprilysin
activity in AD brains [15].
βAPP and its proteolytic fragments are involved in

complex networks and several feedback loops have been
suggested [16]. Furthermore Aβ would be able to induce
its own production. Thus, the treatment of human
NT2N neurons with Aβ peptide increased βAPP proces-
sing and production of Aβ peptides [17]. Aβ peptide can
activate its own production by binding to the promoters
of βAPP and BACE1, as Aβ has been recently shown to
display transcription factor properties [18,19]. Further-
more, more related to the purpose of the present review,
Aβ can also indirectly activate its production by generat-
ing various cellular dysfunctions, as detailed below.

The β-secretase βAPP-cleaving enzyme 1
BACE1 (Asp2, memapsin 2), a single transmembrane
aspartyl-protease, was identified in 1999 as the major
β-secretase-like protein [20-24]. Thus, brains and pri-
mary cortical cultures derived from BACE1 knock-out
mice [25-27] are devoid of β-secretase-like activity and
do not produce Aβ. BACE1 is mainly expressed in
neurons and in reactive astrocytes [4], in the Golgi ap-
paratus and endosomes of cells, where amyloid pep-
tides are mainly produced [28]. β-cleavage of βAPP is the
rate-limiting step in Aβ generation [28] and therefore
corresponds to an interesting therapeutic target for a
strategy aimed at reducing Aβ production. BACE1 is not
fully selective for βAPP and other substrates have been
identified, suggesting an additional role of BACE1 in
immunity or sodium channels function [29]. BACE1
knockout mice are viable and fertile [25] but recent data
indicate that these mice could harbor axon hypomyelina-
tion [30,31], schizophrenia-like [32] and epileptic-like
[33] behaviors.
Environmental [34,35] and cellular [36] stresses induce

the expression of BACE1. BACE1 promoter harbors func-
tional binding sites for numerous transcription factors in-
cluding specificity protein 1 (Sp1; [37]), Yin Yang 1 (YY1;
[38]), the peroxisome proliferator-activated receptor γ
(PPARγ [39]), the nuclear factor-κB (NF-κB; [40,41]), the
hypoxia-inducible factor 1(HIF-1; [42]), and signal trans-
ducer and activator of transcription 3 (STAT3; [43]).
BACE1 activity increases with age [44] and pathology. In
AD brains, BACE1 is elevated in regions that develop
amyloid plaques and more particularly, in neurons sur-
rounding amyloid plaques [41,45,46]. The purpose of this
review is to describe transcriptional regulations of
BACE1. BACE1 regulation by translational modification,
maturation and trafficking will not be treated as they have
been nicely reviewed elsewhere [29,47-49].
As stated above, BACE1 is a stress-induced protease.

Oxidative stress, inflammation, calcium homeostasis dis-
turbance, hypoxia, ischemia and trauma conditions that
occur in AD activate BACE1 (see below). The activation
of BACE1 due to transcriptional deregulation could con-
tribute and possibly accelerate AD pathology by increasing
Aβ production. As Aβ42 peptide can activate BACE1,
[50-53], a positive regulatory loop setting a vicious cycle
can be delineated and is described in details below.

Oxidative stress
Oxidative stress in AD
Reactive oxygen species (ROS) and reactive nitrogen
species are normal products of cell metabolism. Their
concentration is balanced by antioxidant factors and is
associated to either beneficial or deleterious effects. Low
to moderate free radicals concentrations are part of the
physiological cellular signaling system and defense
mechanisms against infection agents. Conversely, exces-
sive oxidant conditions trigger oxidative stress that turns
out to be toxic for cells by damaging lipids, proteins or
nucleic acids, ultimately leading to cell death [54]. Oxi-
dative damage further impairs the antioxidant defense
and maintains oxidative burden in the cells [2,54].
Lifespan accumulation of free radicals results in age-

associated oxidative stress, the damages of which cause
cellular and organism senescence [2,55]. Oxidative stress
is associated to AD as an early event [56-58]. Oxidative
stress contributes to AD; various mechanisms have been
identified [59], such as the oxidative inactivation of the
peptidyl-prolyl cis/trans isomerase 1 (Pin1) that affects its
regulation of βAPP production and tau dephosphorylation
[60]. Interestingly, amyloid deposits and neurofibrillary



