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Abstract

Background: The 5XFAD early onset mouse model of Alzheimer’s disease (AD) is gaining momentum. Behavioral,
electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of
human AD. However, transcriptional changes during disease progression have not yet been investigated. To this
end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female
mice at the ages of one, four, six and nine months (M1, M4, M6, M9).

Results: Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals
exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of
differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines
the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation,
sustained by the overexpression of genes from the complement and integrin families, is accompanied by an
increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ
related pathways.

Conclusions: Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the
predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in
this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus
confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening
potential therapeutic molecules.
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Background
Significant progress has been made uncovering the role
of specific genes in Alzheimer’s disease (AD), yet little is
known about the global molecular changes leading to
neurodegeneration and brain dysfunction. One drawback
comes from the fact that brain tissue from AD patients
only becomes available post mortem, i.e. at very late
stages of the disease. For this reason, transgenic AD
mouse models are precious tools to gain insight into the
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spatio-temporal changes that may affect molecular cas-
cades involved in disease progression.
The 5XFAD mouse model used in this study bears five

mutations linked to familial forms of AD and recapitulates
in a few months the main features of AD [1]. All these
mutations act in an additive manner to boost the pro-
duction of β-amyloid (Aβ) peptides, resulting from the
processing of amyloid precursor protein (APP), in particu-
lar the 42 amino acid form, Aβ42 [2-6]. Compared with
other models, 5XFAD mice display AD features much
earlier. Though they do not present a clear tau pathology,
they develop cerebral amyloid plaques and gliosis as early
as 2 months of age [1]. Electrophysiological studies
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detected hippocampal synaptic dysfunctions in M6 5XFAD
animals, concomitant with synaptic loss and memory defi-
cits [7-22]. Progressive neuronal death has been described
from M9 onwards in cortical layer 5 neurons and subicu-
lum of 5XFAD mice [12,23], a characteristic that is absent
in most AD mouse models.
How these pathophysiological alterations correlate

with global spatio-temporal changes in gene expression
remains to be thoroughly evaluated. Few prior trans-
criptomic studies examined AD mouse models, usually
at a single time point or in a single brain region [24-29].
Only two studies investigated the transcriptome of
5XFAD mice, one using RNA-seq in frontal cortex and
cerebellum of 7 week-old transgenic mice [30], the other
using whole-brain next-generation sequencing to com-
pare young (M3-6) versus old (M12) mice from 5XFAD
and Tg4-42 strains [31].
Here, we carried out a longitudinal transcriptomic

study on two major brain regions affected in AD, the
hippocampus and the neocortex, obtained from 5XFAD
female mice at presymptomatic (M1), prodromal-like
(M4) and symptomatic stages (M6 and M9) of the pa-
thology. We investigated how genes with a modulated
expression are involved in functional networks through
the use of two text-mining based softwares (Ingenuity
and PredictSearch). Among the genes involved in these
networks, a bibliographic search was performed to iden-
tify those reported in AD patients.
Our results indicate a tremendous shift in the tran-

scriptional profile between M1 and M4 in both the
cortex and hippocampus of 5XFAD mice, mainly charac-
terized by an increase in inflammatory and immune
markers. Moreover, they emphasize the predominant
activation of microglia and transcriptional activities
induced by interferon-γ (IFN-γ), likely through the
expression of interferon regulatory factor 8 (IRF8),
which stands out as a key transcriptional regulator in
our study. The main IRF8 target pathways include anti-
gen processing, antigen presentation and phagosome
maturation, associated with a modulation of GTPase sig-
naling. Interestingly, a high number of dysregulated
genes are associated to AD, confirming that the 5XFAD
model mirrors, at an early age, many aspects of this neu-
rodegenerative disease.

Results and discussion
Temporal distribution of dysregulated genes reveals
dramatic changes from M4 onwards
Figure 1 summarizes the global screening of gene ex-
pression analysis of cortex and hippocampus from
5XFAD compared with wild type mice at M1, M4, M6
and M9. The number of differentially expressed genes
(DEGs) increases with age in both tissues (Figure 1A)
with a drastic increase between M4 and M6 when
considering the number of up- and down-regulated
genes (Figure 1A and B).
At M1, twice as many genes are dysregulated in the

hippocampus as in the cortex (Figure 1A), suggesting
that distinct alterations occur in these two regions at
that early stage, as described at the histological level [1].
Additionally, we observed many shared DEGs between
cortex and hippocampus (Figure 1B), in particular at
M4, when nearly 50% of the DEGs are common to both
brain regions. By contrast, at M1, only 12% of the genes
modulated in hippocampus overlap with those found in
cortex (Figure 1B).
In order to evaluate the specificities at each studied

stage, we looked at overlapping and non-overlapping
DEGs in transgenic animals, from M1 to M9, separately
in cortex and hippocampus. Interestingly, the expression
of only 23 genes from the cortex and 55 from the hippo-
campus (Figure 1C and D, white areas) is modulated
across all ages (Additional file 1: Table S1). Strikingly,
the expression of an important number of genes (293 for
the cortex; 278 for the hippocampus; Figure 1C and D,
light orange areas) is altered through M4 to M9. Among
those, 183 DEGs at M4, M6 and M9 are common to
both tissues (Additional file 2: Table S2). Most of these
genes are upregulated; only 3 of these DEGs show de-
creased expression at all three ages and in both regions,
while 176 display an increased expression and 4 are in-
consistently either up- or down-regulated in cortex or
hippocampus (Additional file 2: Table S2).

DEG-related functions support alterations in inflammation
pathways and behavior
To investigate whether these quantitative changes might
reflect alterations of specific processes and/or pathways
contributing to disease progression, we looked at the most
upregulated genes in both tissues over time (Figure 2)
using Ingenuity Pathway Analysis (IPA). Six out of the top
ten upregulated genes from the cortex and four from the
hippocampus at M4 also appear among the top ten upreg-
ulated genes at M6 and M9 (Figure 2). Inflammation and
immunomodulation are the main affected processes in
these tissues, as illustrated by changes in expression of
Clec7a (coding for the dectin-1 protein), Cst7 (cystatin F),
Itgax (Cd11c) and genes encoding chemokines Ccl3, Ccl4,
Ccl6 and the glial fibrillary acidic protein (Gfap) (Table 1).
In contrast to these overlaps, the top ten upregulated

genes in M1 animals are fundamentally distinct from
those found in older animals (Figure 2). Only the trans-
thyretin (Ttr) gene, encoding a transporter of thyroxin
and retinol, is strongly upregulated in the cortex at both
M1 and M4 (Figure 2). Ttr, previously identified as up-
regulated in the frontal cortex of young, presymptomatic
5XFAD mice [30,31], is able to bind and sequester Aβ
peptide, thereby preventing its aggregation and plaque



