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The synaptic maintenance problem: membrane
recycling, Ca2+ homeostasis and late onset
degeneration
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Abstract

Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are
highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts.
Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy
and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative
disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell
biological mechanisms that keep normal synapses alive and functional in the first place. How the basic
maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this
review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic
maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these
homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are
hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of
these disorders requires an understanding of both the initial cause of the disease and the on-going changes in
basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods
of time with the emphasis on their role in slow adult-onset neurodegeneration.
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Introduction
Proteins and organelles in all cells can become dysfunc-
tional over time. Organisms utilize a variety of mecha-
nisms to maintain cellular function and organ integrity.
A straight-forward way to avoid intracellular mainten-
ance problems is fast turnover of entire cells. Indeed,
many cell types in the human body undergo turnover at
rates that reflect their usage and exposure to harmful
external or internal factors. For example, normal human
liver cells have a turnover time of 1–2 years, red blood
cells 4 months and skin epidermal cells undergo turn-
over on the scale of days [1,2]. Cellular turnover is one
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principle mechanism that can reduce the need to
recognize, repair or remove dysfunctional proteins and
organelles. However, the faster the cellular turnover, the
higher the energy and resource costs. In addition, cellu-
lar morphology and tissue embedding render the turn-
over of some cell types difficult. Neurons are amongst
the longest living cells in animals and largely exempt
from cellular turnover. Regeneration of entire brains
within days can be observed in the planarian flatworm
[3]. However, such regenerative capabilities are rare in
animals and typically affect entire body parts, rather
than the replacement of individual cells inside morpho-
logically complex tissues. The majority of neurons in
the central nervous system from flies to men are long-
lived cells that, once gone, are never replaced. This is at
least partly due to the difficulty in re-wiring an individ-
ual neuron within the complicated network of the brain
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[4,5]. The precise placement of an individual cell in the
skin or liver requires less information than the embedding
of a pyramidal cell in the hippocampus or a dopaminergic
neuron in the substantia nigra. Hence the complicated
neuronal architecture highlights the necessity to keep indi-
vidual neuron alive. In addition neurons store information
about activity strength and plasticity in both pre- and post-
synaptic nerve endings that is almost certainly lost if the
cell is removed or replaced. Indeed, many synapses can, at
least in theory, remain functional for the entire lifespan of
an organism. A single neuron can support large numbers of
synapses that are morphologically separated by long axonal
and dendritic distances. Consequently, individual synapses
regulate some aspects of their function and maintenance
largely independently from each other and the cell body
[6]. These properties set the stage for a unique maintenance
problem at neuronal synapses.
The synaptic maintenance problem is further exacer-

bated by the tightly regulated high membrane turnover re-
quired for chemical neurotransmission. In the presynaptic
terminal large numbers of synaptic vesicles undergo highly
coordinated and Ca2+-regulated cycles of fusion and
fission, endosomal sorting and renewal of their protein
complement. Little is known about the rates at which vesi-
cles and other organelles or individual proteins become
dysfunctional during the function of the synapse. How-
ever, it is clear that dysfunctional vesicles, endosomes or
endoplasmic reticulum may leak protons, Ca2+ and many
other harmful ions and proteins. How failed vesicles or
other compartments are recognized, sorted, degraded or
repaired is only poorly understood. Over long periods of
time even small defects in any of these basic physiological
processes may lead to a slow reduction in neuronal func-
tion and health. In particular, endomembrane turnover
and Ca2+ homeostasis play key roles for prolonged healthy
neuronal and synaptic function [5,7,8]. Endomembrane
turnover and Ca2+ cross-regulate each other and recent
advances have highlighted examples how their concerted
dysregulation underlies neuronal dysfunction [9-14].
Importantly, both represent homeostatic systems that,
when mildly disrupted or otherwise functioning imper-
fectly, have been shown to lead to slow, adult-onset
neurodegeneration [5,7]. In summary, even in the ab-
sence of any aberrant neurotoxic insult, the mainten-
ance of the healthy function of neurons and synapses
over decades is an astonishing biological feat. To what
extent slow neurodegeneration, as is observed in numer-
ous degenerative disorders, is causally linked to primary
or secondary effects on neuronal maintenance mecha-
nisms is the topic of this review.

The maintenance problem of normal synapses
Similar to the possibility to replace entire cells, neurons
have the option to replace entire synapses. Only few
studies have explored such a ‘synaptic turnover’ mech-
anism. Long-term imaging studies in the barrel cortex
of mice revealed that dendritic spines are actively elimi-
nated in a sensory input-dependent manner during the
animal’s lifespan. Loss of sensory input leads to reduced
spine elimination [15]. Similarly, learning-dependent syn-
apse formation, elimination and maintenance are tightly
regulated by activity oscillations [16]. These observations
are indications of an activity-dependent turnover mechan-
ism [15]. Aberrant dendritic spine turnover may partly
underlie lissencephaly in humans due to mutations in
LIS1 [17]. Interestingly, the aging wild type mouse cortex
is characterized by increased rates of axon terminal forma-
tion, elimination and destabilization. These findings are
based on recent long-term multiphoton imaging results
and indicate that there may be up to 20-fold higher synap-
tic turnover in an old versus young mouse brain, providing
a possible explanation for late memory defects [18]. At
neuromuscular junctions (NMJs) the removal and addition
of presynaptic boutons is a common mode of strengthen-
ing, weakening and renewing the synapse [19,20]. How-
ever, individual bouton stability has been observed for
long periods of time. The removal and addition of new
boutons at the same NMJ is facilitated by the fact that
every individual bouton has the same ‘synaptic specificity’
and the postsynaptic target cell is large. In contrast, at
central synapses the specificity of pre- and postsynaptic
partner pairings may often preclude synapse replacement.
Indeed, individual central synapses have been shown to
persist for long periods [21]. We are not aware of evidence
that central synapses have an inherently limited lifetime,
endowing them with the theoretical property to function
throughout the life of the organism.
If turnover of entire neurons or synapses is not prac-