Figure 1 Oxidative stress mediates Aβ-induced BACE1
transcriptional activation. Aβ peptides trigger oxidative stress by
inducing ROS generation and impairing the antioxidant system.
Oxidative stress and inflammatory cytokines activates JNK, then its
transcription factor AP-1 upregulates BACE1. As BACE1 produces Aβ
peptides, a vicious cycle is established. Aβ, amyloid peptide; AP-1,
activator protein-1; BACE1, β-secretase βAPP cleaving enzyme 1; JNK,
c-Jun N-terminal kinases; ROS, reactive oxygen species.
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tangles have been postulated to be part of antioxidant
strategies developed by the organism in response to age-
related increase in oxidative stress (reviewed by [54,61]).

Aβ generates oxidative stress
Aβ peptides trigger oxidative stress in vitro and in vivo
(reviewed by [59]). On the one hand, Aβ induces ROS
generation, with a possible contribution of metal ions.
Copper and iron are present in amyloid deposits and their
reduction by Aβ produces ROS. The more powerful are
the Aβ species considered as the more toxic. Thus, Aβ1-
42 had greater iron and copper reduction potential than
Aβ1-40 in vitro [62,63], and prefibrillar and oligomeric
forms of Aβ1-42 induced higher oxidative stress than fi-
brillar Aβ1-42 in neuronal cells [50]. On the other hand,
Aβ peptides contribute to oxidative stress by impairing the
cellular antioxidant systems. Thus continuous ventricular
Aβ infusion reduced the immunoreactivity of the
Mn-superoxide dismutase (Mn-SOD) and proteins of
the glutathione antioxidant system in rats [64].

Oxidative stress activates BACE1
BACE1 activity is positively correlated to oxidative stress
markers in AD brains [65]. Treatment of cells with various
oxidants increases BACE1 transcription, expression and
activity [66,67]. Oxidative stress regulates the γ-secretase
activity as well [51], and treated cells produce more Aβ
peptides [68,69].
The JNK pathway is activated in response to oxidative

stress, inflammatory cytokines and excitotoxic stimuli;
then activated JNK positively regulates inflammation and
apoptosis [70]. JNK is activated by Aβ in neuronal cul-
tures [71,72] and high levels of activated JNK have been
reported in degenerating neurons of human AD brains
[73] or transgenic mice [72]. JNK pathway also contri-
butes to Aβ toxicity in vitro [71,74] and production.
Thus JNK gene manipulation or pharmacological block-
ade prevented oxidative stress-induced upregulation of
BACE1 in mouse fibroblasts as well as in mice [51].
Therefore, the c-Jun N-terminal kinases (JNK) pathway
is involved in BACE1 regulation by oxidative stress.

Aβ peptides regulate BACE1 by generating oxidative
stress
As detailed before, Aβ induces oxidative stress and the
latter activates BACE1. Hence Aβ indirectly regulates
BACE1 by generating oxidative stress. The JNK path-
way and its major transcription factor activator protein-
1 (AP-1) are involved in this regulation. Guglielmotto
and collaborators demonstrated that pharmacological
inhibition and gene depletion or mutation of JNK or
downstream proteins abolished Aβ42 control of BACE1
activation in murine fibroblasts [72]. Therefore, by
inducing oxidative stress and activation of BACE1, Aβ
regulates its own production (Figure 1).

Inflammation
Inflammation in AD
In response to an injurious stimulus, the organism settles
inflammation until the physiological homeostasis is
restored. In the central nervous system, microglia is the
major actor of inflammation. Resting glial cells become
motile when activated and surrounds damaged cells, clear-
off cellular debris and release inflammatory agents such as
cytokines, chemokines, complement factors, and free rad-
ical species [75]. These signals activate astrocytes that
undergo morphological and functional changes, and thus
participate to the inflammatory process [75]. Neurons
contribute to microglial activation by production of pro-
inflammatory cytokines and complement proteins [76].
Neuroinflammation accompanies normal aging. Aging