Figure 1 Overview of gene expression profiles in cortex and hippocampus of 5XFAD mice, at 4 different ages, reveals a shift in
expression patterns between M1 and M4. (A) Number of up- (red) and down- (green) regulated genes in cortex and hippocampus of 5XFAD
mice compared with wild type animals at M1, M4, M6 and M9. Total number of DEGs for each brain region at each age is reported in brackets.
(B) Number of overlapping and non-overlapping DEGs in cortex (blue) and hippocampus (yellow) at M1, M4, M6 and M9. The center of the Venn
diagram (green) illustrates the proportion of shared DEGs between both brain regions. (C and D) Number of shared and specific DEGs across all
ages in cortex (C) and hippocampus (D). Analysis was based on the total number of DEGs, both up- and down-regulated at each age. Fold
change (FC) cut-off used for above analyses was −1.5 > FC > 1.5 when comparing signals from 5XFAD mice with wild type controls.
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formation [32-34]. The finding that high levels of Ttr pre-
cede plaque deposition is corroborated by another study
performed on Tg2576 transgenic mice, a model in which
plaque deposition does not occur until M12 [35]. More-
over, Ttr was identified as a physiological target of APP,
since its expression is increased by soluble extracellular
APP processed products [34]. Interestingly, Klotho (Kl),
encoding a hormone involved in aging processes such as
oxidative stress and calcium homeostasis [36-38], was
similarly dysregulated. Both genes exhibit a similar ex-
pression profile in our transcriptomic study (Table 1), con-
firming that Ttr and Kl are co-regulated APP targets. In
the cortex, their expression decreases progressively from
M4 to M6 to reach, at M9, expression levels below those
of wild type mice. Conversely, in the hippocampus of
5XFAD mice, their expression is repressed at M1 and up-
regulated at M9. Such differential expression patterns may
highlight distinct temporally-regulated protective capaci-
ties, as observed in cultures of oxygen- and glucose-
deprived astrocytes from cortex and hippocampus [39].
IPA was then undertaken to investigate the most af-
fected networks during the time course of disease pro-
gression. When considering all DEGs at M4, M6 and
M9 (after the onset), processes associated to the dys-
regulated genes mainly relate to inflammatory and im-
mune responses (Figure 3A). As an example, Figure 3B
maps some genes associated to the complement, major
histocompatibility complexes (MHCs) and toll-like re-
ceptors (TLRs).
Such a presence of immune markers in the hippocampus

and cortex of the 5XFAD mice is not surprising since they
are produced in neurons, astrocytes and resident microglia.
In a healthy brain, they illustrate the “neuro-immune”
system that exists in the central nervous system, where, for
instance, complement cascade tags neurons destined to
destruction [40]. With age and repeated insults, these
processes may spiral out of control and lead to degene-
ration. Through the upregulation of inflammatory/immune
markers, the 5XFAD brain recapitulates the dysfunction of
the resident immune network seen in AD [41,42].



Figure 2 The top ten most up-regulated genes at each age, in cortex and hippocampus, illustrate the alteration of inflammatory and
immune processes from M4 onwards. Venn diagrams representing the top ten up-regulated genes in cortex (A) and hippocampus (B) of
5XFAD mice at M1 (blue), M4 (yellow), M6 (green) and M9 (red). Genes are listed by rank of fold change, the cut-off for analysis being FC > 1.5
when comparing gene probe signals from 5XFAD with wild type mice. Note that only Ttr dysregulation is present at both M1 and M4 in the
cortex while the other 9 genes are specific to M1. However, at M4, M6 and M9, 60% and 40% of these genes are consistently dysregulated in the
cortex and the hippocampus, respectively.

Table 1 Upregulated genes with their fold change related to inflammation and immune processes in the cortex and
hippocampus of 5XFAD mice at M1, M4, M6 and M9

Cortex Hippocampus

Gene Probe M1 M4 M6 M9 M1 M4 M6 M9

Clec7a A51P246653 0.8 12.1 35.0 30.9 1.1 15.9 32.2 32.5

Cst7 A51P137419 1.0 74.7 63.5 140.2 1.3 100.5 118.4 145.8

Itgax A51P303424 0.7 16.3 13.4 19.6 0.8 16.1 14.8 23.2

Ccl3 A51P140710 1.0 15.8 14.7 15.4 0.6 11.3 7.3 17.3

Ccl6 A51P460954 1.4 12.4 9.4 13.4 1.4 13.7 10.8 9.7

Gfap A55P2157245 1.1 3.4 6.1 4.4 1.1 2.2 3.0 5.4

Gfap A52P52303 1.1 5.2 8.4 5.0 1.1 2.8 3.1 4.5

Gfap A55P2157250 1.2 8.1 8.6 11.8 0.9 4.0 8.0 3.5

Ccl4 A51P509573 0.9 9.0 7.3 9.9 0.9 12.7 10.7 11.3

Ttr A65P19832 12.2 8.7 2.5 0.7 0.2 1.2 1.0 1.5

Kl A52P439358 2.9 3.0 1.2 0.5 0.2 1.2 0.6 2.2

Fold changes are indicated in bold when FC > 1.5.

Landel et al. Molecular Neurodegeneration 2014, 9:33 Page 4 of 18
http://www.molecularneurodegeneration.com/content/9/1/33



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Metabolic pathways associated to gene dysregulation in 5XFAD cortex and hippocampus at M4, M6 and M9: common
versus age-specific processes. Biological functions and metabolic pathways associated to gene expression dysregulation were identified using
Ingenuity Pathway Analysis (IPA). (A) Data from both the cortex and hippocampus were analyzed as one dataset and the main metabolic
pathways affected were clustered according to age (M4, blue; M6, yellow; M9, red). The metabolic pathways affected across all three ages are
represented in white and are related to inflammatory and immune responses. (B) The main metabolic pathway affected at M4, M6 and M9
relates to infectious disease, cellular function and antigen presentation.

Table 2 Upregulated genes related to complement
activation in the cortex and hippocampus of 5XFAD mice
at M1, M4, M6 and M9

Cortex Hippocampus

Gene Probe M1 M4 M6 M9 M1 M4 M6 M9

Itgam A55P1977929 0.9 1.5 1.2 1.9 1.1 2.0 1.8 1.6

Itgb2 A51P262208 1.0 2.5 2.6 3.4 1.0 2.3 2.4 2.5

Itgb3 A52P553890 0.9 1.3 2.0 1.5 0.9 1.8 1.9 3.0

Tlr2 A51P452629 1.0 2.7 3.6 3.3 0.6 3.2 3.6 5.1

C3 A51P110301 1.6 1.0 3.5 1.6 0.9 1.2 5.2 6.3

C4b A55P2078633 1.1 2.6 9.0 3.7 0.8 2.6 4.0 5.6

C1qa A51P181451 1.1 2.6 3.2 4.0 1.0 3.0 3.8 4.7

C1qb A51P351860 1.0 2.3 2.9 3.2 1.0 2.6 5.1 2.9

C1qc A51P102789 1.0 2.8 2.0 5.7 1.2 3.0 4.6 4.2

Fold changes are indicated in bold when FC > 1.5.
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In addition to inflammatory and immune changes, IPA
identified functional links between genes affected from
M6 onwards and neurological and psychological diseases
(Figure 3A). Changes in genes associated with impaired
cognitive functions are found to be a significant feature
of M9. This is consistent with published studies repor-
ting abnormal behaviors in 5XFAD mice starting at M6
and strongly consolidated by M9 [7,12,13,19,20,43,44].
These observations suggest that disrupting the intri-

cate balance between neurons and surrounding immune
cells may lead to neuronal dysfunction and cognitive de-
terioration [45,46].

