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Abstract

Intracellular protein trafficking plays an important role in neuronal function and survival. Protein misfolding is a
common theme found in many neurodegenerative diseases, and intracellular trafficking machinery contributes to
the pathological accumulation and clearance of misfolded proteins. Although neurodegenerative diseases exhibit
distinct pathological features, abnormal endocytic trafficking is apparent in several neurodegenerative diseases, such
as Alzheimer’s disease (AD), Down syndrome (DS) and Parkinson’s disease (PD). In this review, we will focus on
protein sorting defects in three major neurodegenerative diseases, including AD, DS and PD. An important
pathological feature of AD is the presence of extracellular senile plaques in the brain. Senile plaques are composed
of β-amyloid (Aβ) peptide aggregates. Multiple lines of evidence demonstrate that over-production/aggregation of
Aβ in the brain is a primary cause of AD and attenuation of Aβ generation has become a topic of extreme interest
in AD research. Aβ is generated from β-amyloid precursor protein (APP) through sequential cleavage by β-secretase
and the γ-secretase complex. Alternatively, APP can be cleaved by α-secretase within the Aβ domain to release soluble
APPα which precludes Aβ generation. DS patients display a strikingly similar pathology to AD patients, including the
generation of neuronal amyloid plaques. Moreover, all DS patients develop an AD-like neuropathology by their 40 s.
Therefore, understanding the metabolism/processing of APP and how these underlying mechanisms may be
pathologically compromised is crucial for future AD and DS therapeutic strategies. Evidence accumulated thus far
reveals that synaptic vesicle regulation, endocytic trafficking, and lysosome-mediated autophagy are involved in
increased susceptibility to PD. Here we review current knowledge of endosomal trafficking regulation in AD, DS and PD.
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Background
Endocytic dysregulation is apparent in many neurode-
generative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD) and Down syndrome (DS) as
key examples. AD is the most common form of age-
dependent neurodegeneration, affecting about 10% of
the population over the age of 65 and about 50% of the
population over the age of 85. Only a small subset
(<10%) of AD cases is caused by inherited autosomal
dominant gene mutation, and most of these familial AD
mutations are found in genes encoding β-amyloid pre-
cursor protein (APP) and presenilins (PS1 and PS2)
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[1-4]. Accumulation of two AD hallmarks has been
found in the hippocampus and cortex of AD brain, in-
cluding extracellular neuritic plaques and intracellular
neurofibrillary tangles (NFTs). NFTs comprise hyperpho-
sphorylated filaments of the microtubule-associated pro-
tein tau [5]. Neuritic plaques are composed of β-amyloid
(Aβ) generated through sequential proteolytic cleavage
of the β-amyloid precursor protein (APP) by β- and γ-
secretases [6]. APP can also be cleaved by α-secretase
which cuts within the Aβ domain to preclude Aβ gene-
ration. α-secretase processing generates a secreted form
of APP with neuroprotective properties. Accumulated
evidence support that subcellular localization and traf-
ficking of APP and its proteolytic secretases is critical
for Aβ production. BACE1-mediated APP cleavage con-
stitutes the rate-limiting step in Aβ generation [7]. It has
been reported that BACE1 is up-regulated in human AD
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brain [8] and altered intracellular trafficking of BACE1 is
involved in AD pathology [9-12]. A previous study sug-
gested a mechanism for BACE1 elevation in AD where
BACE1 is normally transported to lysosomes by GGA3,
whereby caspase-mediated GGA3 cleavage prevents
BACE1 degradation [13]. BACE1 is primarily localized
in the trans-Golgi network (TGN) and endosomes [14],
which are major cellular sites for β-secretase activity
with an optimal pH value [15]. Furthermore, BACE1 is
rapidly internalized from the cell surface [16] and trans-
ported to early endosomes where internalized BACE1
can be recycled by the retromer complex [17-19]. Defi-
ciency in endocytic and recycling components will re-
sult in abnormal BACE1 trafficking and β-secretase
activity. Low-density lipoprotein receptor-related pro-
teins 1 (LRP1) is a type-I transmembrane glycoprotein.
It has been demonstrated that LRP1 can affect APP traf-
ficking and processing through APP binding interac-
tions with LRP1 extracellular and intracellular domains
[20-22]. Further understanding of AD-related protein
trafficking and regulation would provide new approa-
ches for AD therapy.
Down syndrome (DS) is a congenital disorder that af-