rodents harbor increased activated microglia and astro-
cytes together with an increase of pro-inflammatory
cytokines or a decrease of anti-inflammatory cytokines
[77]. Local and chronic neuroinflammation is a constant
feature of AD, and is characterized by activated micro-
glia and astrocytes surrounding amyloid plaques and
neurofibrillary tangles [78]. Accordingly, elevated levels
of cytokines are measured in AD brains [79]. Inflamma-
tion can exert both neuroprotective and neurotoxic func-
tions that are directly linked to the duration of the
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inflammatory process. Acute inflammation is considered
to be beneficial by contributing to restore the physio-
logical integrity of tissues. Activated glial cells are thus
beneficial since they clear Aβ by phagocytosis and deg-
radation [80,81]. On the other hand, sustained inflamma-
tion observed in AD brains, probably in response to
continuous accumulation of Aβ peptides and cellular
debris, can be toxic to neurons since inflammatory med-
iators such as ROS, cytokines and chemokines could
directly take part to neurite retraction, neuronal dys-
function and neuronal death [80,82]. The metabolites
released by activated microglia add to the dual effect
of inflammation, as they can be neurotoxic, antioxidant,
pro- or anti-inflammatory. The role of inflammation in
AD is therefore the resultant of various cellular and mo-
lecular events.

Aβ peptides are pro-inflammatory
Aβ treatment induces an activation of microglial and
astrocytic cells, leading to the release of inflammatory
factors [75,83,84]. Aβ activate glial cells by direct binding
to microglial cell surface receptors [85], such as the re-
ceptor for advanced glycation end products (RAGE,
[86]), by direct activation of the complement system
[87], or by generating oxidative stress [88].
The transcription factor NF-κB is activated in response to

various stresses [88]. NF-κB is induced by inflammation-
and oxidative stress-linked conditions such as release of
cytokines [88] and ROS [89], as well as ischemia [90] or
traumatic brain injury [91] in rats. NF-κB has a dual role in
inflammation, since it is associated to pro-inflammatory or
anti-inflammatory genes induction during the onset or the
management of inflammation, respectively [92].
Aβ peptides activate NF-κB in neurons and astrocytes

[17,93,94]. The lowest Aβ concentrations were the more
efficient to activate NF-κB [93,94]. NF-κB activation has
been reported in human cortex areas affected by the
pathology, particularly in cells surrounding senile pla-
ques [41,93-95]. The role of NF-κB activation remains
unclear. Several works suggested a protective cellular
response to Aβ-induced cell death [94,96]. However
other studies indicated that NF-κB could contribute to
Aβ-associated toxicity, as inhibition of NF-κB reduced
Aβ-induced neuronal death [17,97].

Inflammation activates BACE1
The well-known inflammation inducer lipopolysacchar-
ide (LPS) increases βAPP expression and processing in
Swedish-βAPP transgenic mice [98]. LPS and inflamma-
tion activate the transcription factor NF-κB, for which
BACE1 promoter harbors a highly conserved binding
site [99] that is functional [40,41]. NF-κB physiologically
represses BACE1 transcription in vitro [40,100], there-
fore limiting Aβ production.
However inflammatory conditions could favor Aβ pro-
duction by switching the NF-κB inhibition of BACE1
transcription towards an activation process as suggested
by many studies. Thus NF-κB activates BACE1 pro-
moter, expression and enzymatic activity in activated
astrocytes and Aβ-exposed or Aβ-overproducing cells,
leading to increased Aβ production [40,41,52,100]. In
vivo, the modulation of NF-κB activity by non-steroidal
anti-inflammatory drugs [101], natural compounds
[102,103] or by targeting upstream receptors of the NF-
κB activation pathway [58,104], all affect Aβ production.
In transgenic mice NF-κB activates βAPP levels [103],
BACE1 promoter activity [104], expression [102,105]
and enzymatic activity [102,103] as well as γ-secretase
activity [103] and Aβ production [101-103].
NF-κB-dependent regulation of BACE1 is therefore

ambivalent, since NF-κB would physiologically repress
BACE1 transcription, but would convert into an activator
of BACE1 in cells exposed to an Aβ overload [40,100].
This could be explained by the activation of different NF-
κB heterodimers yielded in a stimulus-dependent manner
[40] even if this remains to be definitely established.
Other mediators of inflammation contribute to the