Establishment of neuroinflammation through activation
of complement
A dramatic increase in inflammation stands out as the
most striking transcriptomic result. Neuroinflammation
is a well-known hallmark of AD and is characterized by
the activation of astrocytes and microglia, which appears
in the 5XFAD mouse model near and concomitantly to
amyloid plaques [1]. In various types of brain insults,
peripheral leukocytes infiltrate the injured brain [47-49]
and intensify the neuroinflammatory response through
pro-inflammatory mediators, free radicals, lipid peroxi-
dation and oxidative stress [50-52]. Their infiltration is
mediated, in part, by CD11/CD18 integrins expressed in
neutrophils and monocytes/macrophages.
In our study, in addition to Cd11c-encoding gene

Itgax, genes such as Itgam, Itgb3, and Itgb2, encoding re-
spectively Cd11, Cd61 and Cd18, are all overexpressed
in the 5XFAD mice (Table 2). Most of these integrins
are transcriptionally induced by IL-1β and/or Aβ
through TLR2-mediated signaling [53]. In keeping with
this, we found an upregulated expression of Tlr2 at M4,
M6 and M9 (Table 2). Increases in transcript levels of
inflammatory markers such as Cd11b, Il-1β, Tnf-α and
Tlr2 have already been observed in 6 months old 5XFAD
mice [54].
Moreover, the expression of several members of the

complement, known immune effectors, is also upregu-
lated, such as C3, C4, C1qa, C1qc and C1qb, which are
all overexpressed in the cortex of AD patients [55].
CD18 interacts with CD11b or CD11c to form the C3
receptor (CR3) and C4 receptor (CR4), respectively. C3
and C4 ligands bind to their cognate receptors, C3R
and C4R (Figure 4). Activation of these receptors is
reportedly part of the complement-induced inflam-
mation in AD mouse models and patients [56-61] and
influences microglia to adopt protective or deleterious
phenotypes in AD [31,62].
On the whole, our results point to a major raise in in-

flammation in the 5XFAD brain, linked to complement
activation and presumably to immune cell infiltration,
reminiscent of similar findings in AD patients and other
mouse models [63-68].

Altered expression of interferon gamma-induced genes
In a second approach, we applied more stringent criteria
for gene selection (see Materials and methods) to iden-
tify functional networks highly modulated in our model:
we focused on genes upregulated in both hippocampus
and cortex, from M4 to M9 or at consecutive time
points (M4/M6 and M6/M9). We then explored the
published data on these dysregulated genes to map out
the molecular and cellular players at stake. To this end,
we used IPA as well as PredictSearch, another software
for the design of functional networks [69-74]. This com-
bined analysis reveals numerous IFN-γ-induced genes,
which belong to a larger set of genes known as inter-
feron stimulated genes or ISGs (Figure 5). However, we
did not observe any change in IFN-γ gene expression in
our study. Although post-transcriptional regulation can-
not be excluded, we can postulate that IFN-γ transcrip-
tion occurs either transiently in brain cells or outside



Figure 4 The complement-induced inflammation pathway: an important mediator of neuroinflammatory processes from M4 onwards.
This functional network was designed using the text-mining software, PredictSearch, based on more stringent criteria than for the above
figure: only upregulated DEGs (with a FC > 1.5) found in both the cortex and hippocampus and at consecutive time points (M4/M6; M6/M9 or
M4/M6/M9) were considered for analysis. Top right corner: legend for Figures 4, 5, 6, 7.

Figure 5 A large proportion of upregulated genes belong to the family of IFNγ-induced genes: engagement of inflammatory, immune,
autophagic and phagocytic pathways. Legend for this figure is located in the top right corner of Figure 4.
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the brain, in peripheral blood cells. IFN-γ can be pro-
duced in the brain by glial cells [75]. However, several
reports argue in favor of T cell infiltration in AD [63,64].
In post mortem AD brain, peripheral T cells cluster
around plaques in areas of important gliosis [76-78].
Disruption of the blood-brain barrier has been reported
in M8 5XFAD mice [79]. A recent study also demon-
strates that a significant infiltration of T cells occurs in
the brain of APP/PS1 transgenic mice and that these
cells secrete IFN-γ [80]. In the same study, transferring
Aβ-specific Th1 cells to APP/PS1 mice increased micro-
glial activation and Aβ deposition and worsened cog-
nitive performances in the Morris water maze. These
observations warrant more studies to test the hypothesis
that, in the 5XFAD brain, infiltrated T cells may poten-
tially release IFN-γ, activate microglia and stimulate ex-
pression of IFN-γ induced genes.
As described below, these genes are involved in the

regulation of different processes, including immunity, in-
flammation and GTPase signaling (Figure 5).
Concerning the potential role of the immune system,

major histocompatibility complex (MHC) genes are
expressed in microglia upon cytokine stimulation in the
inflamed brain [81] and both MHC class I and II are
known to be upregulated in sporadic forms of human
AD [82]. A role for MHC class II genes in the 5XFAD
mice is supported by the parallel increase in the expres-
sion of Cd74 (Figure 5), which acts both as chaperone
for MHC class II molecules and as receptor for MIF
(macrophage migration inhibitory factor). CD74 is also
increased in AD cases compared with age-matched con-
trols, notably in neurofibrillary tangles-bearing neurons,
amyloid plaques and microglia [83]. Thus, expression
of MHC class II genes highlight the predominance of
microglia activation in the 5XFAD mice. In response to
IFN-γ, a rise in microglial MHC class II genes may
enhance antigen presentation to T cells, which, in turn,
might contribute to immune-mediated damages to neu-
rons. Interestingly, at least at a certain stage of the dis-
ease, Cd74 expression may also denote a protective
effect. Indeed, interaction of CD74 with MIF promotes a
cell survival pathway and its interaction with APP blocks
Aβ production [84,85].
In our analysis, a second large cluster of genes induced

by IFN-γ and dysregulated in 5XFAD brain encodes pro-
teins with GTPase activity (Figure 5), such as Irgm1 and
Irgm2 (members of the Immunity-Related GTPase fam-
ily M [86]), Igtp/Irgm3 (IFN-γ induced GTPase), and
Iigp1/Irga6 (interferon induced GTPase 1). Moreover,
the expression of another GTPase gene, Gvin1 (very
large interferon inducible 1) and two members of the
guanylate-binding protein genes, Gbp2 and Gbp3, is also
higher in 5XFAD animals. GBPs belong to another fam-
ily of GTPases and are the most abundant proteins that
accumulate in fibroblasts or macrophages in response to
IFN-γ stimulation [87]. A number of other GTPases, not
described to be regulated by IFN-γ, but related to TGF-β
activity, are also overexpressed in our model.
GTPases such as Irgm1 regulate, during ischemic

stroke, survival and neuronal autophagy [88], a process
that eliminates dysfunctional cell components using ly-
sosomes. Irgm1 exacerbates experimental auto-immune
encephalomyelitis by promoting disruption of the blood-
brain and blood-cerebrospinal fluid barriers [89]. In
addition to controling cell death or survival [90-92],
murine IRGs affect protein aggregate formation and
clearance [93,94] and altogether, these functions engage
the autophagic pathway [91].
A possible involvement of autophagy in 5XFAD animals

is also supported by the increased expression of known tar-
gets of Tfeb, a transcriptional factor involved in lysosomal
biogenesis [95,96]. These Tfeb targets include Gusb (beta-
glucuronidase), Naglu, Hexa, Hexb, and Ctsd [95,97], which
are greatly expressed in the 5XFAD mice from M4 to M9
in both cortex and hippocampus (Table 3). Interestingly,
the expression of Gusb was upregulated in Aβ-resistant
cells and might illustrate a protective effect against Aβ
toxicity [98]. Moreover, a role for presenilins in regulating
lysosomal function has been demonstrated [97] and several
lines of evidence suggest that endosomes/lysosomes are in-
volved in Aβ production [99,100]. Thus, our results high-
light the possible activation of the endosomal/lysosomal
system in the 5XFAD brain, in keeping with observations in
this model [101] and in human AD brains [102].