fects multiple organs and causes developmental delay
and mental retardation [23,24]. Patients with DS have
an extra copy of chromosome 21, leading to an over-
production of gene products and non-coding RNAs
encoded by this chromosome. These include APP, Dual
specificity tyrosine-phosphorylation-regulated kinase 1A
(DYRK1A), runt-related transcription factor 1 (RUNX1),
and other chromosome 21-encoded components [23].
Over-production/accumulation of Aβ (a proteolytic pro-
duct of APP) in the brain is considered as a key factor
in AD pathogenesis. Similarly, all DS patients develop
an AD-like neuropathology by the age of 40, including
extracellular amyloid plaques, intracellular neurofibril-
lary tangles and synaptic dysfunction. Endocytic dysfunc-
tion is an early pathological event in Alzheimer’s disease
(AD) and Down’s syndrome (DS). In previous studies,
investigators found that both primary fibroblasts from
DS individuals and neurons from DS mouse models
exhibit abnormal endocytic and lysosomal trafficking
[25,26]. Although several chromosome 21-encoded prod-
ucts such as APP and synaptojanin 1 (SYNJ1) are thought
to contribute to these defects [26,27], the detailed molecu-
lar mechanisms by which trisomy 21 results in dysfunc-
tion of the endocytic trafficking remains largely unclear.
Parkinson’s disease (PD), the second most common

neurodegenerative disease, affects more than 4 million
people worldwide. PD is characterized by a series of mo-
tor symptoms, including akinesia, rigidity, postural dis-
turbance and tremor [28]. Motor deficits associated with
PD result from the loss of dopaminergic neurons in the
substantia nigra subregion of the midbrain. Inherited
genetic mutation and environmental toxins have both
been reported to be causal to dopaminergic neuronal
death. Although most PD patients arise from sporadic
cases, less than 10% of familial cases are caused by single
monogenic mutations [29]. Several causative mutations
have been identified in rare inherited familial PD [30,31].
For example, autosomal dominantly inherited mutations
in α-synuclein (α-syn), including missense mutations
and triplication of the α-synuclein locus, are found in fa-
milial forms of inherited PD. Autosomal dominantly in-
herited mutations in leucine-rich repeat kinase-2 (LRRK2)
gene are associated with an increased risk of PD. LRRK2
is a member of the leucine-rich repeat kinase family with
GTPase and kinase activities. How these components con-
tribute to PD neuropathology in a protein trafficking con-
text is described below.
Endocytic sorting in neurodegenerative diseases
Full-length APP is a type I transmembrane protein
synthesized in the endoplasmic reticulum (ER) and
subsequently transported to TGN [32,33]. APP can be
delivered from the TGN to the cell surface where it
is cleaved by α-secretase to generate a neuroprotec-
tive, non-amyloidogenic sAPPα fragment [34]. Several
ADAM (a disintegrin and metalloproteinase) family
members possess α-secretase activity and three ADAM-
family α-secretases have been confirmed so far: ADAM9,
ADAM10, and ADAM17. APP can also be re-internalized
via an endosomal/lysosomal degradation pathway [35].
The neurotoxic Aβ peptide is generated through se-
quential cleavage by β-secretase (BACE1) and the
PS1/γ-secretase complex in the ER, Golgi/TGN [33]
as well as the endosomal/lysosomal system [36,37]. As
the subcellular distribution of APP plays a key role in
Aβ generation, delineation of the mechanisms involved in
APP trafficking is thus relevant and crucial to understand-
ing the pathogenesis of AD.
Several PD-linked mutations have been found to be as-

sociated with LRRK2 and α-synuclein genes, and both
LRRK2 and α-synuclein have been reported to play im-
portant roles in protein sorting in neurons. For instance,
PD-associated LRRK2 mutations are implicated in pro-
tein degradation defects in lysosomes, suggesting that
LRRK2 may affect delivery of cytosolic proteins and pro-
tein aggregates to the lysosome [38-40]. In addition, it
has been reported that LRRK2 mutations may also in-
duce Golgi fragmentation [41]. It has also been reported
that α-synuclein affects dopamine release in dopaminergic
neurons, and α-Syn−/− mice display altered dopamine re-
lease [42]. Furthermore, expression of α-syn in yeast and
mammalian cells blocks protein transport from the endo-
plasmic reticulum (ER) to Golgi apparatus [43,44]. Taken
together, these findings suggest that defective protein
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transport in intracellular compartments plays a role
in PD.