regulation of BACE1. PPARγ are nuclear receptors that
inhibit pro-inflammatory gene expression such as NF-
κB-regulated genes, and are targeted by some nonsteroi-
dal anti-inflammatory drugs (NSAID, [106]). PPARγ
inhibits BACE1 transcription through a functional PPAR
response element on BACE1 promoter and interferes
with the cytokines-induced Aβ production, as demon-
strated in cells and confirmed in transgenic mice and
human brains [39,107,108]. PPARγ agonists have add-
itional beneficial effects on Aβ peptides production by
increasing βAPP or BACE1 degradation [109,110].
Prolonged inflammation could favor Aβ production by

activating astrocytes, as demonstrated by various in vitro
and in vivo studies. Thus, chronic stress, pro-inflammatory
cytokines or Aβ42 itself increase BACE1 levels and activity
as well as βAPP levels in astrocytes. The transcription fac-
tors NF-κB, YY1 and STAT1 could account for the stress-
induced increase of BACE1 transcription in astrocytes
[38,40,111-115] that are observed in the vicinity of amyloid
plaques in both aged Tg2576 mice and AD-affected brains
[116]. However a recent study challenges these results by
showing a reduced Aβ secretion in response to cytokine
stimulation of cultured rat astrocytes, in which the
β-secretase activity would be accounted for by the
BACE1 homolog, BACE2 [117].

Aβ peptides regulate their own production by triggering
NF-κB-mediated BACE1 activation
At supraphysiological levels, Aβ induces an upregulation of
BACE1 transcriptional activity, protein expression, enzym-
atic activity, and consequently intracellular accumulation
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and secretion of Aβ, by activating NF-κB [17,40,52,100].
BACE1 transcription is therefore activated by Aβ and by
inflammation. In turn, BACE1 can promote inflammation
by the production of two pro-inflammatory agents that
are Aβ and the prostaglandin E2, produced by BACE1
cleavage of the membrane-bound prostaglandin E2
synthase-2 [118]. Therefore by inducing inflammation and
NF-κB activation, Aβ could act on its own production
(Figure 2).

Calcium homeostasis perturbation
Calcium signaling perturbation in AD
Calcium is a major signaling molecule involved in a var-
iety of neuronal functions, such as neurotransmission,
synaptic plasticity, excitotoxicity or apoptosis [119,120].
Aging affects calcium sensitivity and homeostasis,
thereby triggering neuronal vulnerability and cell death.
Oxidative stress is tightly associated to these calcium
homeostasis alterations [121,122].
The calcium signaling pathway is altered in AD. Intra-

cellular levels of calcium are increased by a disturbed
entry of external calcium, an exacerbated release from
the internal storage organelles endoplasmic reticulum
and mitochondria, and/or an hypersensitivity of the sys-
tem [121,123]. The disturbed calcium signaling alters
long-term potentiation and long-term depression, thus
affecting learning and memory. Finally, an overload of
calcium can induce the mitochondria to trigger apop-
tosis and neurodegeneration [121]. The polymorphism
of a calcium channel was formerly associated to an
Figure 2 Inflammation mediates Aβ-induced BACE1
transcriptional activation. Aβ peptides are pro-inflammatory. They
activate microglia and astrocytes that release inflammatory
mediators. Those activate NF-κB, which is also activated by oxidative
stress, ischemia or traumatic brain injury. Pathological activation of
NF-κB activates BACE1 transcription, thus increasing Aβ peptides
levels and feeding a vicious cycle. Aβ, amyloid peptide; BACE1,
β-secretase βAPP cleaving enzyme 1; NF-κB, nuclear factor-κB.
increased risk of AD. The calcium homeostasis modula-
tor 1 (CALHM1) channel controls intracellular calcium
levels and calcium-dependent α-secretase-mediated pro-
cessing of βAPP [124]. A polymorphism in its gene
impairs its physiological functions and favors Aβ over-
load. Currently, the CALHM1 polymorphism is rather
considered as a genetic modifier of age at onset in AD
[125].