tical, then improved intracellular maintenance mecha-
nisms are required [4,5,22]. At least two conceptually
different approaches are available to the neuron: Indi-
vidual proteins or organelles that have become dysfunc-
tional may be individually recognized and repaired or
degraded. Alternatively, proteins and organelles may
have ‘built-in’ lifetimes that ensure that most proteins
and organelles are functional at any given time, and no
dysfunctional proteins or organelles accumulate. This
maintenance mode allows for a minimum average func-
tionality for all proteins or organelles of a certain type
without the need to distinguish whether an individual
protein or organelle has become dysfunctional. Exam-
ples for both maintenance modes have been character-
ized at synapses. Endomembrane degradation and Ca2+

homeostasis are two basic cellular mechanisms that are
required for prolonged synaptic maintenance; defects in
either mechanism ultimately leads to dysregulation of
the other and is sufficient to cause slow adult-onset
neurodegeneration [5].
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Little is known about the lifetime and degradation of
synaptic vesicles [23]. Recent findings at the Drosophila
neuromuscular junction suggest that synaptic vesicles
are ‘rejuvenated’ through sorting at synaptic endosomal
compartments [24]. The synaptic vesicle SNARE protein
neuronal Synaptobrevin (n-Syb) plays a major role in
both synaptic vesicle exocytosis and endolysosomal deg-
radation at synapses [25]. However, it remains unclear
when and how many synaptic vesicles cycle through the
fusion with endosomal compartments (Figure 1). The
target membrane SNARE protein SNAP25 is a direct
target for the synaptic chaperone Cystein String Protein
(CSP). Loss of CSP results in aberrant SNAP25 and defect-
ive SNARE complex formation [6] which causes degener-
ation in both flies and humans [26,27]. Defective CSP-
dependent chaperoning increases degradation through the
ubiquitin/proteasomal system (UPS). Similarly, the synaptic
vesicle protein Synaptophysin undergoes degradation me-
diated by E3-ubiquitin protein ligases that are partly local-
ized to endosomes [28]. Ubiquitination and proteosomal
degradation play a major role in the maintenance of all
cells. Defects in the UPS can lead to intracellular accumu-
lation, which in turn trigger autophagy [29,30]. ESCRT
proteins regulate the sorting of ubiquitinated cargo into
multivesicular bodies [24,31]. Hence, defects in the UPS
ultimately represent a challenge for endomembrane deg-
radation at synapses. The precise roles and mechanisms of
ubiquitination in neuronal maintenance are discussed else-
where [6,32].
On the postsynaptic side, receptor cycling undergoes

endolysosomal sorting, recycling and degradation steps
that are reviewed elsewhere. Defects in these mechanisms
can lead to dysfunctional synapses. However, comparably
Figure 1 Synaptic maintenance mechanisms. Several basic maintenance
synape healthy and functional over long periods of time. For each of the in
synaptic degeneration independent of any specific neurotoxic insult or neu
vacuole; Mito - Mitochondrium; EE - early endosome; EV - endocytic vesicle
little is known about the roles of these maintenance mech-
anisms in relation to slow degeneration over long time
periods [33,34]. In contrast, sustained Ca2+ -dependent
signaling underlying synaptic plasticity provides clear leads
for a role of Ca2+ homeostasis in postsynaptic mainten-
ance. In the following sections on endomembrane deg-
radation and Ca2+ homeostasis we therefore emphasize
presynaptic mechanisms for endomembrane degrad-
ation and postsynaptic mechanisms in the case of Ca2+

homeostasis.

Synaptic maintenance and endomembrane degradation
Failure to provide adequate quality control and degrad-
ation of pre- or post-synaptic trafficking compartments
leads to the accumulation of dysfunctional intracellular
machinery [5,35,36]. As the brain ages, changes in lipid
composition accompany synaptic dysfunction and cogni-
tive decline [37]. Furthermore, intracellular protein deg-
radation decreases in aging neurons as compensatory
endomembrane degradation increases. Hence, manipula-
tion of endomembrane degradation has been suggested
to decrease synaptopathogenesis associated with cognitive
decline of the aging brain [38]. Several endomembrane
degradation mechanisms operate at synapses, including
autophagy, ubiquitous endolysosomal degradation and
neuron-specific endolysosomal degradation. Defects in
any of these mechanisms can lead to slow adult-onset
neurodegeneration [5,39,40].
Autophagy is classified into chaperone-mediated au-