Trafficking components and neurodegeneration
The retromer complex, SorLA and GGA1
The Retromer complex is composed of the vacuolar
protein sorting (VPS) trimer core sub-complex (VPS26,
VPS29, VPS35) and a membrane-associated sorting
nexin (SNX) dimer (SNX1, SNX2, SNX5, SNX6) [45].
The retromer complex has been shown to be important
in regulating transmembrane receptor recycling from
endosomes to TGN. The SNX dimer is required for the
recruitment of the retromer complex to the endosomal
membrane, and the VPS35 subunit is presumed to be
the core cargo-binding component with binds a variety
of cargo proteins [46], including CI-M6PR [47], wntless
[48-50] and sortilin [51].
Expression of two components of the retromer com-

plex, VPS26 and VPS35, is reduced in the brains of indi-
viduals with AD [52]. Cell culture studies showed that
over-expression of VPS35 down-regulated Aβ genera-
tion, and VPS35 depletion using small interfering RNAs
up-regulated Aβ peptide levels [52]. Further studies re-
vealed that retromer deficiency promotes Aβ generation
and exacerbates neurodegeneration by modulating BACE1
activity in Vps26 and Vps35 knockout mouse models
[18,19]. Moreover, recent research indicates that a chem-
ical chaperone can decrease APP processing and Aβ gen-
eration through stabilizing the retromer complex and
hence transporting APP away from endosomes [53].
Recently, a missense mutation in the VPS35 subunit

(D620N) has been identified in multiple families with
late-onset Parkinson’s disease (PD) [54-56]. Further me-
chanistic studies revealed that the VPS35 D620N muta-
tion may redistribute retromer-positive endosomes to a
perinuclear subcellular localization. In support of this
notion, enlarged endosomes have been found in the fi-
broblasts isolated from a PD patient with the D620N
mutation [57]. Moreover, over-expression of a VPS35
D620N mutant construct disrupts the trafficking of ca-
thepsin D [57], the main lysosomal enzyme for degrading
α-synuclein [58]. This may suggest that the late-onset PD
linked VPS35 D620N mutation leads to endosomal alter-
ations and trafficking defects in patient fibroblasts. The
generation of a Vps35 D620N knock-in mouse model and
patient-derived induced pluripotent stem (iPS) cell models
may provide new strategies to better understand the rele-
vance and mode of action of the D620N VPS35 PD allele.
The Sortilin-related receptor with A-type repeats SorLA

(also known as SORL1, LR11) is a type I membrane pro-
tein. Reduced SorLA expression has been found in the
brains of AD patients [59] and some inherited variants of
the SorLA gene have been found to associate with late-
onset AD [60]. Although the function of SorLA in AD
pathology is unclear yet, it has been reported that SorLA
is involved in APP processing. SorLA modulates recycling
of APP and prevents amyloidogenic processing of APP as
down-regulation of SorLA increases sorting of APP into
Aβ-generating compartments [60], while SorLA-deficient
mice show increased levels of Aβ [61]. Further, SorLA
may regulate APP sorting and processing through interac-
tions with the VPS26 subunit of the retromer complex
[62]; VPS26 binding to a cytosolic SORLA tail motif may
be important for SorLA-mediated APP retention at the
Golgi. Disruption of these interactions results in APP sort-
ing to non-Golgi compartments and increased amyloido-
genic APP processing [62]. Recently, the Aβ peptide has
been shown to interact directly with the SorLA Vps10 do-
main, which then directs the Aβ peptide to the lysosome
for consequent clearance and degradation [63]. Together,
these results indicated that SorLA is an important traffick-
ing component of APP, and may have dual functions in
retaining APP at the Golgi, regulating amyloidogenic APP
processing and directing the Aβ to lysosomal compart-
ments for subsequent degradation.
ADP-ribosylation factor-binding proteins (GGAs) are a

family of Golgi-localized monomeric clathrin adaptor
proteins that are involved in the transport of cargo pro-
teins from the TGN to the endosome [64]. Mammalian
GGAs (GGA1, GGA2, and GGA3) contain three domains,
including a N-terminal VHS domain, an intermediary
GAT (GGA and Tom1) domain and a C-terminal GAE
(γ-adaptin ear) domain [64].
The GGA VHS domain can recognize a BACE1 DISLL

