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Abstract

Background: Neurodegenerative diseases including Parkinson’s and Alzheimer's diseases progress slowly and
steadily over years or decades. They show significant between-subject variation in progress and clinical symptoms,
which makes it difficult to predict the course of long-term disease progression with or without treatments. Recent
technical advances in biomarkers have facilitated earlier, preclinical diagnoses of neurodegeneration by measuring
or imaging molecules linked to pathogenesis. However, there is no established “biomarker model” by which one
can quantitatively predict the progress of neurodegeneration. Here, we show predictability of a model with risk-
based kinetics of neurodegeneration, whereby neurodegeneration proceeds as probabilistic events depending on
the risk.

Results: We used five experimental glaucomatous animals, known for causality between the increased intraocular
pressure (IOP) and neurodegeneration of visual pathways, and repeatedly measured IOP as well as white matter
integrity by diffusion tensor imaging (DTI) as a biomarker of axonal degeneration. The IOP in the glaucomatous eye
was significantly increased than in normal and was varied across time and animals; thus we tested whether this
measurement is useful to predict kinetics of the integrity. Among four kinds of models of neurodegeneration,
constant-rate, constant-risk, variable-risk and heterogeneity models, goodness of fit of the model and F-test for
model selection showed that the time course of optic nerve integrity was best explained by the variable-risk model,
wherein neurodegeneration kinetics is expressed in an exponential function across cumulative risk based on
measured IOP. The heterogeneity model with stretched exponential decay function also fit well to the data, but
without statistical superiority to the variable-risk model. The variable-risk model also predicted the number of viable
axons in the optic nerve, as assessed by immunohistochemistry, which was also confirmed to be correlated with
the pre-mortem integrity of the optic nerve. In addition, the variable-risk model identified the disintegrity in the
higher-order visual pathways, known to underlie the transsynaptic degeneration in this disease.

Conclusions: These findings indicate that the variable-risk model, using a risk-related biomarker, could predict the
spatiotemporal progression of neurodegeneration. This model, virtually equivalent to survival analysis, may allow us
to estimate possible effect of neuroprotection in delaying progress of neurodegeneration.
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Background

Neurodegenerative diseases are slowly progressive and
intractable disorders of the nervous system. The tem-
poral profile of neurodegenerative diseases shows a pat-
tern of high variability across patients in terms of
symptoms, neuropathology and neuroimaging findings
[1-3]. This variability, as well as their slowly progressive
nature, poses difficulty in assessing treatment efficacy
[3]. For any current and future drug that potentially
delays disease progression, it is important to know
whether and how much it delays deterioration caused by
neurodegenerative diseases. Early detection of disease is
now becoming possible by measurement of neurochem-
ical [4,5] and neuroimaging [6] biomarkers specifically
related to the pathogenic events (for review, see [7,8].
Although several biomarker models have been proposed
to illustrate the relationship between the biomarker cas-
cade and symptomatic/clinical stages [1,2], there is
scarce evidence that biomarkers can be used to quantita-
tively interpret the neurodegenerative process. To this
end, it is necessary to establish a model for the kinetics
of neurodegeneration using a biomarker, and to predict
the time courses for testing the long-term efficacy of
treatment.

Classical prediction models kinetics of neurodegeneration
simply in the context of accelerated aging [9], i.e, once
initiated, neurodegeneration proceeds at a rate faster than
in normal-aging [10] (constant-rate model in Figure 1A),
but this model ignores the causality of disease-specific risk.
A more elaborate interpretation has its basis in a risk-based
stochastic model, in which neurodegeneration occurs as
probabilistic events for each neuron depending on the risk.
If the risk is time-invariable, the number of neurons should
decrease as an exponential function of time, like the radio-
activity decay of a radioisotope (a constant-risk model in
Figure 1A). This was shown to be the case in vitro [11,12],
and in cases of hereditary neurodegeneration [11,13]. Al-
though this model reasonably considers neurodegeneration
as probabilistic events, it oversimplifies the situation of
neurodegeneration in the brain. For example, the risk is not
always constant in most types of non-inherited neuro-
degenerative diseases, as is made evident by the between-
subject variability in symptoms or neuropathologies [1-3].
In addition, interactions between neurons seem to underlie
transsynaptic degeneration in the secondary neurons which
have synaptic connections with primarily dying neurons
[14-16]. Thus neurodegeneration is not a series of in-
dependent events like radioisotope decay. Therefore, the
stochastic model needs to be qualified when neurons are
exposed to a variable level of risks and/or transsynaptic
death. We modeled a condition where the level of risk is
time-variable (see Kinetic models of neurodegeneration in
the Methods section), and thereby predicted that the num-
ber of neurons should decrease exponentially with time-
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integrated risk, i.e. cumulative risk (variable-risk model in
Figure 1A). We also modeled transsynaptic death, the kin-
etics of which are linear to the primary neuronal death, thus
allowing detection of the distribution of neurodegeneration
across the brain.

Glaucoma, a leading cause of the adult-onset blind-
ness, is known to involve a pathology in which axons of
retinal ganglion neurons are mechanically injured by a
chronic increase in intra-ocular pressure resulting from
dysregulated aqueous fluid circulation [17]. In this dis-
ease, neurodegeneration occurs not only in the retinal
ganglion neuronal cell bodies and their axons in the
optic nerves/tracts, but also transsynaptically in the lat-
eral geniculate nucleus, optic radiation, and visual cortex
[14-16]. The causality between increased IOP and glau-
comatous neurodegeneration is well established based
on several observations: 1) the higher the IOP, the more
accelerated is the progression of glaucoma [18]; 2) ther-
apies that alleviate IOP prevent the progress of the dis-
ease [18]; and 3) experimental animals given a treatment
that increases IOP by blocking aqueous-fluid absorption
exhibit typical visual-field deficits and retinal pathologies
similar to human patients [19,20]. Although its primary
cause is different, the glaucoma shares close similarities
with Parkinson’s and Alzheimer’s disease in several patho-
logical findings [21] and is recently considered as one of
neurodegenerative diseases that need neuroprotective
therapies [22].