Potential role of IRF8 in the expression of interferon
gamma-regulated genes
We next explored in more detail which pathways were ac-
tivated immediately downstream of IFN-γ in the 5XFAD
brain. As detailed below, we discovered an unexpected
downstream effector of IFN-γ: Interferon Regulatory
Factor 8 (IRF8). Induction of MHC class I genes by IFN-γ
generally depends on the JAK/STAT pathway that targets
the ISRE (Interferon Stimulating Response Element) motif
[103]. By contrast, the expression of MHC class II genes
requires that the transcriptional factor CIITA forms a
complex with DNA-binding factors targeting the MHC
class II promoter [104]. The increased expression of both
MHC class I and II genes observed in 5XFAD mice sug-
gests that the two IFN-γ-signaling pathways are altered.
However, among the factors known to participate in these
pathways, only Stat3 and Socs3 display a significant upreg-
ulated expression in both tissues of 5XFAD mice, and not
before M9. Therefore, it can be assumed that novel path-
ways explain the major rise in IFN-γ-induced genes.
Among interferon-stimulated genes, it is noteworthy

that genes encoding transcription factors Irf5 and Irf8
are highly upregulated in the 5XFAD mice, from M4 to



Table 3 Upregulated genes, fold changes, and associated functional categories for genes consistently dysregulated
from M4 to M9

Cortex Hippocampus

Gene Probe M1 M4 M6 M9 M1 M4 M6 M9

Gusb A51P211491 0.9 2.5 3.2 3.2 1.1 3.0 3.6 3.9

Lysosomal biogenesis

Naglu A52P504361 1.0 2.1 2.1 2.2 0.8 1.7 2.2 2.0

Hexa A51P282667 1.1 1.9 2.0 2.3 1.2 1.7 2.3 2.4

Hexb A51P453111 1.0 2.5 2.0 3.2 0.9 2.8 2.0 3.3

Ctsd A65P13209 1.1 3.0 4.4 2.4 0.9 2.8 3.8 3.1

Tgfb1 A51P390715 1.1 1.8 1.7 2.3 0.8 2.3 2.6 1.6

TGF-β signalingTgfbr1 A51P2137206 1.1 1.5 1.7 1.7 0.8 1.6 1.4 1.9

Tgfbr2 A51P450573 1.0 1.9 2.1 2.3 1.0 2.2 2.0 3.7

Aif1 A51P400543 1.0 2.1 2.4 2.2 1.0 2.5 2.3 2.9

Markers of microglial activation
Ptprc A55P1990324 1.0 2.0 1.7 2.0 1.0 2.0 2.1 2.5

Cd86 A55P1971951 0.9 1.8 2.3 2.5 1.1 2.5 3.0 3.5

Cd14 A51P172853 1.0 2.7 3.2 3.8 1.0 2.6 3.6 3.3

Igf1 A55P2031631 0.9 2.6 2.0 5.1 1.0 3.0 3.0 4.2

Protective activitiesOsmr A51P319460 0.9 1.6 2.7 3.1 0.7 2.5 3.0 5.3

Grn A51P192800 0.9 2.5 2.3 2.6 1.1 2.2 3.0 2.5

Fold changes are indicated in bold when FC > 1.5.
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M9 (Figure 5). Irf8 stands out as a particularly inte-
resting effector of IFN-γ. Expressed predominantly in
hematopoietic cells and further increased upon treat-
ment with IFN-γ [105-107], Irf8 is required to propagate
pro-inflammatory signals and to activate microglia [108].
IRF8 also instructs myeloid progenitors to become
mononuclear phagocytes [109,110]. A combination of
genome-wide methods already confirmed the crucial
role of IRF8 in regulating early immune response, in-
cluding phagosome maturation, antigen processing and
presentation [111,112]. Interestingly, 5XFAD mice over-
express most of the Irf8 target genes supporting these
processes (Figure 5). This strongly suggests that Irf8 ac-
counts for the IFN-γ regulated processes described here
and therefore represents a key player in the 5XFAD
pathology.
Alternatively, IRF8 expression can also be induced

through TGF-β [113], which is highly overexpressed in
5XFAD mice, along with transcripts for its receptors,
Tgfbr1 and Tgfbr2 (Table 3). This pathway inhibits mac-
rophages and suppresses microglial expression of MHC
antigens [114,115], and its activation in 5XFAD brain
might therefore be a protective response against sus-
tained microglial activation.

Involvement of NADPH oxidase (NOX) complex in
microglial activation
The NOX complex contributes to persistent microglial
activation and reactive oxygen species production, which
leads to an increase in oxidative stress, regarded as an
early sign of AD pathophysiology [116,117]. Moreover,
studies on different AD mouse models, including
5XFAD mice, reported increased levels of oxidative
damage, which appear before Aβ deposition and there-
fore constitute an early event in disease pathogenesis
[24,44,118,119]. Actually, a recent proteomic analysis re-
vealed that the most affected biological processes in M4
5XFAD hippocampus include cell redox homeostasis
and response to oxidative stress [120].
In our study, most of the genes encoding NOX compo-

nents as well as NOX associated factors, Fc receptors, Vav
and Rac2, are overexpressed as early as M4 in 5XFAD
mice (Figure 6). Of note, genes encoding the NOX sub-
units as well as Fcgr1a/CD64 (Fc fragment of IgG recep-
tor, high affinity 1a) are regulated by IFN-γ [107,121-123].
Their co-expression is in line with the observation
that clustering of Fcγ receptors activates VAV proteins
(Rho/Rac guanine nucleotide exchange factors), leading to
robust superoxide generation through NOX [124-126].
Several studies provide strong evidence for the in-

volvement of NOX and its downstream oxidative sig-
naling pathway in the toxic effects elicited by Aβ. In AD
brains, Aβ is thought to act on NOX in microglial cells,
which produce neurotoxic superoxide [127]. Aβ also in-
duces oxidative stress in hippocampal astrocytes through
a mechanism sensitive to NOX inhibitors [128].
According to these observations, NOX activation can

occur in either microglia or astrocytes. However, it is
likely that, in our model, NOX is predominantly acti-
vated in microglia. Indeed, in addition to MHC class II



Figure 6 Increased expression of genes involved in the NADPH oxidase complex. Legend for this figure is located in the top right corner
of Figure 4.
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genes and Cd74, markers of microglial inflammation
are strongly overexpressed in 5XFAD mice (Table 3),
notably Aif1/Iba1, Ptprc/Cd45, Cd68, Cd86 and Cd14
[83,129-131]. In line with the microglial origin of NOX
activation, expression of the Fcγ receptor-encoding
genes is found around senile plaques and in ramified
microglia, throughout the cortex and the white matter
of normal and AD brains [132]. Furthermore, RAC2,
which controls NOX activation by preferentially inter-
acting with the NCF2/p67(phox) NOX subunit [133], is
largely predominant in human phagocytes [134].
Figure 7 Increased microglial activation and induction of associated n
located in the top right corner of Figure 4.
Microglial phagocytosis
Microglia/brain macrophages constitute about 12% of the
cells in the central nervous system, and, in addition to
antigen presentation, exhibit phagocytosis. Microglia can
phagocytose Aβ fibrils in vitro and in vivo [135]. Never-
theless, Aβ phagocytosis is inefficient in AD brain despite
the presence of abundant activated microglia [136]. One
possible explanation may be that exposure of microglia to
fibrillar Aβ in vitro can induce mechanisms distinct from
those used by classical phagocytic receptors, FCGR1 and
FCGR3, or complement receptors (Figure 7). This novel
europrotective signaling pathways. Legend for this figure is
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phagocytosis would require the interaction of microglia
with CD36, ITGB6, and CD47 [137].
Phagocytosis of Aβ by microglia can be also mediated