motif located within the BACE1 cytoplasmic domain (aa
496–500) [10,65]. Previous studies indicate that phos-
phorylation of BACE1 is important for GGA1-mediated
BACE1 endosomal trafficking; phosphorylated BACE1
can be efficiently transported from endosomes to TGN,
whereas non-phosphorylated BACE1 is recycled directly
from endosomes to the plasma membrane [65-67]. Over-
expression of GGA1 reduces Aβ secretion, while knock-
down of GGA1 increases Aβ secretion in HEK293 cells
[66]. In addition, it has been shown that only GGA1 but
not GGA2 and GGA3 can regulate intracellular distribu-
tion of SorLA and APP in the endocytic recycling com-
partments [68]. BACE1 S498A mutation enhances BACE1
targeting to SorLA-positive compartments and attenuates
SorLA-mediated reduction of Aβ [68]. However, unlike
GGA1, it has been found that GGA3 mediates trafficking
of BACE1 to lysosomes for degradation [13,69,70]. It has
been reported that ubiquitination of BACE1 at K501 is
important for GGA3-mediated BACE1 trafficking to lyso-
somes and BACE1 stability [71]. In support of this, down-
regulation of GGA3 increases BACE1 expression [13,70].
In AD brains, GGA3 level is markedly down-regulated
and negatively correlates with BACE1 expression levels.
Recently, it has been reported that a small GTPase ADP
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ribosylation factor 6 (ARF6) is important for regulating
the internalization of BACE1 into early endosomes to pro-
mote BACE1-mediated APP cleavage. To facilitate this
process, the BACE1 DISLL motif is required for BACE1
sorting from ARF6-positive endosomes to RAB5-positive
endosomes [72].
Sorting nexins in APP processing and synaptic dysfunction
The sorting nexin family of trafficking components com-
prise 33 family members, each containing a signature
lipid-binding PX domain [73]. At least 5 sorting nexins
have been found to regulate APP cleavage or Aβ produc-
tion (Figure 1). Sorting nexin 17 (SNX17) was the first
identified sorting nexin in the regulation of APP traffick-
ing and processing [74]. In early endosomes, SNX17 reg-
ulates APP endocytosis through specific binding to the
YXNPXY motif in the APP cytoplasmic domain. SNX17
loss-of-function through over-expression of a dominant-
negative mutant of SNX17 or siRNA knockdown of
SNX17 in human glioblastoma U87 cells reduced steady-
state APP levels and increased Aβ production. In ad-
dition, SNX17 can regulate cell surface delivery of LRP by
promoting its recycling from early endosomes [75]. The
FERM domain and the carboxyl-terminal region of
SNX17 is required for LRP binding, and SNX17 binds
to the cytoplasmic tail NPxY motif of LRP. Functional
mutation of the NPxY motif reduced LRP recycling
from endosomes but did not influence LRP endocyto-
sis. Likewise, knockdown of SNX17 using siRNA also
disrupted LRP recycling.
Figure 1 Regulation of AD-associated proteins by sorting nexins and
surface delivery of several AD-associated proteins, including APP, BACE1, gl
dynamin-dependent manner. Over-expression of SNX33 up-regulates cell s
retromer complex regulates APP processing and Aβ generation through m
SNX33 was identified as a new activator of APP α-
secretase cleavage [76]. Over-expression of SNX33 in
cultured HEK293 and COS cells markedly increased APP
α-secretase cleavage but did not affect on β-secretase
cleavage. SNX33 has been found to bind the endocytic
GTPase component dynamin to reduce APP endocytosis
in a dynamin-dependent manner. Increased cell surface
expression of APP results in enhanced α-cleavage upon
SNX33 over-expression. It is anticipated that future stud-
ies will investigate SNX33 loss-of-function and its effect
on APP processing.
Using a tandem affinity purification-based proteomic

approach, SNX6 was identified as a BACE1-associated
protein [77]. Interestingly, SNX6 is a putative component
of the retromer complex. Knockdown of SNX6 increased
generation of β-cleavage products of APP, including Aβ,
sAPPβ and β-CTF. Furthermore, reduction of SNX6 sta-
bilized BACE1 and promoted retrograde transport of
BACE1 from the cell surface to perinuclear vesicles.
SNX12 is highly expressed in brain tissues and is mainly