Here, using diffusion-weighted magnetic resonance
imaging, we test whether the causal model explains the
time course of neurodegeneration in the living brains of ex-
perimental animals with an established neurodegeneration
model. The technique of diffusion-weighted magnetic res-
onance imaging has recently enabled in vivo measurements
of white matter microstructure, thus allowing the quantita-
tive, longitudinal assessment of neurodegeneration in vari-
ous diseases including Alzheimer’s [23,24] and Parkinson’s
diseases [25,26], amyotrophic lateral sclerosis [27,28] and
glaucoma [29]. By applying the diffusion tensor model [30],
diffusion-weighted data could be used to calculate frac-
tional anisotropy (FA), a scale that expresses anisotropic
diffusion motion and is proven to be correlated with the
density of viable neuronal axons if conditions permit (for
review, see [31]). We used macaque monkeys (Macaca
fascicularis) with glaucoma induced by laser photocoagula-
tion of the trabecular meshwork [32], which is known to
result in a chronic increase in IOP and a pathology that
mimics glaucoma, degeneration of axons of retinal ganglion
neurons.

Results

The animals with glaucoma showed increased IOP in the
affected eye (Figure 1B and Additional file 1: Table S1)
during the follow-up period from 33 to 168 days after
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Figure 1 Kinetic model of neurodegeneration, time course of risk (intraocular pressure) and MRI-based neurodegeneration in
glaucomatous animals. (A) Four putative kinetic models of neurodegeneration: 1) constant-rate model (blue straight line with x-axis of time after
the onset of disease), 2) constant-risk model (red exponential line with x-axis of time), 3) variable-risk model (red exponential line with x-axis of

intraocular pressure (IOP) in animals with glaucoma. Closed point and thick line, the glaucomatous eye (G); open point and dashed line, control
(contralateral side) eye. (C). The shapes of the points specify each of the animals: animal #1 (A 4); #2 (mO); #3 (- #); #4 (¥ V); and #5 (0). (C) Time
course of quantitative values of fractional anisotropy (FA) in the optic nerves of glaucomatous eye (G-ON), control (C-ON, contralateral side), and in
those in normal animals (N-ON). Constant-rate model and constant-risk model are also fit to the G-ON data. See also Table 1. (D) A plot of quantitative
FA values (in y-axis) across cumulative risk (fr(t)dt, in Eq. 2) in the variable-risk model (solid line). (E) Time course of relative FA values (rFA) in the
glaucomatous optic nerve expressed as a ratio to the control optic nerve (G) and a ratio, left-to-right, in normal animals (N). Constant-rate and
constant-risk models are also fit to the ratio of G. (F) A plot of rFA values in the glaucomatous optic nerve (y-axis) and cumulative risk (x-axis) in
glaucomatous animals (G) and normal animals (N). The glaucomatous FA values are fit by the variable-risk model (solid line: fitted curve). (G) A plot of
predicted neurodegeneration (line) and actual rFA values (points) in each animal of #1-5. The prediction of rFA were calculated based on the initial
value (N, =1) and optimized values (r, = 00019, 8 = 0.057) in the variable-risk model. (H) Results of the voxel-based analysis of FA images with
cumulative IOP as a regressor. A significant cluster (P < 0.05, corrected for multiple comparison) is shown in blue. ON, optic nerve; OT, optic tract; and
OR, optic radiation. See Additional file 2: Table S2 for a list of all significant regions.

OR

exponential decay line with x-axis of cumulative risk). (B) Time courses of

laser coagulation that blocks aqueous fluid absorption.
The mean IOP values in the glaucomatous eye was higher
than those in the baseline (54.9 + 4.2 vs. 23.2 + 0.8 mmHg,
paired-T test, P < 0.005) or than the contralateral (22.8 +
0.73, T test, P < 0.05, Additional file 1: Table S1). In
addition, as has been seen in our previous study [20],
values of IOP in the glaucomatous eye were significantly
variable across time (analysis of covariance, F;;;9 = 4.34,
P < 0.05) and subject (F; ;9 = 5.35, P < 0.05) (see Figure 1B),
which led us to assume that the variability in IOP
fluctuates with the rate of progression of degeneration.

The FA values in the affected optic nerve were also
variable across time (F; s = 20.0, P < 0.005) and subjects
(Fys = 9.59), P < 0.01), whereas not those of the non-

affected optic nerve (Figure 1C). Besides time course of
quantitative FA values, we also used those of relative FA
values in the subsequent analysis of model fitting with
the view to reduce effects of measurement error. The
relative value of FA was expressed as a ratio of values
for the affected optic nerve to those for the non-affected
nerve. When we fitted the constant-rate model to the
FA and time, the variance of FA was only slightly explained
by time. A coefficient of determination (R®) was 0.35 for
quantitative FA (linear regression analysis, P < 0.05,
Figure 1C) and 0.36 for relative FA values (P < 1.0 x 107,
Figure 1E, see also Table 1). The FA values were better fit-
ted by the stochastic constant-risk model (R = 0.67,
P < 1.0 x 10, Figure 1C and R* = 0.89, P < 1.0 x 107,
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Table 1 Parameter estimates in the constant-rate and risk-based models of primary neurodegeneration using FA

values at the optic nerve

No ro B Y R? P F-test
Constant-rate model
Quantitative FA 0.64 0.0024 — — 0.35 <0.05 —
Relative FA — 00047 — — 036 <1.0x10™ —
Risk-based model
Constant-risk model
Quantitative FA 0.72 0.0081 — — 0.67 <1.0x10° —
Relative FA — 00084 — — 089 <1.0x10° —
Variable-risk model
Quantitative FA 0.73 0.0016 0.064 — 0.94 <1.0x10° F10=386% P<0.005
Relative FA — 0.0019 0.057 — 0.98 <1.0x107 Fi110=37.9% P<0.0005
Heterogeneity model
Quantitative FA 0.95 0.0031 0.060 0.58 0.96 <1.0x107 Fi8=3.5% NS.
Relative FA — 0.0019 0.057 093 0.98 <1.0x10°® F1o=06%* NS.

The quantitative and relative FA values were obtained from a region of interest in the glaucomatous optic nerve and from a ratio of FA between glaucomatous
and control (contralateral) optic nerve, respectively. *F-test compared two nested models of constant-risk and variable-risk, taking into account the additional
parameter § in the latter. **f-test compared two nested models of variable-risk and heterogeneity model, taking into account the additional parameter y in the

latter. N.S, not statistically significant.