tophagy (CMA), microautophagy and macroautophagy
[41]. Macroautophagy is a ubiquitous endomembrane
degradation mechanism for proteins and organelles [42].
Protein degradation of aggregated proteins in the cytosol
mechanisms operate both pre- and postsynaptically to keep the
dicated processes disruptions have been shown to lead to premature
rodegenerative disorder. ER - endoplasmic reticulum; AV - autophagic
; SV - synaptic vesicle; Lyso - lysosome.
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by macroautophagy (hereafter referred to as autophagy)
partakes in the degradation of protein aggregates [29,43].
Neuron-specific loss of autophagyin mice through muta-
tions in atg5 or atg7 leads to adult-onset degeneration
[44,45]. Hence, basal autophagy is required for neuronal
maintenance in healthy neurons [44-46] (Figure 1). At low
levels increased autophagy has been shown to act neu-
roprotectively [47,48]. Recent evidence suggests a direct
role of autophagy on synaptic function. Specifically, induc-
tion of autophagy as well as basal autophagy negatively
regulate neurotransmitter release and affect the presynap-
tic structure in dopaminergic neurons in mice [49,50].
Although the role of autophagy for synaptic maintenance
was not directly investigated in these studies, it would
be interesting to test if autophagic regulation of the
synaptic vesicle cycle plays a direct role in synaptic
maintenance. In another recent study, autophagosome
biogenesis was shown at the neurite tip of neurons of
the basal root ganglia [51]. The same study indicated
that the primary mode of autophagosome removal from
synapses is through retrograde trafficking along the
axon. Furthermore, enhanced levels of presynaptic
proteins, including alpha-synuclein, have been shown at
synapses after cell-specific deletion of atg7 in dopa-
minergic neurons [52]. Defects in endolysosomal de-
gradation at synapses trigger the formation of large
autophagosomes at synaptic terminals in Drosophila
photoreceptors [25]. At the Drosophila neuromuscular
junction, autophagy presynaptically regulates the num-
ber of presynaptic boutons through degradation of the
E3 ubiquitin ligase highwire [53]. Ubiquitination may be
part of either of the two conceptually different mainten-
ance modes discussed above: In one mode, individual
dysfunctional proteins may be recognized and marked
for degradation. Alternatively, all proteins of a certain
type may be ubiquitinated with a certain probability at
all times, ensuring constant turnover without the need
to recognize whether an individual protein has become
dysfunctional. Similarly, autophagy of large protein ag-
gregates or organelles may function in both conceptu-
ally different maintenance modes. What maintenance
mode prevails at synapses is not known. In either case, a
picture is emerging in which autophagy directly affects
or regulates membrane trafficking at synapses and is re-
quired for the maintenance of prolonged synaptic func-
tion. However, the precise regulatory role of autophagy
with respect to normal synaptic membrane trafficking,
and the synaptic vesicle cycle in particular, remains
unclear.
Similar to defective autophagy, several mutations in

proteins that affect late endosomal or lysosomal func-
tion cause intracellular membrane accumulations and
neurodegeneration (Figure 1) [22,54-56]. Defects in
endosomal sorting complex required for transport
(ESCRT) proteins can lead to endosomal accumulation
of ubiquitinated proteins and contribute to neuro-
degeneration in mammalian and fly cells [57]. For ex-
ample, in mammalian neurons loss of the ESCRT-III
component mSnf7-2 causes retraction of dendrites and
neuronal cell loss [39]. mSnf7-2 also binds to CHMP2B,
an ESCRT-III subunit for which mutations have been
found to cause a rare form of Frontotemporal Dementia
[39,58], as discussed in the next section. Similarly, acidifi-
cation defects lead to aberrant endosomal accumulations
and can cause slow neuronal degeneration [59-62].
Intracompartmental acidification regulates the function of
synaptic vesicles and endosomal compartments [63,64].
Although endolysosomal degradation operates in all cells,
endolysosomal dysfunction often affects the nervous
system before other tissues [5,22]. The dynamics of
endolysosomal sorting and degradation were recently
characterized at the vertebrate NMJ [65]. The authors ob-
served synaptic ‘macroendosomes’ that contain extracellu-
lar levels of Ca2+ and various membrane proteins and may
function as sorting endosomes, similar to those observed
at motorneuron terminals in Drosophila [24]. Whether
and when these macroendosomes are destined for local
degradation, retrograde transport to the cell body or exo-
cytosis is unclear, but all three processes seem to occur in
wild type [65]. Importantly, defects in lysosomal func-
tion have also been directly linked to disrupted axonal
trafficking and dystrophic defects likened to Alzheimer’s
Disease [60].
In addition to ubiquitous endomembrane degradation,