by CD14 [138], which is detected in brains of AD patients,
or by CSF1 (macrophage colony stimulating factor 1) and
its receptor, CSF1R (Figure 7). Interestingly, Csf1r sig-
naling in injured neurons facilitates protection and sur-
vival [139]. The Csf1/Csf1r complex co-signals through
Tyrobp, which, together with its receptor, Trem2, activates
signal transduction leading to brain myelination and in-
flammation [140]. The signaling involving Csf1/Csf1r/
Trem2/Tyrobp likely plays a role in the 5XFAD physio-
pathology since all the corresponding genes are strongly
upregulated from M4 to M9 in cortex and hippocampus
(Figure 7). Moreover, recent reports show that rare
TREM2 variants predispose to AD [141,142] and Trem2
mRNA and protein are increased in a transgenic mouse
model of AD [141]. It has been proposed that these
changes represent a response to rising levels of Aβ [141].
Localized to microglia around plaques and neurons in AD
models, Trem2 controls two signaling pathways that regu-
late the reactive phenotype in microglia (Figure 7). The
first of these pathways couples increases in Trem2 expres-
sion on microglia with enhanced phagocytosis [143-145].
This could lead to the removal of cell debris and the clear-
ance of Aβ in AD and promote the alternative “protective”
activation state of microglia. The second Trem2 signaling
pathway suppresses inflammatory reactivity and represses
cytokine production and secretion [144], notably TLR-
and FcR-induced TNF production [146,147]. Thus, in
addition to its protective role by activating phagocytosis of
apoptotic neurons and Aβ, the predominant role of the
TYROBP/TREM2 complex might be to inhibit, rather
than to activate, the innate immune system.
Altogether, these transcriptional changes indicate that,

in 5XFAD mice, microglial activation and the resulting
phagocytosis are predominant processes, which are
already initiated at M4 and maintained at least until M9.

Other neuroprotective activities
The 5XFAD transcriptomic data identified numerous
genes involved in neuroprotective pathways. In addition to
those already discussed, we found an upregulation of genes
encoding Igf1 (insulin growth factor 1), Osmr (oncostatin
M receptor) and Grn/Pgrn (granulin) (Table 3).
Insulin and IGF1 signaling is disturbed in AD brain and

in 5XFAD hippocampus [120,148,149]. Igf1 can either
protect or increase LPS-induced damage in the developing
rat brain [150]. A possible explanation for these apparently
contradictory observations may be that modulation of
the cellular response to oxidative stress by Igf1 is cell-
dependent [151]. Contrary to what has been observed in
neurons [152], astrocyte-specific overexpression of IGF-1
protects hippocampal neurons [153].
Neuroprotection can also be elicited through OSM
(oncostatin M), a cytokine with anti-inflammatory activ-
ities. In response to IL-1β or TNF-α, astrocytes produce
prostaglandin E2, which then induces Osm expression in
microglia [154]. Upon binding to a complex formed be-
tween its receptor, OSMR, and gp130 [155], OSM can in
turn attenuate expression of IL-1β or TNF-α [156]. There-
fore communications between microglia and astrocytes
may account for the balance of protective and destructive
actions by these cells. Although Osm expression levels
were similar in 5XFAD and wild type mice, elevated
expression of Osmr might increase the constitutive Osm
activity detected in neurons, astrocytes and microglia
[154]. Besides, the protective effect of Osm on neuronal
cell death is mediated by the Jak/Stat3 signaling pathway
[157]. In the 5XFAD brain, this neuroprotective effect may
be attenuated through the OSM-induced upregulation of
Socs3, a known inhibitor of Jak/Stat signaling [157].
Finally, GRN/PGRN, an AD marker [158], is involved in

the modulation of the neuroinflammatory response. Sup-
porting this role, microglia display increased Grn/Pgrn ex-
pression following a variety of acute and chronic insults to
the central nervous system [159]. Grn/Pgrn can increase
endocytosis of extracellular peptides such as Aβ and af-
fects microglial proliferation, recruitment, differentiation,
activation and phagocytosis [159]. Grn/Pgrn is a potent in-
hibitor of TNF-α and promotes the upregulation of anti-
inflammatory cytokines such as Il-4, Il-10 and Il-5 [159].
Direct interaction of GRN/PGRN with the TNF receptor
also blocks the pro-inflammatory actions of TNF-α [160].
However, GRN/PGRN can be cleaved by extracellular
proteinases such as MMP-9, −12 and −14 to produce
granulin/GRN peptides, which increase the expression of
IL-1β, IL-8 and TNF-α [161,162]. Therefore, a balance
between PGRN and its processed form GRN may deter-
mine the contributions of certain cell types or subtypes to
neuroprotection or neuroinflammation and their impact
on the 5XFAD pathophysiology.

Limitations of the study
The aim of this study was to provide an overview of the
main networks affected in 5XFAD brain, as revealed by
intensive data mining on dysregulated genes observed in
transcriptomic profiles. Such a global approach deter-
mines tendencies based on the design of networks rather
than confirms individual gene modulation at the tran-
script or protein levels. Given the stringent criteria
chosen to filter our data, most of the genes within the
described networks are significantly modulated in both
hippocampus and cortex from M4 to M9. Investigating
the role of non-shared DEGs at given time points and
analyzing specificities of each brain region is beyond the
scope of this study, but deserves further investigation in
order to elucidate the precise molecular mechanisms at
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play. Importantly, many DEGs and several signaling
pathways, associated to AD, have been found to be mis-
expressed in the 5XFAD model by two independent
studies [30,31].
Further understanding of the signaling pathways af-

fected in this mouse model, with the aim to link it to
human AD, would entail broadening the study to ad-
ditional brain regions. The entorhinal cortex, for in-
stance, is known to be the site of early neuron loss in
human AD and has recently been shown to be affected
by amyloid deposition, as early as 2 months of age in
both female and male 5XFAD mice [163].It would there-
fore be of great interest to investigate the transcriptomic
profile of this brain region in future studies.
The study would also benefit from a comparison of

transcriptomic profiles between female and male mice.
Female 5XFAD animals are more affected at the histo-
logical and behavioural levels than male mice [9,163],
possibly as a consequence of decreased estrogen levels.
Variations in estrogen levels can directly impact on tran-
scriptomic profiles through modulation of the genome
and signaling pathways. In the current study, IPA ana-
lysis revealed a large proportion of DEGs potentially reg-
ulated by estrogens and one of their receptors, ESR1
(data not shown). We also observed a dysregulated
expression of genes directly linked to the effects of
testosterone, reinforcing the idea that differential gene
modulation during the time course of the disease could
occur between male and female mice. Future studies
should take hormonal impact into consideration.
Finally, based on the data presented here and in pre-

vious studies, there is no doubt that a fine understanding
of pathogenesis necessitates deciphering early molecular
events. As a result, it would be of great importance to
enlarge the current study to a finely tuned time window
that spans for M1 to M4, when histological markers
start developing.
Table 4 RT qPCR results for two genes known to be upregula
results

qPCR

Age Gene Wt 1 Wt 2 Wt 3 Tg 1 Tg 2 Tg 3

M1 Aif1 1.3 0.9 0.8 1.3 1.3 0.9

Gfap 1.5 0.9 0.7 1.3 1.4 0.8

M4 Aif1 1.1 1.1 0.9 2.8 1.7 1.3

Gfap 0.9 1.3 0.9 5.5 6.1 5.1

M6 Aif1 0.9 1.0 1.2 2.8 1.7 1.3

Gfap 1.1 1.0 0.9 3.9 5.6 4.2

M9 Aif1 1.4 0.9 0.8 2.6 2.0 2.3

Gfap 1.5 0.8 0.9 5.0 7.0 5.9

Before performing the microarray experiment, RNA from each wild type (Wt) and e
RT-qPCR for two genes known to be upregulated in 5XFAD mice: Aif1 and Gfap. Thi
obtained from the pooled RNA for all three animals in the microarray study. The qP
Despite such considerations, the data presented here
offers, for the first time, the possibility to understand
time-dependent variations in the inflammatory and im-
mune pathways of the 5XFAD model. Altogether, these
data confirm that this transgenic model, along with
the generated dataset, is a valuable public resource for
screening potential therapeutic molecules targeting dys-
regulated functions in AD.