Figure 1D, for quantitative and relative FA data, respect-
ively, see also Table 1). The FA data were much better fit-
ted by the stochastic variable-risk model, based upon the
cumulative risk that was assumed to be proportional to the
power of the IOP (quantitative FA: R® = 0.94, P < 1.0 x 10°,
Figure 1D, relative FA R* = 0.98, P < 1.0 x 107, Figure 1F,
Table 1). An F-test for model selection disclosed that the
variable-risk model explained the data significantly better
than the constantrisk (quantitative FA: F;9 = 38.6,
P < 0.005; relative FA: F; ;o = 37.9, P < 0.0005, Table 1).
We also tested a model recently proposed as one that
explains kinetics of neurodegeneration with heterogeneity
using a stretched exponential decay function [33] (see sec-
tion of Kinetic model of neurodegeneration in Methods
and Figure 1A), which is often used in the field of physics
to describe the relaxation in disordered system [34]. The
heterogeneity model well fit to both of the quantitative
and relative FA data (R = 096, P < 1.0 x 107 and
R’ =098, P < 1.0 x 10°® respectively, Table 1), and an
optimized value of parameter, y was less than 1 for both of
quantitative and relative FA values (0.58 and 0.98, respect-
ively, Table 1) as expected in a typical stretched exponen-
tial decay model (see Methods). However, an F-test for
model selection showed that the heterogeneity model did
not significantly improve explanation of data variability as
compared with the variable-risk model (F; g = 3.5; F; 9 = 0.6,
Table 1).

The relevant statistics were also performed with voxel-
based analysis of FA images, because this might help in
finding a better model if it identified significant voxels
located in known pathways of degeneration, such as the
optic nerve or tracts. When both the cumulative risk

and the post-operative period were entered as regressors
in the statistical model, the FA images revealed a cluster
located in the visual pathways, including the optic nerve
and tracts, and the sagittal stratum, which were signifi-
cant determinants in the coefficient of cumulative risk
(Figure 1E, Additional file 2: Table S2), but not in the
post-operative period. In addition, the decrease in FA was
specific to the laser photocoagulation treatment; such a
time- or risk-dependent decrease was not found in the FA
values of the contralateral optic nerve (Additional file 3:
Figure S1). Because the sagittal stratum includes the optic
radiation, containing axons of transsynaptic neurons, we
considered that the degree of secondary neurodegeneration
could be also approximated as a linear function of the
degree of primary neurodegeneration (see Appendix 1).
This was tested in detail by analysis with voxel-based
regression and model selection. When voxel-based multi-
regression analysis was performed using a regressor of the
FA values at the primarily degenerated optic nerve, we
found significant clusters for the contrast of primary-
degeneration FA values at the bilateral optic radiation and
the posterior callosum (Additional file 3: Figure S1C,
Additional file 4: Table S3). These contain axons of the lat-
eral geniculate and visual cortical neurons, respectively,
which are known to be affected by transsynaptic neuro-
degeneration in glaucoma [16]. These results also depict
the pathways to the superior colliculus, which is known to
receive direct inputs from retinal neurons [35] (Additional
file 3: Figure S1C, Additional file 4: Table S3). Trans-
synaptic neurodegeneration expressed by FA values at the
optic radiation had a linear relationship with primary
neuronal death as measured by FA at the optic nerve
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(R?=0.82, P<0.0001, Additional file 5: Table S4), sug-
gesting that this type of pathology has its basis in tight
inter-neuronal interactions for cellular survival and sup-
porting the hypothesized protective role of neurotropic
factors in transsynaptic neurodegeneration [16]. The
kinetics of FA values in the transsynaptic degeneration site
were also an exponential function of the cumulative risk
(R*=0.85 in ipsilateral and R°=0.80 in contralateral,
Additional file 3: Figure S1E, Additional file 5: Table S4)
and fitted by the variable-risk model significantly better
than by the constant-risk model (F;g=19.0, P <0.005 in
ipsilateral and F;g=14.1, P<0.01 in contralateral,
Additional file 5: Table S4). Thus, these findings indicated
that transsynaptic degeneration proceeds both in a linear
relationship with the primary one, and in an exponential
function of the cumulative risk.

Finally, we also tested whether the risk-based model
could properly predict axonal degeneration. Axonal degen-
eration was measured by specific immunohistochemical
staining with an SMI-31 antibody to evaluate phos-
phorylated neurofilament (NF), a marker of viable axons
[36]. The NF density was better predicted by the variable-
risk model than the constant-risk model by F-test (F; 3=
29.7, P<0.05, Table 2), strengthening the validity of the
current model. Because our analysis has its basis in the as-
sumption of linearity between imaging measures of FA and
biological microstructures, such as axonal densities [31],
this was also tested in our test animals with their optic
nerves histologically analyzed. The ratio of optic nerve FA
(glaucomatous/unaffected side) was correlated with that of
axonal density (Figure 2B, Spearman’s r=1.0, P<0.05),
which had been assessed in toluidine-blue stained sections.
We also found that the FA values were significantly
correlated with the density of NF-positive axons (Pearson’s
r=092, df =23, one-tailed P < 0.05, Figure 2C, Additional
file 6: Table S5).

Discussion

Using established experimental animals of neurode-
generation and in vivo neuroimaging data, we demon-
strated the risk-dependent, stochastic nature of the kinetics
of neurodegeneration, in which neurons probabilistically
degenerate depending upon the product of time and
amount of risk. Plausible exponential decay indicates that

Table 2 Parameter estimates in the risk-based kinetic
models of primary neurodegeneration using the L/R ratio
of density of NF at the optic nerve

ro B R? P F-test”
Constant-risk model 0.012 - 086 <0.01 -
Variable-risk model ~ 0.0017 0.071 098 <0.05

Fo3=224, P<005

“F-test compared the two nested models of constant-risk and variable-risk,
taking into account the additional parameter § in the latter.
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Figure 2 The relationship between a DTI-based measures, FA,
and a microscopic measurements, densities of axons. (A)
Sections of optic nerve immunohistochemically stained for
phosphorylated neurofilaments (NF), in each side of the control
(C-ON) and the glaucomatous optic nerve (G-ON), for each animal
(#1-5). The density of NF was almost comparable to that of the
contralateral control in the ocular hypertensive animal (#1), mildly
decreased in the early stage glaucoma animal (#2), and severely
degraded in advanced stage animals (#3-5). See Additional file 5:
Table S5 for quantified data for each optic nerve. (B) A plot of FA
values and the number of axons in the optic nerve. Values are ratios
of the measured value in the glaucomatous side to that in the non-
affected side. The numbers of axons were evaluated in transaxial
sections of optic nerve stained with toluidine blue. (C) The
relationship between DTl-based FA values (x-axis) and the
microscopically-counted NF density (y-axis) in the glaucomatous (G-
ON) and control optic nerve (C-ON). See also Additional file 5: Table
S5 and Table 2.

the earlier the disease risk is accumulated, the more rapidly
neurodegeneration occurs, stressing the need for earlier de-
tection using risk-related biomarkers. The current data
showed that the risk-dependent decay spatially extended
not only into the optic nerve but also into the remote white
matter, consistent with the known widespread pathology of
glaucoma in the visual pathways including the optic nerve,
lamina cribrosa, lateral geniculate nucleus, and visual cortex
[15,16]. The IOP increase has been known not only to elicit
stress on the ganglion neurons and their unmyelinated
axons in the retina or/and optic head, but also to induce
glial activation and expression of tumor necrosis factor a,
which may induce transsynaptic degeneration in remote
areas [16,17]. The kinetics of the secondary transsynaptic
neurodegeneration was approximated as a linear function
of the kinetics of primary neurodegeneration, making the
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model effective when assessing degeneration in the brain
with its enormous amount of inter-regional connectivity.