Aβ affects cellular calcium homeostasis
Calcium homeostasis disturbance is part of Aβ neurotox-
icity (for reviews see [120-122]). Amyloid peptides in-
crease the level of cytoplasmic calcium through several
mechanisms, as suggested by the in vitro experiments
described below. Aβ can trigger an extracellular calcium
influx by stimulating membrane ion channels or receptors,
such as ionotropic glutamate receptors [126]. Aβ could
impair the intracellular distribution of calcium by perfor-
ating and permeabilizing the membrane to calcium via
oxidative stress [120,127,128]. Noteworthy, some preseni-
lin mutations responsible for familial AD and yielding
enhanced Aβ levels, impair calcium homeostasis by de-
regulating internal calcium channels ryanodine receptor
[129], inositol 1,4,5-triphosphate (IP3) channel [130] or
sarco endoplasmic reticulum calcium ATPase (SERCA;
[131]). This agreed well with our recent work showing
that the overexpression of both wild-type and Swedish-
mutated βAPP increased Ryanodine receptors (RyR) ex-
pression and enhanced RyR-mediated ER Ca2+ release in
neuroblastoma cells as well as in transgenic mice [132].
Altering presenilin functions has an impact on calcium
homeostasis by an additional mechanism. Concomitant to
the generation of Aβ, the γ-secretase complex releases the
βAPP intracellular domain (AICD) which acts as a tran-
scription factor [133] involved in the transactivation of
genes related to AD [134,135]. Similarly, AICD is involved
in calcium signaling [136] or homeostasis in different cell
culture models [137].

Calcium disturbance activates BACE1
Calcium dysregulation promotes tau phosphorylation and
Aβ accumulation in neuronal cells [138-140]. Calpain is
an intracellular cystein protease regulated by calcium and
abnormally activated in AD brains [141,142]. In transgenic
mice brains, calpain over-activation induces amyloid
deposits, tau phosphorylation, activation of astrocytes,
synapse loss and cognitive impairment [141,143]. Further-
more, βAPP processing is affected as βAPP C-terminal
fragments are decreased following calpain inhibition in
these mice [143].
BACE1 upregulation could be mediated by cyclin-

dependent kinase 5 (cdk5), which is regulated by calpain
[144]. Cdk5 activates BACE1 promoter by binding of its
target STAT3, therefore increasing BACE1 activity,
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Aβ1-40 and Aβ1-42 production in transgenic mice
[43]. Another calcium-dependent transcription factor
regulates BACE1 transcription. The calcium-activated
nuclear factor of activated T-cells 1 (NFAT1), which is ab-
normally activated in transgenic mice brain [145], translo-
cates to the nucleus, binds to BACE1 promoter, activates its
transcription and increases Aβ generation, as demonstrated
in vitro [145].
Many evidences thus imply a calcium-dependent acti-

vation of BACE1. However, two in vitro studies suggest
that the regulation of Aβ production by calcium would
be more complex. Hayley and collaborators who demon-
strated a physical interaction between calcium and
BACE1 reported on an activation of BACE1 activity at
low calcium concentration, and conversely, a progressive
reduction of BACE1 activity when increasing calcium
concentration [146]. Similar results were obtained on Aβ
production using thapsigargin, a pharmacological raiser
of cytoplasmic calcium levels [147].

Aβ peptides regulate BACE1 via calcium-dependent
pathways
As detailed above, impaired calcium homeostasis acti-
vates BACE1 via activation of NFAT1 and the calpain/
cdk5/STAT3 pathway. By altering calcium signaling, Aβ
regulates BACE1 through both pathways. Aβ treatment
of cultured neurons activated calpain, cdk5, NFAT1
Figure 3 Disturbed calcium homeostasis mediates Aβ-induced BACE1
by at least three mechanisms: stimulation of membrane ion channels or re
internal calcium channels. Presenilins mutations contribute to the latter. Inc
NFAT1. The transcription factors STAT3 and NFAT1 upregulate BACE1, whic
mechanism is set up. Aβ, amyloid peptide; BACE1, β-secretase βAPP cleaving
NFAT1, nuclear factor of activated T-cells 1; SERCA, sarco endoplasmic reticulu
[145,148] and increased BACE1 expression [143,145] that
was reduced by calpain inhibition [143] or calcineurin-
mediated NFAT1 inhibition [145]. Therefore calcium is
another intermediate by which Aβ upregulates BACE1,
and thus its own production (Figure 3).