neurons employ specialized endolysosomal machinery. A
neuron-specific branch of the endolysosomal system that
predominantly functions at synapses was recently identi-
fied in Drosophila [25,35,61]. Loss of the neuron-specific
vesicular ATPase component v100 causes intracellular
sorting and degradation at synapses [61]. Similarly,
mutations in the synaptic vesicle SNARE neuronal
Synaptobrevin (n-syb) cause intracellular membrane deg-
radation defects that lead to slow adult-onset degener-
ation in Drosophilaphotoreceptor neurons [25]. Both
v100 and n-sybhave previously been described as synap-
tic vesicle proteins [35,66,67]. Surprisingly, v100 and n-
sybmutant synaptic terminals in Drosophila are filled
with endosomes, not synaptic vesicles [25]. In both mu-
tants autophagy is initiated as a cellular response. It is
not clear whether the v100- and n-syb-dependent neur-
onal ‘sort-and-degrade’ mechanism has a specificity for
synaptic cargo. Alternatively, v100 and n-syb may in-
crease general membrane degradation. Both v100 and n-
syb have close homologs (v0a2-4 and cellubrevin) that
exert similar functions in other cell types [68,69]. The
idea of a degradation mechanism with specificity for
synaptic cargo is supported by the knowledge that
synapses contain numerous specializations of membrane
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trafficking. v100 and n-sybprovide a potential molecular
link between the synaptic vesicle cycle and synaptic
endolysosomal sorting and degradation. A similar link
has been proposed for the Rab GTPase Activating Pro-
tein (RabGAP) Skywalker [24]. In addition, a Rab11
guanine exchange factor (RabGEF) was recently shown
to cause activity-dependent endolysosomal protein accu-
mulations and adult-onset degeneration in Drosophila
photoreceptors [70]. The recent discovery of novel
synaptic endosomal Rab GTPases further suggests a role
for novel, yet to be discovered, synaptic membrane
trafficking machinery that functions in synaptic mainten-
ance [71,72].

Synaptic maintenance and Ca2+ homeostasis
Ca2+homeostasis plays a plethora of critical roles in the
life of a neuron and synaptic function in particular. Ca2+

signaling controls early stages of neuronal differentiation
and growth and the late stages of neuronal cell death
[73]. Furthermore, Ca2+ signaling connects membrane
excitability and cell biological functions of mature neu-
rons, including synaptic plasticity underlying memory
formation and retention. Tightly regulated Ca2+ homeo-
stasis is a prerequisite for the precise regulation of both
pre- and postsynaptic function. Presynaptic Ca2+ has
been studied extensively [23]. However, the conse-
quences of prolonged mild defects in presynaptic Ca2+

levels are less clear. Autophagosomes and lysosomes are
Ca2+ storage compartments [11] both in the cell body
and at the synapse. Intracellular Ca2+ directly regulates
autophagy. However, in different contexts increased
levels of free cytosolic calcium seem to either inhibit or
promote autophagy [10]. How the tightly regulated local
subcellular changes of free Ca2+ at synaptic terminals
regulate autophagy is not known. Upon endocytosis,
both synaptic vesicles and other endosomal compart-
ments can adopt extracellular Ca2+ concentrations [65].
Hence, presynaptic endolysosomal compartments feature
both steep H+ and Ca2+ gradients; impairments in the
preservation and regulation of these gradients can lead
to leakage and poisoning of synaptic function
[7,61,74,75]. In particular, a specific class of lysosomal
Ca2+ channels, the nicotinic acid-adenine dinucleotide
phosaphate (NAADP)-sensitive channels, have been
suggested to play a key role in the autophagic-lysosomal
clearance of synaptic proteins [12]. It is therefore clear
that Ca2+ homeostasis is required for the prolonged
maintenance of presynaptic function; however, the topic
still awaits dedicated investigation.
On the postsynaptic side, the role of Ca2+ homeostasis

on longer time scales is somewhat clearer. The accepted
neurophysiological correlate to learning and memory are
long-term potentiation (LTP) and long-term depression
(LTD). Ca2+ homeostasis is critical for the sustained
function of LTP and LTD at the synapse. Induction of
LTP, the persistent increase in synaptic strength in
response to neuronal activity, is thought to be the
physiological substrate of information storage in the
hippocampus. In addition, induction of LTP causes an in-
crease in spine number and spine size [76-80]. Induction
of LTD, the activity-dependent reduction of synaptic
transmission, results in the shrinkage of spine heads
[81,82]. The precise roles of Ca2+ signaling in LTP and
LTD has been studied extensively and is discussed else-
where [83-85]. Here we will focus on the long-term
aspects of deranged Ca2+ homeostasis on synaptic main-
tenance. In contrast to studies of synaptic plasticity, much
less is known about the role of neuronal Ca2+ signaling in
the long term at synapses.
How do small changes in Ca2+ homeostasis and signal-

ing affect the properties of the synapse over of its lifetime?
We would like to propose that the same Ca2+-dependent
mechanisms which are involved in experience-evoked syn-
aptic strengthening (LTP) and synaptic weakening (LTD)
are also involved in the long-term maintenanceand elim-
ination of synapses. Ca2+ influx via NMDAR and activa-
tion of Ca2+-dependent kinase CaMKII is a well-
characterized LTP-inducing mechanism [86]. Activated
CaMKII phosphorylates multiple substrates in the post-
synaptic density, including scaffold protein PSD95, AMPA
receptor targeting subunit stargazing and proteins in-
volved in cytoskeleton rearrangement [84]. When com-
pared to LTP, induction of LTD requires Ca2+ increases in
the postsynaptic spine that are lower in amplitude but
more prolonged, and often involve release of Ca2+ from
intracellular stores in the spine [85,87]. Such slow Ca2+

signals cause activation of the Ca2+-dependent phosphat-
ase calcineurin (CaN), which mediates dephosphorylation
of synaptic proteins and weakening of the synapse. The
roles of CaMKII and CaN in LTP and LTD forms of syn-
aptic plasticity are well established [83-85]. A very similar
balance (on much slower time scales) may also be neces-
sary for synaptic maintenance and elimination. Specific-
ally, we propose that low levels of continuous CaMKII
activity are necessary to keep a “phosphorylated tone” of
postsynaptic proteins. This is opposed by the continuous
activity of CaN which aims to dephosphorylate postsynap-
tic proteins and weaken the synapse. Hence, the steady-
state balance between continuous CaMKII and CaN ac-
tivities may play an important role in defining life-time
of individual synaptic spines. Indirect support for this
hypothesis comes from the observation that disruption
of the CaMKII complex with NMDAR causes persistent
reduction of the synaptic strength in hippocampal
synapses [88].
What are the mechanisms involved in keeping steady-