The current results provide three important findings as
it relates to the kinetics of neurodegeneration. First, the
results of our dynamic risk-based model for neurode-
generation confirm the stochastic nature of neurode-
generation in one-hit model, which was originally arisen
from knowledge of inherited neurodegenerative diseases
[11,37]. In the inherited trinucleotide repeat diseases, the
age of symptomatic onset decreases exponentially with
increasing length of trinucleotide repeats [37]. These
diseases involve pathologies including initiation of nu-
cleated polymerization, a rate-limiting thermodynamically
unfavorable state, followed by rapid irreversible elongation
to form fibrils [13,38]. Because the probability of the initial
nucleation is increased by longer trinucleotide repeats, the
risk function could simply be approximated as a step func-
tion across time; thus, the model explains the length-
dependent variability in the age onset [13,37] and the
exponential progress of neurodegeneration [11].

Second, the results extend the applicability of the risk-
based stochastic model to the non-inherited, time or
subject-variable neurodegenerative diseases. The variable-
risk model better explained the variability of the data by
27% and 9% for quantitative and relative FA respectively
(R?=0.94 and 0.98) than did the constant-risk model
(R?=0.67 and 0.89, respectively). F-test for these nested
models showed significant superiority of the variable-risk
model (Table 1). This is important findings which indicate
that the neurotoxic risk is not constant across time and
subjects, even in typical animal model of neurode-
generation, which is all made by the same procedure. A
majority of neurodegenerative diseases, such as Parkinson’s
and Alzheimer’s diseases, do not involve trinucleotide
repeats in the protein aggregation mechanisms and these
diseases show significant between-subject variability in
symptoms. This may be due to complicated pathome-
chanisms, such as the nonlinear nature of the risk [38,39],
or multiple co-risks such as aging [9,40], microcirculation
[41] and microglial activation [42]. The current result
showing the close relationship between pathogenic (IOP)
and neurodegenerative (DTI) biomarkers is also consistent
with a recent finding in Alzheimer’s disease patients [43],
whereby the deposition of beta-amyloid, a presumed patho-
genic factor, was strongly related to hippocampal atrophy
in the very early stage. Moreover, the current neurode-
generation model is virtually equivalent to those applied in
the survival analysis of the Cox proportional-hazards
regression model with time-dependent covariates (see
Appendix 2). The model can further be generalized by
including multiple risk factors (Appendix 2), such as gen-
etic vulnerability (e.g. Apo E4 allele in Alzheimer’s disease),
age, sex, and microcirculation, using multiplicative combin-
ation to form the net risk function (Eq. 8). The model can
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also be used for estimating the effect of neuroprotection by
testing the interaction between the intervention and the
risk to the time course of neurodegeneration.

Third, our findings of transsynaptic neurodegeneration
suggest that the regionally exposed risk can induce
system-wide neurodegenerative changes. The IOP in-
crease may only injure the ganglion neurons in the ret-
ina, but the risk-based kinetic model allowed us to
detect the FA decrease in the optic radiations, the 1st
order transsynaptic sites. The observations are well con-
sistent with findings by recent studies in glaucomatous
patients [29,44]. The effect size may not be large in the
higher order transsynaptic connections (as shown in
Additional file 3: Figure S1); however, a specific spatial
pattern covering the primary and secondary connections
may increase diagnostic specificity for neurodegeneration
that often proceeds in the specific neural circuit, e.g. visual
pathways in case of glaucoma.

Although the heterogeneity model with stretched ex-
ponential decay (in Eq. 6) did fit well to our data, it did
not significantly better explain our data than the risk-
based model. The variability of the data was largely
explained by the risk-based model (94-95%), which was
improved only slightly by 1-2% when applied the het-
erogeneity model and F-test for model selection did not
show significant difference between these two nested
models (Table 1). Similarly, previous study showed that
the stretched exponential model better fit to the survival
curve of neurodegeneration using 16 kinds of data [33]
and improved explanation of variability only by 0-11%
(median = 4%), while the (constant-) risk-based model
explained 72-98 % of data variability (median = 89%).
Therefore, it is possible that the heterogeneity model
may better explain the neuronal survival than the risk-
based model, but the effect size seems to be relatively
small as compared with models with less smaller num-
ber of parameters. Moreover, we consider that the model
needs to be carefully assessed for its eligibility, particu-
larly, for the parameter, y. The value of y may be
influenced not only by biological factors (e.g. heterogen-
eity in the decay rate or late-stage biological compensa-
tory response to the initial neurotoxic events) but also
by measurement accuracy of the biomarker. Therefore,
the actual factor that governs the variability of y should
be assessed systematically in each experimental condi-
tion. As for estimation of heterogeneity of decay rates,
bi-exponential decay model could be better suited than
the current model to evaluate the level of heterogeneity
[45]. Moreover, since adding the parameter (y) in the
model may not only increase goodness of fit but also
bias the base parameter (5 or rp), it may need to be
evaluated particularly when for example the study
intervenes early-stage neuroprotection that may expect
any change in f.
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Based on the current results, we propose a two-step
model for progression of neurodegenerative disease: a
first step that correlates the “pathogenic” biomarker with
the “neurodegenerative” biomarker, and a second one
that correlates the neurodegenerative biomarker with
clinical/symptomatic stage (Figure 3). This model may
be similar to the recent biomarker model, where mul-
tiple biomarkers emerge in a cascade and are associated
with the clinical stage [2], but it differs with respect to
the emphasis on causality between cascades of biomarkers
or clinical symptoms. In particular, the current risk-based
stochastic kinetic model constitutes the first cascade be-
tween pathogenic and neurodegenerative biomarkers. Our
approach may circumvent two problems related to bio-
marker accuracy. The first problem concerns the time lag
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between neurodegeneration and clinical manifestations.
The current results show a kinetic relationship between
pathogenic and neurodegenerative biomarkers, allowing
prediction and therapeutic intervention to be made earlier,
even in the preclinical stage. Thus, it is not necessary to
do follow-up studies for a lengthy duration to await con-
version from a preclinical (i.e., mild cognitive impairment,
MCI) to a clinical stage (i.e. Alzheimer’s disease). In ad-
dition, inclusion of the time lag for clinical conversion
may potentially have a problem of patient misclassification
resulting from errors in clinical diagnosis. Modeling earl-
ier disease stage is also important from a therapeutic
point of view: the time lag between pathogenic and
neurodegenerative biomarkers may be an optimal time
window of neuroprotective therapies. The second problem