Materials and methods
Animals
We used 5XFAD transgenic mice, which overexpress
two transgenes bearing five mutations linked to familial
AD: human APP (Swedish mutation K670N, M671L;
Florida mutation I716V; London mutation V717I) and
human presenilin 1 (PSEN1 M146L, L286V), under tran-
scriptional control of the mouse Thy1 promoter. 5XFAD
lines from the B6SJL genetic background were main-
tained by crossing hemizygous transgenic mice with
B6SJL F1 breeders. These mice exhibit AD-related symp-
toms earlier than other animal models and amyloid de-
position starts in the cortex and subiculum at 2 months
of age [1]. Heterozygous female 5XFAD transgenic ani-
mals and wild type controls were obtained after breeding
of progenitors purchased from the Jackson Laboratory.
Genotyping was performed by PCR analysis of tail DNA
in order to detect the human APP gene. Animal experi-
ments were approved by the Ethics Committee of the
Medical Faculty of Marseille and were carried out in ac-
cordance with the guidelines published in the European
Communities Council Directive of November 24, 1986
(86/609/EEC). All efforts were made to reduce animal
suffering and the number of mice.

RNA isolation
Brain tissues were collected from wild type and trans-
genic 5XFAD mice (n = 3 per group). At different
ted in 5XFAD mice: comparison with the microarray

Microarray

Fold change Tg/Wt Wt Tg Fold change Tg/Wt

1.2 2098.9 2010.3 1.0

1.2 6320.3 6827.6 1.1

3.1 2171.1 5335.4 2.5

5.5 5381.9 15329.9 2.9

1.9 2427.4 5530.1 2.3

4.5 5694.4 17759.7 3.1

2.3 2551.1 7422.3 2.9

5.9 5172.5 23062.3 4.5

ach transgenic (Tg) (n = 3 for each group) animal was tested independently by
s table compares results obtained by qPCR from each mouse with results
CR and microarray gave similar fold changes, shown here in bold.
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designated time points (beginning of M1, M4, M6 and
M9), mice were anesthetized with isoflurane and sacri-
ficed to extract brain tissue. Hippocampus and neo-
cortex samples were dissected, snap-frozen in liquid
nitrogen and stored at −80°C until use. Total RNA was
then isolated from frozen hippocampi and cortices using
RNeasy Mini kit (Qiagen, Courtaboeuf, France), ac-
cording to the manufacturer’s instructions. RNA con-
centration was determined using a Nanodrop 2000
spectrophotometer (Thermo Scientific, ThermoFisher
Scientific, Villebon sur Yvette, France) and RNA integ-
rity assessed on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Les Ulis, France).

Real-time quantitative PCR (qPCR)
Before performing microarray experiments, RNA samples
extracted from the hippocampus of all animals (n = 3) in
each group were tested with qPCR in order to quantify
the expression of known markers of inflammation in
5XFAD mice. Total RNA (1 μg) was subjected to reverse
transcription reaction to synthetize cDNA using oligo dT,
RNase Out and M-MLV RT enzyme (Invitrogen, Thermo-
Fisher Scientific, Villebon sur Yvette, France) according
to the manufacturer’s instructions. Two genes, Gfap and
Aif1, related to astrocytic and microglial activation re-
spectively, and one housekeeping gene, Gapdh, were
selected for pre-validation of samples.
Real-time qPCR experiments were carried out with the

7500 Fast Real-Time PCR system (Applied Biosystems,
ThermoFisher Scientific, Villebon sur Yvette, France),
using TaqMan® Fast Universal PCR Master Mix (2X)
and the three TaqMan® Gene Expression Assays (Gfap,
Mm01253033_m1; Aif1, Mm00479862_g1 and Gapdh,
Mm99999915_g1). Experiments used 7.5 ng of previously
prepared cDNA and samples were run in triplicates. Rela-
tive expression levels were determined according to the
ΔΔCt method where the expression level of the mRNA of
interest is given by 2-ΔΔCT where ΔΔCT = ΔCT target
mRNA − ΔCT reference mRNA (Gapdh) in the same
sample. Results are reported in Table 4 and compared to
microarray data for these two genes of interest.

Microarray assay
Following qPCR pre-validation of individual animals for
each time point and condition, RNA samples were
pooled (n = 3) for microarray hybridization. Sample
amplification, labeling, and hybridization were per-
formed in line with the Agilent one-color microarray-
base analysis (low input quick amp labeling) protocol
(Agilent Technologies). Briefly, total RNA was reverse-
transcribed into cDNA using the T7 promoter primer.
The reaction intending to synthesize cyanine-3-labeled
cRNA from cDNA was performed in a solution con-
taining dNTP mix, T7 RNA polymerase and cyanine
3-dCTP and then incubated at 40°C for 2 hours. Labeled
cRNA was purified and fragmented before hybridiza-
tion on Agilent 8×60k Mouse Gene Expression Arrays
(Agilent Technologies, ref: G4852A), containing 62 975
oligonucleotide probes, at 65°C for 17 hours. Raw micro-
array signals were scanned and extracted using Agilent
Feature Extraction Software (Agilent Technologies). AgiND
R package was used for quality control and normalization.
Quantile methods and a background correction were
applied for data normalization. Microarray data are avail-
able in the ArrayExpress database [164] under accession
number E-MTAB-1937.

Microarray data analysis
Biological interpretation of the data was performed using
two different programs. First, Ingenuity Pathway Analysis
(IPA, Ingenuity Systems [165]) was used to identify bio-
logical functions from the lists of DEGs associated to
transgenic animals. The main criteria to validate a dif-
ferentially expressed gene was a fold change over 1.5 or
under −1.5 when considering expression values in the
transgenic group relative to the wild type control group.
Upregulated and downregulated genes were analyzed in
the same datasets to obtain the biologically relevant func-
tion categories. Right-tailed Fisher’s exact test was used to
calculate a p-value determining the top statistically signifi-
cant biological functions assigned to the data set.
Secondary analysis of the main metabolic pathways and

their potential dysfunctions was performed using the Java/
Perl software Predictsearch® (Laboratoire Genex [166]),
which has been previously described [69,74]. This software
characterizes the pathways and functional networks in
which the selected genes found to be up- or down-
regulated are involved. For this mechanistic analysis, only
genes not differentially expressed across all time points
in wild type animals (ratio between 0.85 and 1.2) but up-
regulated in transgenic animals (ratio over 1.5) were
considered. Predictsearch was then used to generate func-
tional networks based on the total number of differentially
expressed genes in both cortex and hippocampus.

Additional files

Additional file 1: Table S1. Lists of genes and associated fold changes
commonly dysregulated at M1, M4, M6 and M9 in (A) cortex and (B)
hippocampus.

Additional file 2: Table S2. Common DEGs in cortex and hippocampus
at M4, M6 and M9.