state levels of synaptic CaMKII activity? One possibility
is that spontaneous neurotransmitter release from the
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presynaptic terminal results in periodic Ca2+transients in
the postsynaptic terminals due to intermittent activation
of AMPA and NMDA receptors. Indeed, increasing re-
cent evidence suggests the importance of spontaneous
neurotransmitter release for synaptic maintenance [89].
Another alternative is Ca2+ influx via the neuronal
store-operated Ca2+entry (nSOC) pathway. The mo-
lecular identity and functional role of nSOC is poorly
understood [90], but it most likely includes TRPC
channels and stromal interaction (STIM) molecules.
The formation of excitatory spines was increased in
transgenic mice that overexpresses TRPC6 channel,
supporting an important role of nSOC at the synapse
[91]. We recently proposed that continuous Ca2+ influx
via nSOC may play a role in stabilizing spine structures
in the central nervous system [92]. The precise contri-
butions of spontaneous neurotransmitter release and
the nSOC pathway for synaptic maintenance await fur-
ther investigation.

The maintenance problem of synapses in
neurodegenerative diseases
The study of molecular neurodegeneration largely fo-
cuses on the investigation of known neurotoxic insults
that include Abeta peptides in Alzheimer’s Disease (AD),
polyQ proteins in Huntington Disease (HD) and Ataxias,
alpha-Synuclein in Parkinson’s Disease (PD), or tau tan-
gles in tauopathies, to name but a few [5]. All these
neurotoxic insults affect the neuronal physiology, includ-
ing ion homeostasis, intracellular membrane trafficking
and degradation machineries. The effects on the cellular
physiology can be direct due to an inherent toxic func-
tion of the disease proteins, or indirect due to a cellular
response to the neurotoxic insult [5]. Hence, the often
well characterized triggers of a neurodegenerative dis-
order and the cell biological machineries that try to keep
the cell alive are closely linked. Both endomembrane
degradation and Ca2+ homeostasis have been found to
be affected in most, if not all, neurodegenerative disor-
ders [5,7].
Despitethe differences in neurotoxic insults these dis-

orders share numerous common features, including the
observation that most of them occur in advanced age.
This is particularly apparent for AD. The probability of
developing AD increases exponentially with advanced
age [93]. In contrast, other disorders are designated as
“late-onset” but age is not as much of a risk factor as it
is for AD in the sense that the probability to obtain the
disease is not as much increased for, for example, the
age group 70–80 compared to the prior decade. It is
expected that the problems related to synaptic mainten-
ance should manifest themselves in the aging brain and
in a similar manner in early stages of AD. In this section
we will therefore put particular emphasis on AD before
other neurodegenerative disorders and discuss potential
connections between age-related defects in synaptic
maintenance and neurodegeneration.

Impaired endomembrane degradation and synaptic
degeneration
We have recently reviewed the general role of endo-
membrane degradation in several neurodegenerative dis-
eases [5]. In this section we will focus on the synapse.
Synaptic endomembrane degradation can be directly or
indirectly affected in neurodegenerative disorders. How-
ever, some diseases are directly caused by defective mem-
brane trafficking and in particular lysosomal function.
Most prominently lysosomal storage disorders (LSDs)
often affect neurons before other cell types [5,22]. Lyso-
somal degradation is required locally at synapses for syn-
apse elimination and axon pruning in mouse motor
neurons and the cerebellum [94]. In addition, the same
study showed reduced axon removal in a mouse model
for LSDs. In a Drosophila model for LSDs [54,95], in-
creased oxidative stress was recently shown to create a
further burden specifically for synaptic maintenance [96].
However, it is largely unclear why different lysosomal stor-
age disorders affect varying cell types in the nervous sys-
tem and elsewhere in the body differentially.
As outlined above, AD is the neurodegenerative dis-

order most closely linked to neuronal aging and there-
fore normal maintenance mechanisms. A plethora of
links have been established between intracellular mem-
brane trafficking and degradation in AD. Maybe most
importantly, endolysosomal abnormalities have been
observed at early preclinical stages of AD, suggesting a
potential causal relationship between the cell bio-
logical defects and the subsequent pathology [97,98].
Presenilins, the catalytic subunits of the γ-secretase
complex [99,100] have directly been linked to lysosomal
biogenesis and function [101,102]. Numerous studies
have proposed a requirement or presenlins for lysosomal
function independent of its role in the γ-secretase com-
plex, although the precise molecular mechanism remains
to be determined [9,103-105]. Remarkably, presenilins
seem to play a role in lysosomal Ca2+ storage, suggesting
a potential molecular mechanism [9,105]. This role of
presenilins further highlights the regulatory links be-
tween endolysosomal and Ca2+ homeostasis, which will
be further discussed in Section 2.2. It is currently un-
clear, and will be interesting to see, whether familial mu-
tations in presinilins also affect lysosomal Ca2+.
The amyloid precursor protein (APP) is trafficked to