Advanced glycation end (AGE) products
AGEs in AD
AGEs are normal products of cellular metabolism. They
result from irreversible post-translational modifications
of proteins on which monosaccharides are grafted by
non-enzymatic mechanisms. By generating protease-
resistant peptides and proteins, this reaction leads to pro-
tein deposition and amyloidosis [149]. AGEs accumulate
in aged tissue and contribute to the age-related deterior-
ation of cellular functions [150]. AGE production can be
enhanced in pathological contexts such as diabetes
mellitus-associated hyperglycemia, inflammation, and
hypoxia [149,151]. AGEs pathogenicity is linked to the
concomitant oxidative stress generated during their for-
mation, to their interaction with its receptor RAGE
[152], or by the accumulation of non-degradable proteins
[149,151]. Furthermore, AGEs binding to RAGE intensi-
fies inflammation by activation of NF-κB and by release
of pro-inflammatory cytokines [153,154]. In turn, NF-κB
transactivates RAGE promoter [155]. Finally, AGEs com-
pete with other physiological ligands interacting with
transcriptional activation. Aβ peptides increase cytoplasmic calcium
ceptors; permeabilization of the membrane; and deregulation of
reased calcium then activates the calpain/cdk5/STAT3 pathway and
h then produces more Aβ peptides and a positive feedback
enzyme 1; cdk5, cyclin-dependent kinase 5; IP3, inositol 1,4,5-triphosphate;
m calcium ATPase; STAT, signal transducer and activator of transcription.



Figure 4 Aβ and AGEs activate BACE1 transcription. Aβ peptides
activate RAGE. This receptor is also activated by AGEs produced
during diabetes mellitus, inflammation or hypoxia. RAGE activation
upregulates BACE1 by the activation of the two transcription factors
NF-κB and NFAT1. Additionally, AGEs can activate BACE1 by
generating oxidative stress. BACE1 contribution to Aβ peptides
production then amplifies RAGE activation. Aβ, amyloid peptide; AGE,
advanced glycation end products; BACE1, β-secretase βAPP cleaving
enzyme 1; NFAT1, nuclear factor of activated T-cells 1; NF-κB, nuclear
factor-κB; RAGE, receptor for advanced glycation end products.
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RAGE, such as growth or differentiation factors
[149,151].
Cerebral levels of AGEs are increased in human AD

brains, especially in neurofibrillary tangles and amyloid
deposits [156-159]. Tau and Aβ peptides are indeed sub-
strates for glycation, which contributes to their patho-
genicity. Thus in vitro studies showed that tau glycation
impairs its ability to bind to tubulin [160], and AGEs
favor Aβ peptides aggregation [157,161].

Aβ modulates the AGE/RAGE signaling cascade
Aβ peptides that can be considered as AGEs, bind
to RAGE [86] and upregulate this receptor through
the cytokine macrophage colony-stimulating factor
(M-CSF). This amplifies RAGE sensitivity for Aβ stimula-
tion and probably subsequent pro-inflammatory conditions
settled by the microglia [162]. Arancio and collaborators
highlighted the contribution of RAGE to AD phenotype.
Transgenic mice overexpressing mutant βAPP and RAGE
exhibited earlier cognitive abnormalities and altered synap-
tic function, along with an increase in NF-κB activation and
amyloid deposits-associated reactive microglia and astro-
cytes [163].

AGEs and RAGE activate BACE1
AGEs can influence Aβ generation. AGEs induce
βAPP expression by generating oxidative stress in SH-
SY5Y cells [164] and in transgenic mice model of AD,
RAGE injection increases Aβ accumulation and senile
plaques [165]. As mentioned in this review, pro-
oxidant conditions regulate BACE1. Similarly, BACE1
expression and activity are increased by the activation
of RAGE in transgenic mice and SH-SY5Y cells [165].
NFAT1 could be involved in this regulation, since
AGEs- or Aβ-mediated stimulation of RAGE increased
cytosolic calcium concentration, NFAT1 activation and
binding to BACE1 promoter in SH-SY5Y cells [165].
The NF-κB pathway seems also involved in RAGE-
dependent regulation of BACE1. Thus pentosidine and
glyceraldehydes-derived pyridinium, two AGEs that are
increased in AD patients brains, upregulate BACE1
expression by binding with RAGE and subsequent ac-
tivation of NF-κB in vitro and in vivo [166]. There-
fore, RAGE activation by AGEs or Aβ activate BACE1
transcription and thereby, increases Aβ production
(Figure 4).