localized in early endosomes [78]. Over-expression of
SNX12 reduced Aβ levels, soluble APPβ and APP β-
carboxyl terminal fragments, but did not affect steady-
state levels of APP, BACE1 or γ-secretase components
[79]. Conversely, down-regulation of SNX12 by siRNA
transfection reverses these effects. Modulation of SNX12
levels has little or no effect on γ-secretase activity or
in vitro β-secretase activity. Further studies reveal that
SNX12 interacts with BACE1 and down-regulation of
SNX12 accelerates BACE1 endocytosis and decreases
steady-state cell surface BACE1 levels. Importantly,
the retromer complex. SNX6, SNX12, SNX17 and SNX27 regulate cell
utamate receptors and LRP. SNX33 inhibits APP endocytosis in a
urface APP levels and increases α-secretase cleavage of APP. The
odulating BACE1 trafficking and activity.
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SNX12 protein levels are markedly reduced in human
brain tissue from sporadic AD patients.
SNX27 is a brain-enriched sorting nexin component,

and is the only sorting nexin family member containing
a PDZ domain. Snx27 is essential for normal develop-
ment and survival in mammals, as Snx27−/− mice display
developmental retardation phenotypes [80] and severe
neuronal pathology in the hippocampus and cortex [81].
Snx27+/− mice comprise a normal neuroanatomy overall,
but demonstrate defects in synaptic function, learning
and memory accompanied with a reduction in the iono-
tropic NMDA and AMPA class glutamate receptors.
SNX27 interacts with these receptors through its PDZ
domain [81,82], regulating their recycling to the plasma
membrane. Interestingly, reduced expression of SNX27
and its upstream regulatory transcription factor CCAAT/
enhancer binding protein β (C/EBPβ) has been ob-
served in Down syndrome brains. Over-expression of
the chromosome 21-encoded microRNA, miR-155 in
trisomy 21 results in the attenuation of C/EBPβ ex-
pression, thereby reducing SNX27 levels, resulting in
concomitant synaptic dysfunction. Restoration of SNX27
in the hippocampus of Ts65Dn Down syndrome mouse
models rescues synaptic and cognitive deficits. In addition
to its role in synaptic function, we also found that SNX27
deficiency enhances PS1/γ-secretase complex forma-
tion and increases γ-secretase abundance and activity
to elevate Aβ production both in vitro and in vivo
(unpublished data).

Mint family and Ras-related GTP-binding (Rab) proteins
The Mint (Munc18 interacting protein, also known
as X11) adaptor protein family includes three members:
neuron specific Mint1 and Mint2, and the ubiquitously
expressed Mint3 [83,84]. All three Mint proteins consist
of a phosphotyrosine binding (PTB) domain and two
tandem PDZ (postsynaptic density-95/discs large/zona
occludens-1) domains. Evidence so far indicates that the
Mint family is involved in neuronal protein transport
and synaptic function [85-87]. Mint proteins can interact
with the APP C-terminus (YENPTY motif ) through the
PTB domain binding. APP interaction with mint pro-
teins has been found to influence APP trafficking/pro-
cessing and Aβ generation in vitro and in vivo [87-89].
In addition, Mint1 and Mint2 have been reported to bind
to presenilin1 through their PDZ domains [90,91] and
Mint proteins potentially inhibit γ-secretase-mediated
APP cleavage through direct interactions. However, a de-
tailed mechanism how this occurs is yet lacking.
Several Rab GTPase components have been found to

regulate APP processing and Aβ production. Rab1B
plays a key role in the transport of APP or APP β-CTF
from the endoplasmic reticulum to the Golgi; expression
of a dominant-negative mutant of the Rab1B almost
completely eliminates Aβ generation [92,93]. Rab6 is in-
volved in intra-Golgi vesicular trafficking and a Rab6
N126I dominant negative mutant has been found to en-
hance amyloidogenic APP processing [94]. It has been
recently shown that EH domain-containing proteins
(EHDs) and Rab11 facilitate BACE1 trafficking in den-
drites and axons in primary neurons [95-97]. Several
Rab proteins have been reported to be involved in PS1-
mediated protein trafficking, such as Rab11 [98], Rab6
[99] and Rab GDP dissociation inhibitor [100].
Enlarged early endosomes, increased immunoreactivity

for early endosome markers (rab5, EEA1 and rabaptin5),
and the recycling endosome marker rab4 have been ob-
served in the neurons of a Ts65Dn DS mouse model
[26]. In addition, increased endocytic uptake, fusion, and
recycling have also been found in DS human fibroblasts.
Moreover, DS fibroblasts show an increased number of
enlarged endosomal vesicles enriched with the late endo-
some marker rab7 [25]. These changes strikingly resem-
ble neurons from both AD and DS brains. Interestingly,
over-expression of a rab5 mutant that inhibits endo-
cytic uptake reversed endosomal abnormalities in DS
fibroblasts.
Recently, it has been reported that deficiency of the