the plasma membrane through the secretory pathway
where extracellular neurotoxic Abeta peptides are gener-
ated through beta- and gamma-secretase cleavages. The
trafficking of APP may therefore determine the availabil-
ity of APP to generate neurotoxic Abeta [106]. The
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sorting receptor sorLA binds intracellular APP and
controls its plasma membrane availability. In addition,
APP and secretases are also present on endosomal mem-
branes where intracellular Abeta generation may occur
[107,108]. An imbalance in the intracellular APP traf-
ficking mechanism may be the reason why mutations in
SORL1 (the gene encoding sorLA) are associated with
slow and progressive degeneration in late-onset AD
[109,110]. sorLA interacts with the retromer complex,
which regulates trafficking of APP and many other
membrane proteins from endosomal compartments back
to the golgi [110]. Loss of retromer activity causes pro-
gressive synaptic dysfunction and slow degeneration
[110,111]. SORL1 as well as sortilin, SorCS1, SorCS2 and
SorCS3 are members of the vacuolar protein sorting 10
(vps10) receptor family. At least sortilin has been shown
to directly affect trafficking at the synapse [112]. Over
time, the toxic Abeta42 variant can accumulate in late
endosomal compartments and cause slow degeneration
[113,114]. Abeta accumulations have also been associ-
ated with defects of the endoplasmic reticulum and
mitochondria [115,116]. On the postsynaptic side, Abeta
interferes with the function of the neuromodulator
Reelin and ApoE receptors. Based on these findings a
model has been proposed in which Abeta postsynapti-
cally modulates both neurotransmission and synapse
stability [117]. Importantly, the ApoE4 isoform of Apoli-
poprotein E significantly reduces the mean age-of-onset
of AD. ApoE4 specifically interferes with postsynaptic
glutamate receptor phosphorylation and thereby the
maintenance of synaptic stability [118]. A direct link be-
tween Abeta and tau was recently shown specifically for
the postsynaptic compartment: Dendritic tau may dir-
ectly confer Abeta toxicity through its role in targeting
the Src kinase Fyn and consequently the NMDA recep-
tor [119]. The PAR-1 kinase was recently shown to regu-
late Abeta toxicity specifically postsynaptically at the
Drosophila neuromuscular junction [120]. In addition,
there is further evidence for APP/Abeta processing both
on presynaptic endosomes [121] as well as in postsynap-
tic, somatodendritic compartments [122]. The APP
cleaving enzyme 1(BACE1) predominantly colocalizes
with presynaptic markers and is required for axon guid-
ance [123]. It is not currently clear whether pre- or post-
synaptic APP/Abeta processing is more critically related
to AD pathology. Finally, a study by Mawuenyega et al.
in 2010 highlights the more principle role of mainten-
ance in AD: A study of central nervous system neurons
in AD patients (albeit only 12 patients and 12 control)
revealed normal levels of Abeta production, but im-
paired clearance [124]. From these studies a picture is
emerging in which tightly regulated balances in mem-
brane trafficking of APP and Abeta are required for
prolonged neuronal and synaptic maintenance.
Some neurodegenerative disorders further highlight
the role of impaired endomembrane degradation for syn-
aptic maintenance. Rare cases of frontotemporal dementia
as well as motor neuron diseases are caused by mutations
in the ESCRT-III protein CHMP2B [58]. It is not clear why
defects in CHMP2B predominantly affect the nervous sys-
tem, but neuronal sensitivity to decreased endomembrane
degradation as a maintenance mechanism has been sug-
gested [40,125]. The neuropathy Charcot-Marie-Tooth 2B
is caused by specific point mutations in the late endosomal
small GTPase rab7 and affects the synaptic terminals of
the longest axons in the human body [126-129]. Although
this disease is rare, it has attracted considerable attention
due to the critical and ubiquitous requirement of rab7 in
endolysosomal degradation. How the disease mutations
cause a dominant neuropathy predominantly in the ner-
vous system is currently under investigation; several poten-
tial molecular mechanisms have been proposed based on
mutant protein overexpression studies in heterologous cell
lines [130-133]. However, none of these mechanism has
been shown to cause axonal degeneration in motor neu-
rons or sensory neurons in vivo. We are currently investi-
gating the alternative hypothesis that partial loss of rab7
function dominantly causes Charcot-Marie-Tooth 2B and
thereby reveals dosage-dependent neuronal sensitity to re-
duced endolysosomal degradation.
Niemann-Pick disease type C is caused by mutations

in the endolysosomal membrane protein NPC1 and char-
acterized by cholesterol accumulation in late endosomal
or lysosomal compartments. Synapses of both excitatory
and inhibitory neurons deficient for NPC1 develop nor-
mally, but exhibit progressive functional defects [134].
These findings suggest a requirement for correct Choles-
terol homeostasis during prolonged synaptic function,
which is reviewed elsewhere [134,135].
Finally, autophagy has been linkedto synaptic mainten-