Abbreviations
5XFAD: A strain of transgenic mice that carry mutant human APP and human
PSEN1 genes harbouring a total of five mutations linked to familial AD;
AD: Alzheimer’s disease; APP: Amyloid precursor protein; Aβ: Beta-amyloid
peptide; Aβ42: Beta-amyloid peptide 1-42; DEG: Differentially expressed gene;
FAD: Familial Alzheimer’s disease; FC: Fold change; GTPases: A large family of
hydrolase enzymes that can bind and hydrolyze guanosine triphosphate

http://www.biomedcentral.com/content/supplementary/1750-1326-9-33-S1.pdf
http://www.biomedcentral.com/content/supplementary/1750-1326-9-33-S2.pdf


Landel et al. Molecular Neurodegeneration 2014, 9:33 Page 14 of 18
http://www.molecularneurodegeneration.com/content/9/1/33
(GTP); IFN-γ: Interferon gamma; IPA: Ingenuity pathway analysis;
ISG: Interferon stimulated gene; M1: One month; M4: Four months; M6: Six
months; M9: Nine months; MHC: Major histocompatibility complex;
NADPH: Reduced form of NADP+, i.e. nicotinamide adenine dinucleotide
phosphate; NOX: NADPH oxidase complex; PSEN1: Presenilin-1;
Thy1: Thymocyte antigen 1.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
VL isolated the RNA, helped perform the microarray assay, analyzed the
results and wrote the manuscript. KB bred and genotyped the mice, and
carried out the qPCR analysis. BL performed the microarray assay. IV and SR
participated in interpreting the data and writing the manuscript. PB analyzed
the microarray data and wrote the manuscript. FF designed and coordinated
the study, and helped to draft the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This work was supported by CNRS, Aix Marseille University and grants from
the French National Agency for Research (ANR) funding to FF, SR and MK
(ADHOC, TIMPAD, PREVENTAD) within the frame of the French Alzheimer’s
Plan. The work was also supported by grants from Fondation de l’Avenir to
FF, and by “Fonds Européen de Développement Régional” FEDER in PACA.
VL was recipient of a doctoral fellowship from the French Ministry of
Research. KB was granted a research associate fellowship by the French
Alzheimer’s Plan.

Author details
1Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France.
2APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie,
13385 Marseille, France. 3Aix Marseille Université, TAGC UMR 1090, 13288
Marseille, France. 4INSERM, TAGC UMR 1090, 13288 Marseille, France.

Received: 23 June 2014 Accepted: 27 August 2014
Published: 11 September 2014

References
1. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A,

Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R: Intraneuronal beta-
amyloid aggregates, neurodegeneration, and neuron loss in transgenic
mice with five familial Alzheimer's disease mutations: potential factors in
amyloid plaque formation. J Neurosci 2006, 26:10129–10140.

2. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease:
progress and problems on the road to therapeutics. Science 2002,
297:353–356.

3. Hong S, Quintero-Monzon O, Ostaszewski BL, Podlisny DR, Cavanaugh WT,
Yang T, Holtzman DM, Cirrito JR, Selkoe DJ: Dynamic analysis of amyloid
beta-protein in behaving mice reveals opposing changes in ISF versus
parenchymal Abeta during age-related plaque formation. J Neurosci 2011,
31:15861–15869.

4. Masters CL, Selkoe DJ: Biochemistry of amyloid beta-protein and amyloid
deposits in Alzheimer disease. Cold Spring Harb Perspect Biol Med 2012,
2:a006262.

5. Mucke L, Selkoe DJ: Neurotoxicity of amyloid beta-protein: synaptic and
network dysfunction. Cold Spring Harb Perspect Biol Med 2012, 2:a006338.

6. Rice HC, Young-Pearse TL, Selkoe DJ: Systematic evaluation of candidate
ligands regulating ectodomain shedding of amyloid precursor protein.
Biochemistry 2013, 52:3264–3277.

7. Kimura R, Ohno M: Impairments in remote memory stabilization precede
hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse
model. Neurobiol Dis 2009, 33:229–235.

8. Crouzin N, Baranger K, Cavalier M, Marchalant Y, Cohen-Solal C, Roman FS,
Khrestchatisky M, Rivera S, Feron F, Vignes M: Area-specific alterations of
synaptic plasticity in the 5XFAD mouse model of Alzheimer's disease:
dissociation between somatosensory cortex and hippocampus. PLoS One
2013, 8:e74667.

9. Devi L, Alldred MJ, Ginsberg SD, Ohno M: Sex- and brain region-specific
acceleration of beta-amyloidogenesis following behavioral stress in a
mouse model of Alzheimer's disease. Mol Brain 2010, 3:34.
10. Devi L, Ohno M: Phospho-eIF2alpha level is important for determining
abilities of BACE1 reduction to rescue cholinergic neurodegeneration
and memory defects in 5XFAD mice. PLoS One 2010, 5:e12974.

11. Joyashiki E, Matsuya Y, Tohda C: Sominone improves memory
impairments and increases axonal density in Alzheimer's disease model
mice, 5XFAD. Int J Neurosci 2011, 121:181–190.

12. Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O: Motor deficits,
neuron loss, and reduced anxiety coinciding with axonal degeneration
and intraneuronal Abeta aggregation in the 5XFAD mouse model of
Alzheimer's disease. Neurobiol Aging 2012, 33:196. e129-140.

13. Devi L, Ohno M: Mechanisms that lessen benefits of beta-secretase
reduction in a mouse model of Alzheimer's disease. Transl Psychiatry
2013, 3:e284.

14. Girard SD, Baranger K, Gauthier C, Jacquet M, Bernard A, Escoffier G,
Marchetti E, Khrestchatisky M, Rivera S, Roman FS: Evidence for early
cognitive impairment related to frontal cortex in the 5XFAD mouse
model of Alzheimer's disease. J Alzheimers Dis 2013, 33:781–796.

15. Giannoni P, Gaven F, de Bundel D, Baranger K, Marchetti-Gauthier E, Roman
FS, Valjent E, Marin P, Bockaert J, Rivera S, Claeysen S: Early administration
of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis
and behavioral deficits in the 5XFAD mouse model of Alzheimer's
disease. Front Aging Neurosci 2013, 5:96.

16. Hongpaisan J, Sun MK, Alkon DL: PKC epsilon activation prevents synaptic
loss, Abeta elevation, and cognitive deficits in Alzheimer's disease
transgenic mice. J Neurosci 2011, 31:630–643.

17. Zhang XM, Cai Y, Xiong K, Cai H, Luo XG, Feng JC, Clough RW, Struble RG,
Patrylo PR, Yan XX: Beta-secretase-1 elevation in transgenic mouse
models of Alzheimer's disease is associated with synaptic/axonal
pathology and amyloidogenesis: implications for neuritic plaque
development. Eur J Neurosci 2009, 30:2271–2283.

18. Shao CY, Mirra SS, Sait HB, Sacktor TC, Sigurdsson EM: Postsynaptic
degeneration as revealed by PSD-95 reduction occurs after advanced
Abeta and tau pathology in transgenic mouse models of Alzheimer's
disease. Acta Neuropathol 2011, 122:285–292.

19. Ohno M: Failures to reconsolidate memory in a mouse model of
Alzheimer's disease. Neurobiol Learn Mem 2009, 92:455–459.

20. Girard SD, Jacquet M, Baranger K, Migliorati M, Escoffier G, Bernard A,
Khrestchatisky M, Feron F, Rivera S, Roman FS, Marchetti E: Onset of
hippocampus-dependent memory impairments in 5XFAD transgenic
mouse model of Alzheimer's disease. Hippocampus 2014, 24:762–772.

21. Crowe SE, Ellis-Davies GC: Spine pruning in 5xFAD mice starts on basal
dendrites of layer 5 pyramidal neurons. Brain Struct Funct 2014,
219:571–580.