Brain insults
Traumatic brain injury
Traumatic brain injury is a risk factor for AD [167].
Post mortem analysis of patients who had traumatic
brain injury revealed deposition of Aβ peptides in
brain and abnormal distribution in the cerebrospinal
fluid [167,168]. This was confirmed in transgenic mice
model of AD, where repetitive traumatic brain injury
triggered Aβ accumulation [169]. Traumatic brain in-
jury is followed by an increase of BACE1 mRNA, pro-
tein and activity, as well as an accumulation of βAPP
and presenilin 1 [170-172].
BACE1 activation could be due to oxidative stress and

NF-κB activation following traumatic brain injury
[91,169,173], as we previously described that both can
upregulate BACE1 (Figure 5). In addition, BACE1 upre-
gulation may result from an impaired degradation. The
GGA (Golgi-localizing, γ-adaptin ear homology domain,
ARF-binding) proteins regulate BACE1 trafficking be-
tween endosomes and Golgi apparatus [174-176]. Fol-
lowing head injury, activated caspases cleave GGA1 and
GGA3, thereby stabilizing BACE1 [177].
BACE1 deletion attenuates brain damages due to trau-

matic injury. Thus learning impairment and tissue dam-
age are attenuated in BACE1 null mice. BACE1 would
contribute to the continuing neuronal damage after the
initial injury, where apoptotic and inflammatory path-
ways are activated [172].

Hypoxia
Vascular risk factors, like heart disease or stroke leading
to hypoperfusion are risk factors for AD [178,179]. Hypo-
perfusion, that is a transient or permanent reduction in
cerebral blood flow leading to subsequent hypoxia,



Figure 5 Traumatic brain injury contributes to Aβ deposition
by activating BACE1 transcription. Traumatic brain injury activates
BACE1 by inducing oxidative stress and by activating the NF-κB
transcription factor. This leads to Aβ deposition. Aβ, amyloid peptide;
AGE, advanced glycation end products; BACE1, β-secretase βAPP
cleaving enzyme 1; NF-κB, nuclear factor-κB.

Figure 6 Hypoxia contributes to Aβ deposition by activating
BACE1 transcription. Hypoxia activates BACE1 by three distinct
mechanisms: generation of oxidative stress and the subsequent
activation of the JNK pathway; activation of HIF-1 transcription factor
which activates BACE1 promoter directly or indirectly through the
activation of NF-κB and RAGE; activation of calpain and cdk5
resulting from increased calcium concentrations. By activating BACE1
transcription, hypoxia thus leads to Aβ deposition. Aβ, amyloid
peptide; AGE, advanced glycation end products; BACE1, β-secretase
βAPP cleaving enzyme 1; cdk5, cyclin-dependent kinase 5; HIF-1,
hypoxia-inducible factor 1; JNK, c-Jun N-terminal kinases; NF-κB, nuclear
factor-κB; RAGE, receptor for advanced glycation end products.
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causes a decrease in the important source of energy ATP,
a perturbation of ionic gradients, an increase in cytoplas-
mic calcium concentration, an excitotoxic excess of
extracellular glutamate, oxidative stress, and activation of
pro-inflammatory pathways, ultimately leading to cell
death [180].
In response to hypoxia, BACE1 levels, maturation and

activity, as well as Aβ deposition and memory deficits
are increased in Swedish mutant APP mice. In this
pathological condition, BACE1 transcription is activated
by hypoxia-inducible factor (HIF-1), a major transcrip-
tion factor induced by oxygen reduction [42,181].
Guglielmotto and collaborators [182] proposed a bi-
phasic activation of BACE1 by hypoxia. The early phase
would be characterized by the release of ROS from mito-
chondria and by the activation of the JNK pathway,
whereas during the late phase, the HIF1α transcription
factor would take over BACE1 activation. Besides oxida-
tive stress [182], other hypoxia-linked mechanisms could
contribute to BACE1 activation, such as the activation of
calpain and cdk5 [183-185], or the upregulation of
RAGE or NF-κB by an HIF-1α-dependent transcrip-
tional activation [186-189]. The three mechanisms
explaining hypoxia-induced BACE1 upregulation are
summarized in Figure 6.
Finally, two additional post-transcriptional mechan-
isms contribute to elevate BACE1 levels: the phosphoryl-
ation of eIF2α subsequent to energy deprivation that
translationally activates BACE1 [190]; reduction of
GGA3 levels following ischemia, leading to BACE1
stabilization and increased β-secretase activity [191].