ance in neurodegenerative disorders characterized by tau
or polyQ accumulations [136]. Decreased autophagy re-
sults in increased tau aggregation and toxicity [137,138].
Inhibition of tau phosphorylation or genetic deletion of
tau can partially suppress neurodegeneration caused by
autophagy suppression [139]. Interestingly, the same study
showed that this suppression did not correlate with any ef-
fect on inclusion formation. Furthermore, it has been pro-
posed that autophagy is directly affected by Huntingtin-
polyQ [140]. Disrupted autophagy has further been shown
to lead to dopaminergic axon degeneration and presynap-
tic alpha-synuclein and LRRK2 accumulation [52]. Tau-
mediated synaptic toxicity of Abeta is regulated by
ubiquitination and degradation and directly affects synap-
tic morphology and function [120]. A proteasomal re-
sponse to tau accumulations can trigger autophagy [36].
Disruption of the autophagosomal/lysosomal system and
vps41-mediated neuroprotection has been shown in PD
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[141] and both retromer and lysosomal defects have been
linked to increased PD risk [142]. Finally, a mouse knock-
in model for the ataxia SCA6, which is caused by muta-
tions in a voltage-gated Calcium channel, revealed severe
lysosomal defects as part of its pathogenic mechanism
[13]. This example further highlights the Ca2+ and
endomembrane systems. All these examples highlight how
neurotoxic proteins can exacerbate a maintenance defect
through impaired endomembrane degradation.

Synaptic degeneration and Ca2+ homeostasis
In Section 1.2 we proposed that synaptic maintenance
requires a balance between “LTP-like” (CaMKII-medi-
ated) and “LTD-like” (CaN-mediated) synaptic signaling
pathways. We would like to discuss the idea that this
balanceis shifted towards “LTD-like” pathways in aging
neurons. This may leads to late-onset synaptic loss and
age-related cognitive decline (Figure 2). There is a con-
siderable amount of indirect evidence in support of this
hypothesis. Studies of synaptic plasticity revealed the
shift in susceptibility to LTD in aging neurons [143].
This shift is due to increased contribution of
Figure 2 Ca2+ Signaling and synaptic maintenance. A. Synaptic mainte
synapse. Spontaneous release of glutamate triggers activation of NMDA rec
levels of Ca2+ in postsynaptic ER causes Ca2+ influx via the nSOC pathway.
necessary for maintenance of synaptic spine structure. B. Similar Ca2+ signa
spines in synapses that old, exhibit premature loss of maintenance machin
glutamate release is diminished in both aging and AD neurons. Ca2+ influx
effective in Ca2+ uptake. The levels of cytosolic CaBPs are reduced. The ER
of these changes the activity of CaMKII at the synapse is reduced and activ
synapses in aging and AD neurons by promoting “LTD-like” signaling pathw
neurons. Red arrows indicate increased or decreased activity. ER - endoplas
early endosome; EV - endocytic vesicle; SV - synaptic vesicle; nSOC - neuro
CaM Kinase 2; CaN - Calcineurin; CaBP - Calcium binding protein; PSEN - Pr
intracellular Ca2+ stores [144] and is paralleled by the
shift of the balance from kinases to phosphatases in the
synapse [145]. Multiple studies of aging neurons pointed
to increased Ca2+ release from intracellular stores via
InsP3R and RyanR, increased Ca2+ influx via L-type
VGCC, and reduced contribution of NMDAR-mediated
Ca2+ influx [8,146,147]. All these changes are expected to
shift the balance from CaMKII-mediated “synaptic main-
tenance” to CaN-mediated “synaptic weakening”
(Figure 2).
There are several potential reasons for these Ca2+ signal-

ing changes in aging neurons. One factor is reduced
cytosolic Ca2+ buffering capacity. The levels of neuronal
cytosolic Ca2+ -binding proteins (CaBPs) are reduced in
aging neurons [8,147]. A second factor is reduced mito-
chondrial function due to cumulative oxidative damage to
mitochondria. The mitochondria from aged neurons are
depolarized and less efficient in handling high Ca2+ loads
[8,147]. It is likely that reduced levels of CaBPs and reduced
mitochondrial Ca2+ uptake capacity force ER Ca2+

stores to play a larger role in Ca2+ handling in aging
neurons (Figure 2). We hypothesize that increased levels
nance requires continuous trans-synaptic signaling at excitatory
eptors (NMDAR) and Ca2+ elevation in the postsynaptic terminal. Low
These Ca2+ signals continuously stimulate activity of CaMKII, which is
ling defects are observed at the presynaptic terminal and postsynaptic
ery or in Alzheimer’s Disease (AD). The frequency of spontaneous
via NMDARs is reduced. Mitochondria are depolarized and less
Ca2+ levels are increased and synaptic nSOC is diminished. As a result
ity of CaN is elevated, leading to weakening and destabilization of the
ays. Similar, but more severe, processes are observed in PS-FAD
mic reticulum; AV - autophagic vacuole; Mito - Mitochondrium; EE -
nal store-operated Ca2+ entry; NMDAR - NMDA receptor; CamK2 - Ca/
esenilin.
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of ER Ca2+ in aging neurons result in a downregulation
of nSOC pathway function and reduced steady-state
levels of CaMKII activity in the spines (Figure 2). We
also propose that increased ER Ca2+ levels facilitate the
activation of CaN (Figure 2). Indeed, CaN activity is en-
hanced in aging neurons and plays an important role in
increased LTD [148,149].
Similar ideas may explain synaptic loss in AD. In a