Pathogenic Neurodegenerative Symptomatic/clinical
biomarkers : biomarker stage

Low CSF ARy, and high p-tau : Volumetric MRI Clinical diagnisis stage

PIB-PET DTl

IOP : F-DOPA PET, DaTSCAN

Microcirculation -
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o
: w .
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: h
=
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o | CETTEEETEEE TP PR Stage
>
Cumulative risk Residual neurons
Model 1. Model 2.
Risk-based stochastic Neurodegeneration-

symptomatic model

Figure 3 A hypothetical model for biomarkers/clinical stages in neurodegenerative diseases. The model involves a two-step causal
pathway in the progression of neurodegenerative diseases: 1) a causal relationship of pathogenic biomarkers (PB) to a neurodegenerative
biomarker (NB); and 2) a causal relationship of the NB to the symptomatic/clinical stages. As evidenced by the current study, the PB can interpret
the kinetics of the NB as shown in the left lower graph (model 1, risk-based stochastic kinetic model). The heterogeneity in time for converting
from a mild to a more severe clinical stage can be explained by the kinetics of the NB (model 2, neurodegeneration-symptomatic model).
Optimal biomarkers for PB or NB may differ across different kinds of neurodegenerative diseases. For example, in glaucoma, the PB may be IOP
and the NB may be DTl or structural MRI scans, as evidenced by the current study, whereas in Alzheimer’s disease [7], PBs may be low AB;4, and
high p-tau in cerebrospinal fluid (CSF), APOE genotype, PIB-PET and FDG-PET scans, while NBs may be structural MRI scans DTI findings; in
Parkinson’s disease [8], PBs may be a-synuclein in CSF, sympathetic denervation in the heart (MIBG-SPECT), and LRRK2 gene mutation, while NBs
may be F-DOPA PET and DaTSCAN (3-CIT) scans. From a therapeutic point of view, the earlier phase of the model may be the optimum time
window for neuroprotection (blue arrow in left graph) and the later phase may be optimal for neuro-regeneration and neuroplastic therapies
(blue arrow in right graph).
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that our approach circumvents concerns degraded pre-
dictability, which is inherent when using discrete variables
(clinical stages) as an outcome. Our data showed that
structural MRI data, which provides quantitative values,
could be used as a neurodegeneration biomarker, as
evidenced by its relationship to axonal densities. Besides
the early stage, our two-step biomarker model assumes
later-stage causality between neurodegeneration and clin-
ical staging (Figure 3). This is consistent with knowledge
obtained from functional localization in the brain and
from the lesion studies in stroke and neurodegenerative
diseases; thus heterogeneity in the neurological symptoms
can be explained by variable regional distribution of the
neurodegeneration. Therefore, rather than the pathogenic
biomarker, the neurodegeneration biomarker may be pre-
dictive for symptomatic/clinical staging. This hypothesis
was supported by a recent study that showed better per-
formance of MRI volumetry of the hippocampus (as a
surrogate of neurodegeneration) than amyloid retention in
the brain (used as a pathogenic biomarker) for predicting
the time of conversion from MCI to AD [46]. At this later
stage, therapeutic intervention may include not only
neuroprotection but also neurodegenerative and neuro-
plastic therapies (Figure 3).

A few issues suggest the need for some caution when
applying the current approach. First, to increase
generalizability, the current model needs to be tested in
other kinds of neurodegenerative diseases and animal
models. While the origin of glaucomatous pathology is
chronic physical stress to retinal ganglion cells due to
continuously increased intraocular pressure, most of
neurodegenerative pathologies in Parkinson’ disease or
Alzheimer’s disease is primarily based on the biochem-
ical events, such as abnormal protein aggregations [47].
Therefore future studies should also address potential of
the current model in various pathologies of neurode-
generation. Second, the predictability of the current
model may depend on the measurements of pathogenic
biomarker, such as initial time point or frequency. This
effect is difficult to estimate without a priori knowledge
of temporal variation in the pathogenic biomarker; thus
pilot studies that estimate the potential variation may be
required. In terms of diseases with abnormal protein
aggregation, this effect may not be large because it takes
years and even decades for the accumulation of proteins
to occur. Third, the predictability of the model rests on
the quality of biomarker data, and this may be different
across diseases. For example, in Parkinson’s disease,
fluorodopa PET can be used as a neurodegeneration bio-
marker because the uptake constant of fluorodopa has a
direct linear relationship to the number of surviving
dopaminergic neurons in the substantia nigra [48]. A po-
tent pathogenic role of microglial activation can be
estimated by testing the predictability of the model using
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PET and "'C-PK11195, a marker of translocator protein
[49,50].

Conclusions

In summary, we have successfully explained the kinetics
of glaucomatous neurodegeneration by a dynamic risk-
based kinetic model and in vivo measurement of bio-
markers. The results support that neurodegeneration
occurs and proceeds as a probabilistic events based on
the risk to neurons. Although many studies may be
preferable in other kinds of neurodegenerative diseases
to generalize the current kinetic model, the model may
provide opportunities for predicting the time course of
neurodegeneration in the living brain in the early stage
of the disease, and may bridge the dissociation between
heterogenous pathology in patients and standardized
pathology in experimental animal models of neuro-
degeneration [51].