Aβ-linked apoptosis in AD
Aβ toxicity mediated by oxidative stress, inflammation,
disturbed calcium homeostasis and cellular disorder
described above, leads to apoptosis. Aβ can activate the
extrinsic or the intrinsic apoptotic pathways according
to its aggregation state (reviewed in [11]). Aβ can dir-
ectly induce apoptosis by activating the transcription of
the tumor suppressor p53 [192], the expression of which
is increased in AD brains [192,193]. Furthermore, by ac-
tivating p53, Aβ and AICD can regulate their own pro-
duction [192,194-196], since p53 has been shown to
regulate some of the γ-secretase complex proteins that
are presenilin 1, presenilin 2 and presenilin enhancer 2
(Pen-2) [195,197,198].

Conclusion
Changes observed in AD brains are not necessarily
causes of the disease, and could be consequences of the
pathological process [199]. Most of cellular responses
and adaptative processes described in this review as well
as Aβ peptides can exert both protective and toxic
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functions according to the cellular context. For Aβ pep-
tides, those include modulating ion channel function
[200], neuronal viability [201,202], protection from glu-
tamate and N-methyl-D-aspartic acid excitoxicities
[202,203], and reduction of oxidative damage [204-206].
Aβ excess is considered to have a causative role in AD
pathogenesis, but could be a protective mechanism in
response to various stresses [9,204,207,208].
Nevertheless, AD brain cells undergo various stresses

mainly caused by oxidative stress, inflammation and cal-
cium homeostasis impairment. Chronic exposition of
cells to these age-related perturbations or brain insults
maintains supraphysiological BACE1 levels, leading to
an increased production of amyloid peptides, particularly
significant since their degradation is reduced in AD.
Since these peptides in turn contribute to oxidative, in-
flammatory and disturbed calcium conditions, this over-
all contributes to feed a morbid vicious cycle described
in the Figure 7. According to this scheme, BACE1 acti-
vation and accompanying increase in Aβ production play
a key role in the amplification of cellular dysfunctions. It
should be noted that an interesting recent paper indi-
cates that BACE1 upregulation may contribute to AD
pathogenesis by disturbing synaptic functions, independ-
ently of its catalytic role in Aβ production. Thus, Chen
and collaborators showed that BACE1 negatively con-
trols the cAMP/PKA/CREB pathway by interacting
Figure 7 Cellular stress, BACE1 and Aβ production are involved
in a toxic vicious cycle in AD. Various cellular dysfunctions
including oxidative stress, inflammation and calcium homeostasis
disturbance occur in AD-affected brains. These alterations activate
the transcription of the stress-induced β-secretase BACE1 that
contributes to Aβ production. Once yielded at supra-physiological
levels, Aβ induces cellular stresses that, in turn activate BACE1,
therefore setting up a vicious cycle. Such self-maintained toxicity can
lead to cellular cell death. Brain insults like hypoxia and traumatic
brain injury contribute to this scheme by inducing cellular stress.
adenylate cyclase. This regulation was not affected in
cells devoid of Aβ. The CREB pathway is important for
memory functions, and upregulation of BACE1 in mice
did affect their learning and memory abilities, in the ab-
sence of βAPP fragments [209].
Since BACE1 contributes to AD pathogenesis and is

essential to the cycle described in Figure 7, limiting its
activity is an interesting therapeutic strategy. Inhibitors
of BACE1 have been developed and improved recently.
Some non-peptidic orally available compounds with
good pharmacological properties reduced brain Aβ levels
in AD transgenic mice and already are under phase I
clinical studies. One of them successfully passed phase I
trial and reduced plasma Aβ levels in AD patients (for
review, see [210]). However BACE1 inhibition should
not be complete to prevent potential side effects (hypo-
myelination, schizophrenia- and epileptic-like behaviors,
hippocampal neurodegeneration [30-33,210]) linked to
BACE1-associated proteolysis of other substrates. Differ-
ent therapeutic strategies aimed at reducing inflamma-
tion or oxidative damage in AD did not prove to be
successfull so far [211,212]. It is likely that AD treatment
may need to target simultaneously distinct components/
pathways to be efficient, and should be used in the early
phase of development of the pathology in order to pre-
vent irreversible damages in AD brains [211].
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