PARK16 locus gene RAB7L1 is involved in PD neuropath-
ology. RAB7L1 over-expression rescues LRRK2 mutation-
induced phenotypes in a drosophila PD model [101].
Expression of the VPS35 retromer component could
rescue the endosomal-lysosomal sorting defects caused by
mutant LRRK2 or RAB7L1 in vitro and in vivo [101]. To-
gether, these results indicate that various trafficking com-
ponents such as RAB7L1 and VPS35 can exert protective
effects on pathological PD components such as LRKK2.

The roles of PS1 in autophagy
Autophagy is a catabolic pathway triggered by starvation
and involves degradation of cellular components through
the lysosome. Autophagy is involved in eliminating da-
maged organelles and misfolded protein aggregates, and
removes unnecessary cellular components to liberate
available nutrients during starvation. As an essential pro-
cess in neuronal survival, dysfunction in the autophagic
response has been found to contribute to neurodegenera-
tion. It has been reported that the AD-related protein PS1
is required for autophagy [102,103], and loss of PS1 can
result in impaired proteolytic activation and autopha-
gosome clearance. Familial AD-associated PS1 mutations
commonly found in early-onset AD may affect lysosomal
function and accelerate neurodegenerative progression
[104,105]. Defective lysosomal proteolysis may trigger
accumulation of toxic proteins and cause neuronal cell
death in AD and other neurodegenerative diseases. How-
ever, the mechanisms underlying these processes re-
main controversial. Lee et al. found that deficits in the
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autophagy pathway may be caused by impaired PS1-
dependent delivery of the v-ATPase V0a1 subunit to lyso-
somes, thereby attenuating autolysosome acidification and
cathepsin activation [106]. Coen et al. showed that N-
glycosylation may not be necessary for targeting and nor-
mal function of the V-ATPase subunit, and that defective
N-glycosylation of V0a1 and lysosomal acidification may
not be the cause of endo-lysosomal dysfunction in PS1/2
dKO cells. Rather, a disruption in lysosomal calcium stor-
age and release was found to be impaired in PS1/2 dKO
cells, thereby contributing to autophagic defects [107].
In addition, transcriptome analysis of PS1/2 dKO mouse
brains revealed a role for presenilins in regulating lyso-
somal biogenesis [108]. Although how presenilins are in-
volved in autophagic processes in neurodegeneration
remains unclear at this point, new aspects of presenilins in
autophagy will be surely uncovered in future studies.

Conclusion
Although endocytic trafficking has been well-studied in
the last few decades, regulation of protein trafficking in
the context of neurodegenerative diseases is far from
clear. For example, as a well-characterized substrate of
α-, β- and γ-secretases, APP and its metabolites play a
critical role in AD pathology. Cumulative evidence dem-
onstrates that APP cleavage by different secretases may
occur at distinct subcellular compartments, implicating
the importance of the subcellular distribution of APP
and various secretases in regulating Aβ generation. Traf-
ficking regulation in neurodegenerative diseases is a com-
plicated process in which a number of regulators, motor
molecules and membrane proteins are involved. Despite
the characterization of several common defects in protein
sorting and neuropathology found in DS and AD so far,
further studies are anticipated to uncover unique traffick-
ing pathways for DS and AD. In addition, future studies
are needed to determine how PD-associated gene muta-
tions can affect membrane vesicle trafficking, and more
importantly vesicular trafficking of neurotransmitters
to cause dopaminergic dysfunction. This review covers
some aspects of endocytic trafficking regulation in several
disease-associated proteins, including APP, secretases, glu-
tamate receptors and LRRK2. Future research is expected
to strengthen our understanding of dysregulated protein
trafficking in neurodegeneration and may potentially pro-
vide new prevention or treatment strategies.
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