Methods

Kinetic models of neurodegeneration

In the risk-based stochastic model, the rate of decrease
in neuronal/axonal density is a product of the risk of cell
death at time ¢, r(¢), and the density of neurons/axons,
N(t), which can be expressed as follows,

dN(¢t)/dt = —r(t)-N(t) (1)

The r(¢) may be thought of as the instantaneous prob-
ability of cell death at a particular time, £ Solving dif-
ferential equations of Eq. 1 generates the following
equation:

NU%:MWW<—/r@dO 2)

where N is the number of neurons at time zero. The

function for risk, r(z), should be non-negative and could

be substituted by an exponential function as follows:
time-variable risk:

r(t) = ro- exp(B-p(t)) (3)
or
time-invariable (constant) risk:
r(t) =ro (4)

where r, constitutes a component of baseline risk, while
the other term, exp(5- p(t)), constitutes the risk. In the
variable-risk model (Eq. 3), the risk for glaucoma, in-
traocular pressure (IOP), was incorporated into the p(z),
which was calculated as measured IOP values minus
29 mmHg, the 95% confidence upper limit of IOP in the
normal optic nerve. The optimal values for r, B Ny were
estimated to obtain the best fit of the model by a non-
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linear least square method using the values of IOP and
FA in the glaucomatous optic nerves at each time point.

For the constant-risk model, f in Eq. 3 was fixed to
zero, thus forming Eq. 4, which corresponds to that used
in previous literature (Eq. 3 in ref. [11]), and the values
of ry and N, were optimized in the fitting procedure.
Besides these two risk-based models, we also evaluated
the classical model (constant-rate model) of neurode-
generation [10], in which neuronal loss proceeds at a
constant rate, as follows:

dN(t)/dt = —ro (5)

where r, is a rate constant for the decrease in the num-
ber of neurons, expressed as counts per unit of time.
The initial condition was again substituted by N(0) = Nj,.
In addition, we considered a similar but another model
of neurodegeneration kinetics, recently proposed for hete-
rogeneous kinetics [33]. The model has been often used in
the field of physics or engineer to describe the discharge
of capacitors, relaxation of disordered systems or lumines-
cence decay [34], and is recently applied to several
biological data such as estimation of human lifespan [52]
and kinetics of heterogeneous neurodegeneration [33].

6 = Neor ([ o)) 0

In this model, y is a shape parameter such that if 0 < y
< 1, N(t) shows a typical form of stretched exponential
decay across [ r(t)dt, while if y = 1 it becomes identical
to the original risk-based exponential decay as in Eq. 2,
and if y > 1 sigmoidal (or compressed exponential)
decay. Mathematically, the function is also known as a
Weibull function [53].

Animals

Eight macaque monkeys (Macaca fascicularis, body
weight 4-5 kg, all male) were used; five animals were
used to model glaucomatous pathologies, while three
were control. The animal model of glaucoma was made
using an established method of laser photocoagulation,
as described previously [20]. Glaucoma model animals
were evaluated in detail for histological changes in
microglial cells, astrocytes, and neurons in the lateral
geniculate nucleus, and the results were published else-
where [50]. Visual field defects and pathological features
of this animal model are also described in detail in our
previous studies [19,20,54]. Before being enrolled into
these experiments, all animals were confirmed by oph-
thalmoscopy to have no abnormalities in their ocular
fundus. After glaucoma was induced, the animals were
repeatedly followed up with measurements of intra-
ocular pressure (IOP) and diffusion tensor imaging. All
surgical and experimental procedures conformed to NIH
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guidelines for the care of experimental animals (National
Institutes of Health Committee on Care and Use of
Laboratory Animals, 1985). The study was approved by
the Institutional Animal Care and Use Committee of
RIKEN and the National Cardiovascular Center Research
Institute.

Induction of experimental glaucoma

Elevated IOP was induced by applying argon blue/green
laser photocoagulation burns to the trabecular mesh-
work of the left eye, with the right eye being used as an
untreated control. For the laser treatment, the animals
were anesthetized with an intramuscular injection of
ketamine (8.75 mg/kg) plus xylazine (0.5 mg/kg). A
single-mirror Goldmann lens filled with a physiological
solution was placed on the eye to be treated. The argon
laser was focused on the mid-portion of the trabecular
meshwork, and a total of 150 laser-beam spots were
applied around 360° (spot size 100 um; power 1.0 W;
exposure time 0.2 sec) using an argon laser photo-
coagulator (Ultima 2000 SE; Coherent Inc., CA, USA)
attached to a standard slit-lamp microscope (BQ 900;
Haag-Streit, Koniz, Switzerland). The same laser treat-
ment was repeatedly applied two weeks after the first
treatment to maintain continuous IOP elevation, as has
been confirmed previously. Potential complications of
the glaucoma surgery, including retinal ischemia were
not suspected by detailed histological evaluations [50].

10P

The IOP was intermittently measured (over an interval
of 3-28 days) in both eyes during the course of glau-
coma in each animal using a calibrated applanation
pneumotonometer (Model 30 Classic Pneumotonometer;
Medtronic Solan, FL, USA). The measurement was
performed under generalized anesthesia using intramus-
cular ketamine (8.75-10 mg/kg) and local anesthesia
with 0.4% oxybuprocaine hydrochloride.

DTI

Diffusion tensor magnetic resonance images (DTI) were
acquired using a 3-Tesla magnetic resonance image
(MRI) scanner (Signa Horizon Lx VH3, General Electric
Healthcare, Little Chalfont, Buckinghamshire, UK),
which provides a maximum gradient strength of 40 mT
m’, rising in 268 us using a customized eight-channel
phased array receiver coil. During the DTI scanning,
animals were intubated and deeply anesthetized using a
gaseous anesthetic, 1.5% isoflurane, with their respir-
ation assisted by a ventilator (Cato, Dréger, Germany).
To maintain stable physiological conditions, we monitored
the partial pressures of oxygen, carbon dioxide and
isoflurane in the inspiratory and expiratory gases. We also
intermittently performed gas analysis of the arterial blood
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that was collected from the tail artery, in which a 24-
gauge needle was indwelled. The animal’s head was fixated
to a customized acrylic retainer that was firmly attached
to the receiver coil. The animal and the retainer were
placed on the MRI gantry with the animal’s head centered
in the bore of MRI scanner. After scanning a localizer for
planning a field of view for subsequent scans, a higher-
order shimming was performed using a spiral sequence
that allows us to calculate the fitted field map including
second-order components (for a total of 10 components),
and to minimize inhomogeneity in the static magnetic
field. Then, the DTI data were collected using a multi-
shot spin-echo type EPI sequence (number of shot = 2,
TR = 17000 ms, TE = 81.9 ms, FA = 90°, number of
slice = 51) with an isotropic spatial resolution of 0.9 mm
and with diffusion-weighted gradients of 27 directions
(b value = 1000 s mm?). The diffusion-weighted gradients
were applied in a symmetrical, twice-refocused pulse to
reduce eddy-current-induced distortion in the DTI images
[55]. The DTI data, a total of 24 volumes for three non-
diffusion-weighted volumes and 21 diffusion-weighted
volumes, were obtained by three separate scans, each
consisting of one non-diffusion and seven diffusion-
weighted volumes. Before each scan, we monitored the
temperature of the gradient coil, and started the scan
when the temperature was between 22° and 23°C, at which
the shift and distortion across scans were minimized. If
the temperature was less than that specified, we
performed dummy scans to keep the temperature within
range. The DTI data were scanned three times for each
time point during the follow-up of glaucoma. The total
time for obtaining DTI data was approximately 5 hours,
depending on the temperature and computation time for
the image reconstruction. We also scanned two gradient-
echo sequences with different TE values (TR = 200 ms,
TE1 = 4.4 ms, TE2 = 6.637 ms) and obtained the field
map to be used for a post-process of reducing distortion
of DTI images, which originates from the magnetic field
inhomogeneities caused by magnetic susceptibility dif-
ferences between neighboring tissues, such as air-bone or
air-tissue.