recent review article we hypothesized that abnormal
neuronal Ca2+ signaling may play an important role in
destabilizing mature synaptic spines in AD [92]. Elevated
levels of CaN activity has been observed in AD human
brains [150-152] and dysregulated phosphorylation of
CaMKII was reported for MCI and AD human brains
[153]. The importance of CaN was further highlighted
by multiple studies in mouse models of AD. The mor-
phological alterations in neurites could be reduced by
treatment with the CaN inhibitor FK-506 in vitro and
in vivo in AD mouse models [154-157] and inhibition of
CaN resulted in memory deficit rescue in an AD mouse
model [158]. All these results indicate a shift in the bal-
ance from CaMKII towards CaN in AD synapses. On a
mechanistic level these effects are usually interpreted as
the result of synaptotoxic action of oligomeric Aβ42
[159]. However, it is possible that the balance between
CaMKII and CaN activity in the synapse can be tilted as
a result of increased ER Ca2+ levels and resulting changes
in intracellular Ca2+ homeostasis. The strongest evidence
in support of this idea comes from the analysis of familial
AD (FAD)-causing mutations in presenilins (PSEN1 and
PSEN2 genes) [160]. Presenilins act as catalytic subunits
of the γ-secretase complex which cleaves type-1 trans-
membrane proteins, including Notch [99,100]. The major-
ity of genetically-linked FAD is caused by missense
mutations in the PSEN1 and PSEN2 genes. Many of the
PS FAD mutations result in enhanced Ca2+ release via in-
ositol 1,4,5-trisphosphate receptors (InsP3R) and
ryanodine receptors (RyanR) [161-164]. To explain these
findings, we previously demonstrated that in addition to
acting as the catalytic component of the γ-secretase com-
plex, presenilins also function as passive ER Ca2+ leak
channels, a function disrupted by many FAD mutations.
We reasoned that the loss of ER Ca2+ leak function of
presenilins leads to increased endoplasmic reticulum (ER)
Ca2+ levels and enhanced ER Ca2+ release in PS-FAD cells
[160,165-167]. Independent experimental support for the
leak function of presenilin is accumulating [168,169]. A
large hole that traverses through the entire protein was
observed in the recent high resolution crystal structure of
the archaeal presenilin homologue PSH1, which could ei-
ther indicate a cavity for water access or underlie the ion
channel properties [170].
Many FAD mutations in presenilins disrupt the ER

Ca2+ leak function and result in elevated ER Ca2+ levels
[160,165-167,171] and impaired store-operated Ca2+ entry
[166,171,172]. As discussed above, increased ER Ca2+ levels
are one of the signature features of aging neurons [146].
Thus, studies with PS-FAD mutant neurons provide an op-
portunity to investigate alterations in Ca2+-dependent syn-
aptic signaling which would typically only occur in aging
neurons. Consistent with this hypothesis, an altered bal-
ance between the induction of LTP and LTD at synapses
was indeed observed in experiments with PS1-FAD neu-
rons [173,174]. These differences were uncovered following
inhibition of RyanR-mediated Ca2+ release by dantrolene,
suggesting that intracellular Ca2+ stores exert large effect
on synaptic plasticity in PS1-FAD neurons but not in wild
type neurons. These findings further suggest that synaptic
transmission in PS1-FAD neurons operates under a ‘shifted
homeostatic state’ [173,174]. In addition to the changes in
postsynaptic ER Ca2+ signaling described above, FAD
mutations in presenilins also exert effects on presy-
naptic ER Ca2+ handling and neurotransmitter release
[175,176]. FAD mutations in presenilins also influence
homeostatic synaptic scaling [177]. Thus, it is possible
that FAD mutations in presenilins affect synaptic main-
tenance from the presynaptic side as well, for example
by lowering the frequency of spontaneous neurotrans-
mitter release and interfering with homeostatic trans-
synaptic mechanisms (Figure 2).
Similar to AD, synaptic pathology has been implicated

in many other neurodegenerative disorders. For example,
there is extensive evidence for dysregulated cortico-striatal
synapses at early stages of Huntington’s disease (HD). It
appears that synaptic changes in HD result mainly from
changes in cell biological and Ca2+ signaling mechanisms
induced by mutant Huntingtin protein [178-181]. It is
however possible that age-related synaptic maintenance
defects outlined in this review contribute to the vulnerabil-
ity of synapses to other toxic insults, such as mutant
Huntingtin-polyQ protein. It is therefore possible that a
therapeutic strategy that favors synaptic maintenance (such
as for example selective activation of endomembrane deg-
radation or inhibition of CaN) may proof beneficial in
these disorders as well by making synapses more resistant
to further toxic insults.

Conclusion
In this review we attempted to highlight the importance
of synaptic maintenance for neuronal health and disease. In
particular, we focused on endomembrane degradation and
Ca2+ signaling and the cross-regulation. Mild dysregulation
or defects in either of these processes are likely to lead to
slow synaptic degeneration. Aberrant endomembrane deg-
radation and Ca2+ signaling may thus contribute to synaptic
loss and age-related cognitive decline. The neurodegenera-
tive disorder that most closely resembles the loss of synap-
tic maintenance phenotypes is AD. However, defects in
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synaptic maintenance may also contribute to synaptic vul-
nerability in other neurodegenerative disorders. Many of
our conclusionsare inferred from short-term experiments,
but the experimental tools to test these proposals in long-
term experiments are becoming increasingly available. Test-
ing these ideas may help to understand the cell biological
mechanisms underlying late-onset synaptic degeneration
and facilitate the development of novel therapeutic agents.
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