Image analysis

Raw DTI data were corrected for image shift, rotation and
distortion (with a linear transformation of 12 degrees of
freedom) and for BO-inhomogeneity distortion (with non-
linear warping calculated on the fieldmap) using the
programs FLIRT and PRELUDE, respectively, both part of
the Functional magnetic resonance imaging of the brain
(FMRIB) Software Library (FSL) [56], developed by the
Analysis Group of FMRIB Centre, University of Oxford.
Estimated shifts for these corrections were concurrently
applied to the original images to minimize reslicing noise
in the corrected data. Then, the image for fractional
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anisotropy (FA) was computed by fitting a diffusion tensor
model [30] to the corrected diffusion data using the pro-
gram, FDT, part of the FSL.

For region of interest (ROI) analysis of FA based on
the primary degeneration kinetic model, we delineated
the ROI with a columnar shape (3 mm long, diameter of
2 mm, number of voxels of 12), centered at the center of
the optic nerve, at a distance of 6 mm from the junction
of the eyeball and the nerve. For each ROI, we obtained
FA values averaged across three scans obtained at the
same time point. For fitting the kinetic models of pri-
mary neurodegeneration, we used a quantitative value of
FA or ratio of FA (rFA, expressed as a ratio to the FA of
the contralateral optic nerve) in glaucomatous animals
and determined optimum values for Ny, ry and 5. When
we used FA, Ny was fixed to one. The integration of risk
function, r(¢), in Eq. 1 was calculated based on the trap-
ezoid rule using discrete time point data for IOP. The
goodness of fit was evaluated based on coefficients of
determination (R?) and the P-value computed in the fit-
ting process. The F-test for model selection was
performed for the two nested models between with
constant- and variable-risk or between with variable-risk
and heterogeneity. The fitting and F-test were computed
using Pybld (http://www.mi.med.osaka-u.ac.jp/pybld/pybld.
html) built in the language Python. We also confirmed that
the goodness of fits in the stochastic variable-risk model
was independent of the arbitrarily determined threshold
(29 mmHg, 95% confidence upper limit of normal IOP).
For presenting graphs, the optimized values determined at
the fitting process for FA data, was used for Ny, rp and f5 to
calculate the cumulative risk, fexp(r( t))dt to be used in the
x-axis of graphs (Figure 1D, 1F and Additional file 3: Figure
S1E) and for making the regressor in the subsequent ana-
lysis of voxel-based statistics and of secondary neurode-
generation (see below). FA and rFA values in normal
animals were used for the scatter plot, but not for fitting
the kinetic models of neurodegeneration. For graph plot-
ting, the cumulative risks of control (contralateral to glau-
comatous side) and normal optic nerves were considered to
be zero, which means that baseline risk, r,, was also zero.

For voxel-based analysis of FA images, we used tract-
based spatial statistics (TBSS) [57], part of the FSL. First,
FA images were brain-extracted using BET [58] and
were aligned into a common space (a matrix of 137 x
167 x 100; a voxel size of 0.4 mm-cubic) using the
nonlinear registration tool ENIRT, part of the FSL, which
uses a b-spline representation of the registration warp
field [59], followed by linear registration to the standard
space of the anterior-posterior commissure line of the
macaque brain [60]. Next, the mean FA image was
created and thinned to create a mean FA skeleton
representing the centers of all tracts common to all data.
The mean FA skeleton was created by thresholding the
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mean FA image at an FA value larger than 0.3. Each
scan’s aligned FA data were then projected onto this
skeleton and the resulting data fed into voxel-wise cross-
subjects statistics for the linear regression analysis. The
statistical analysis for estimation of the neurodegenerative
model included analyzing the skeletonized FA images by
testing significance of coefficients of post-operative time
and the cumulative risk in the multi-regression statistical
model. The analysis for the secondary neurodegenerative
changes involved analyzing the skeletonized FA images by
testing regressors of FA values in the affected optic nerve
and of post-operative time. The predictor in the variable-
risk model was made by using the optimized values for
Ny, rp and f3 determined from prior analysis of the quanti-
tative FA in the primary degenerated area, the optic nerve
(Table 1). For the statistical threshold, we applied
threshold-free cluster-corrected P-values less than 0.05.
Voxel-wise statistics were performed by permutation-
based nonparametric inference using the program Ran-
domise, part of the FSL. For post hoc analysis of the model
of secondary neurodegeneration, a cubic ROI consisting
of 27 voxels was placed with the center of the ROI located
at the local maximum in the optic radiation in the con-
trast for the regressor of optic nerve FA. The model equa-
tion, Eq. 6, was fitted to the FA values in the areas of
primary degeneration (glaucomatous optic nerve) and sec-
ondary degeneration (optic radiation), and the optimum
values for k; and Np, were determined. The model was
also built based on the risk, by substituting N4(¢) in Eq. 6
by Eq. 2, then was fitted to the FA data of the optic radi-
ation to determine optimum values for Ny, ry, and Np,.
An F-test was performed for model selection between
constant- and variable-risk models, taking into account
the additional parameter (f3) in the latter.

Histology

The animals were analyzed by conventional histological
evaluations, including toluidine blue and cresyl violet
staining of retina, optic nerve and lateral geniculate nu-
cleus. In addition, to correlate the optic nerve DTI
changes with the degeneration of axons, optic nerve im-
munofluorescence staining was performed using SMI-31
antibody, a maker of neurofilament (NF), a constituent
of neuronal axons. Animals were euthanized 33-168
days after glaucoma induction under deep general
anesthesia (isoflurane in N,O and O, by inhalation) and
were perfused via the common carotid artery with 1 L of
0.9% saline containing 10 U/ml heparin at room tem-
perature, followed by 1 L of 4% paraformaldehyde in
0.01 M phosphate-buffered saline (PBS; pH 7.4). Eyeballs
with optic nerves were enucleated at the time of brain
removal and 4% paraformaldehyde in PBS solution was
injected into the vitreous body and postfixed by
immersion in 4% paraformaldehyde in PBS for at least 1
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week at 4°C. After immersion, a 3-mm long segment of
optic nerve was cut out at 6 to 9 mm from the eyeball—
optic nerve junction. The eyeballs and optic nerve
segments were soaked in 10, 15, and 30% (w/v) sucrose
in 0.1 M phosphate buffer, pH 7.4, at 4°C, for at least 24
h each, and then frozen in embedding compound (Tis-
sue-Tek; Sakura Finetechnical Co.Ltd., Tokyo, Japan).

Coronal sections of the optic nerve segment were cut
at 10-pm thickness and every 20th section was mounted
onto the same slide glass until we obtained 20 slide
glasses each containing four sections. Because cutting of
the sections started from the end closer to the eyeball,
the sections evaluated for counting should be 6-7 mm
distant from the eyeball-nerve junction. Optic nerve
sections were washed with 0.01 M PBS, preincubated
with 10% normal goat serum in 0.01 M PBS for 30 min,
and then incubated overnight at 4°C with mouse
anti-SMI31 monoclonal antibody (NE1022; 1: 1000,
Calbiochem, San Diego, CA, USA). They were washed
with 0.01 M PBS and then incubated for 3 h at room
temperature with Alexa Fluor 546 F(ab’)2 fragment of
goat anti-mouse IgG (H+ L) (1:1000 dilution) (Molecu-
lar Probes, Eugene, OR). For counting the number of
SMI-31-positive axons, we randomly chose a single slide
glass from the twenty, and identified five regions (nasal,
temporal, superior, inferior, and central) in each of the
four optic nerve sections. In the center of each region,
we placed a sample volume of interest with a size of
218 x 164 x 10 pum (in x, y, and section thickness) under
a microscope fitted with a 40x objective x 3 digital
zoom; thus, a total of 0.18 mm? per section (areal ratio
of 3.6 £0.4 % as mean + S.E.) was assessed for counting
the number of SMI-31-positive (i.e. NF-positive) axons.
Counting and photography were performed by a single
observer who was blinded to the animals’ data and DTI
results (Y. I). Thereby, for each optic nerve, we obtained
20 measurements of axon densities (five regions x four
sections) and calculated the mean value that represents
the NF-positive axon density of the corresponding optic
nerve.

The obtained NF-positive axon density was used as an
independent variable in the linear regression analysis of
optic nerve FA. The ratio of NF density (between the glau-
comatous and contralateral optic nerve) was used for
fitting the risk-based kinetic models of neurodegeneration
and determining the optimum values for r, and . Model
selection was also analyzed using an F-test between
constant- and variable-risk models. Although the absolute
NF density in monkey #1 (mild stage glaucomatous ani-
mal) was almost comparable with those in normal nerves
(Additional file 6: Table S5), the ratio (to that in the contra-
lateral non-affected optic nerve) was slightly decreased
(0.86), similar to the axonal density (0.85) as evaluated by
toluidine blue staining. In fact, toluidine blue-stained
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sections of this animal’s affected optic nerve revealed
neurodegeneration and formation of myelin ovoids in the
peripheral part of the optic nerve.

Appendix 1

Model for secondary (transsynaptic) neurodegeneration
We considered a case in which region A suffers from
primary neurodegeneration due to primary neurotoxic
risk, while a remote area, region B, which is connected
to region A, suffers from the risk of transneuronal
neurodegeneration due to the primary degeneration in
region A. The kinetics of secondary neurodegeneration
in region B (Np(t)) was assumed to have a linear rela-
tionship with that of the primary neurodegeneration in
region A (Ny(2)) as follows,

dNjp(t) dN4(2)
dt = @)

where k, is a constant coefficient. The value of &, should
depend both on the strength of the trans-synaptic
neurodegeneration and the connectivity between regions
A and B, which may vary from region to region, or con-
nectivity strength to the primary lesion in the brain. The
differential equation (Eq. 7) indicates that the number of
neurons in the area B (Dp(t)) should decrease as a linear
function of the primary degenerated area A (Du(t)) (the
intercept of this linear function was substituted by Np)
as illustrated in Additional file 3: Figure S1A. Thus, if the
neurodegeneration kinetics of the latter region is an expo-
nential function of the cumulative risk (Eq. 2), the kinetics
in region B should also be a decremental exponential
function across the cumulative risk, but approach the plat-
eau, Npy, at infinite time (Additional file 3: Figure S1B).

Appendix 2

General risk-based kinetic model of neurodegeneration
As an extension of the time-variable risk model, we also
considered the situation where multiple factors are in-
volved in the risk of neurodegeneration. If these multiple
risk factors expose one to neurodegenerative risk inde-
pendently, the net risk is supposed to be a multiplication
of the risk function of each risk factor. Thus, the net risk
function in Eq. 3 can be generalized into the following
equation:

r(t) = ro.exp(B,.p1(t) + By-p2(t) + -+ + B,.pu(t))
(8)

The general form of neurodegeneration kinetics, as
formulated in Eq. 2 and 7, is virtually equivalent to those
used in the survival analysis of the Cox hazard propor-
tional regression model with time-dependent covariates
[61,62]. Thus, the treatment effect could be estimated by
testing the significance of a covariate for the treatment
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or an interaction term between the pathogenic bio-
marker and the treatment.

Additional files

Additional file 1: Table S1. List of animals with monocular
glaucomatous neurodegeneration.

Additional file 2: Table S2. Significant FA changes and their
correlation with cumulative risk.

Additional file 3: Figure S1. Transsynaptic secondary
neurodegeneration - kinetic model and findings in glaucomatous
animals.

Additional file 4: Table S3. Significant FA changes and their
correlation with FA values for the glaucomatous optic nerve.
Additional file 5: Table S4. Parameter estimates in the kinetic models
of secondary neurodegeneration using FA values at the optic radiation
(OR).

Additional file 6: Table S5. Quantitative results of immunostained
phosphorylated neurofilaments (NF) in the optic nerve in monocular
glaucomatous model animals.
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