22. Buskila Y, Crowe SE, Ellis-Davies GC: Synaptic deficits in layer 5 neurons
precede overt structural decay in 5xFAD mice. Neuroscience 2013,
254:152–159.

23. Eimer WA, Vassar R: Neuron loss in the 5XFAD mouse model of
Alzheimer's disease correlates with intraneuronal Abeta42 accumulation
and Caspase-3 activation. Mol Neurodegener 2013, 8:2.

24. Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y,
Yau V, Searles R, Mori M, Quinn J: Gene expression profiles of transcripts
in amyloid precursor protein transgenic mice: up-regulation of
mitochondrial metabolism and apoptotic genes is an early cellular
change in Alzheimer's disease. Hum Mol Genet 2004, 13:1225–1240.

25. Unger T, Korade Z, Lazarov O, Terrano D, Schor NF, Sisodia SS, Mirnics K:
Transcriptome differences between the frontal cortex and hippocampus
of wild-type and humanized presenilin-1 transgenic mice. Am J Geriatr
Psychiatry 2005, 13:1041–1051.

26. Mirnics K, Korade Z, Arion D, Lazarov O, Unger T, Macioce M, Sabatini M,
Terrano D, Douglass KC, Schor NF, Sisodia SS: Presenilin-1-dependent
transcriptome changes. J Neurosci 2005, 25:1571–1578.

27. Chen SQ, Cai Q, Shen YY, Wang PJ, Teng GJ, Zhang W, Zang FC: Age-
related changes in brain metabolites and cognitive function in APP/PS1
transgenic mice. Behav Brain Res 2012, 235:1–6.

28. Kim TK, Lee JE, Park SK, Lee KW, Seo JS, Im JY, Kim ST, Lee JY, Kim YH, Lee
JK, Han PL: Analysis of differential plaque depositions in the brains of
Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer
disease. Exp Mol Med 2012, 44:492–502.

29. Gatta V, D'Aurora M, Granzotto A, Stuppia L, Sensi SL: Early and sustained
altered expression of aging-related genes in young 3xTg-AD mice.
Cell death Disease 2014, 5:e1054.



Landel et al. Molecular Neurodegeneration 2014, 9:33 Page 15 of 18
http://www.molecularneurodegeneration.com/content/9/1/33
30. Kim KH, Moon M, Yu SB, Mook-Jung I, Kim JI: RNA-Seq analysis of frontal
cortex and cerebellum from 5XFAD mice at early stage of disease
pathology. J Alzheimers Dis 2012, 29:793–808.

31. Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauss A,
Sperling C, Wirths O, Albrecht M, Jensen LR, Kuss AW, Bayer TA:
Deciphering the molecular profile of plaques, memory decline and
neuron loss in two mouse models for Alzheimer's disease by deep
sequencing. Front Aging Neurosci 2014, 6:75.

32. Schwarzman AL, Gregori L, Vitek MP, Lyubski S, Strittmatter WJ, Enghilde JJ,
Bhasin R, Silverman J, Weisgraber KH, Coyle PK, Michael GZ, Talafous J,
Eisenberg M, Saunders AM, Roses AD, Goldaberg D: Transthyretin
sequesters amyloid beta protein and prevents amyloid formation.
Proc Natl Acad Sci U S A 1994, 91:8368–8372.

33. Choi SH, Leight SN, Lee VM, Li T, Wong PC, Johnson JA, Saraiva MJ,
Sisodia SS: Accelerated Abeta deposition in APPswe/PS1deltaE9 mice
with hemizygous deletions of TTR (transthyretin). J Neurosci 2007,
27:7006–7010.

34. Li H, Wang B, Wang Z, Guo Q, Tabuchi K, Hammer RE, Sudhof TC, Zheng H:
Soluble amyloid precursor protein (APP) regulates transthyretin and
Klotho gene expression without rescuing the essential function of APP.
Proc Natl Acad Sci U S A 2010, 107:17362–17367.

35. Stein TD, Johnson JA: Lack of neurodegeneration in transgenic mice
overexpressing mutant amyloid precursor protein is associated with
increased levels of transthyretin and the activation of cell survival
pathways. J Neurosci 2002, 22:7380–7388.

36. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama
Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T,
Nishikawa S, Nagai R, Nabeshima YI: Mutation of the mouse klotho gene
leads to a syndrome resembling ageing. Nature 1997, 390:45–51.

37. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness
OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz
J, Kahn CR, Rosenblatt KP, Kuro-o M: Suppression of aging in mice by the
hormone Klotho. Science 2005, 309:1829–1833.

38. Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi
K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato
R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama
T, Fujimuri T, Nabeshima Y: Alpha-Klotho as a regulator of calcium
homeostasis. Science 2007, 316:1615–1618.

39. Xu L, Sapolsky RM, Giffard RG: Differential sensitivity of murine astrocytes
and neurons from different brain regions to injury. Exp Neurol 2001,
169:416–424.

40. Zabel MK, Kirsch WM: From development to dysfunction: microglia and
the complement cascade in CNS homeostasis. Ageing Res Rev 2013,
12:749–756.

41. Mosher KI, Wyss-Coray T: Microglial dysfunction in brain aging and
Alzheimer's disease. Biochem Pharmacol 2014, 88:594–604.

42. Streit WJ, Xue QS: Human CNS immune senescence and
neurodegeneration. Curr Opin Immunol 2014, 29C:93–96.

43. Devi L, Ohno M: Genetic reductions of beta-site amyloid precursor
protein-cleaving enzyme 1 and amyloid-beta ameliorate impairment of
conditioned taste aversion memory in 5XFAD Alzheimer's disease model
mice. Eur J Neurosci 2010, 31:110–118.

44. Devi L, Ohno M: Mitochondrial dysfunction and accumulation of the
beta-secretase-cleaved C-terminal fragment of APP in Alzheimer's
disease transgenic mice. Neurobiol Dis 2012, 45:417–424.

45. Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M: Tumor
necrosis factor-alpha triggers a cytokine cascade yielding postoperative
cognitive decline. Proc Natl Acad Sci U S A 2010, 107:20518–20522.

46. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M,
Lever IJ, Nanchahal J, Fanselow MS, Maze M: Role of interleukin-1beta in
postoperative cognitive dysfunction. Ann Neurol 2010, 68:360–368.

47. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG: Does
neuroinflammation fan the flame in neurodegenerative diseases?
Mol Neurodegener 2009, 4:47.

48. Kadhim HJ, Duchateau J, Sebire G: Cytokines and brain injury: invited
review. J Intensive Care Med 2008, 23:236–249.

49. Laird MD, Vender JR, Dhandapani KM: Opposing roles for reactive
astrocytes following traumatic brain injury. Neuro-Signals 2008,
16:154–164.

50. Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T: Modulation
of immune response by head injury. Injury 2007, 38:1392–1400.
51. Schmidt OI, Heyde CE, Ertel W, Stahel PF: Closed head injury–an
inflammatory disease? Brain Res Brain Res Rev 2005, 48:388–399.

52. Bao F, Shultz SR, Hepburn JD, Omana V, Weaver LC, Cain DP, Brown A:
A CD11d monoclonal antibody treatment reduces tissue injury and
improves neurological outcome after fluid percussion brain injury in rats.
J Neurotrauma 2012, 29:2375–2392.

53. Jana M, Palencia CA, Pahan K: Fibrillar amyloid-beta peptides activate
microglia via TLR2: implications for Alzheimer's disease. J Immunol 2008,
181:7254–7262.

54. Hillmann A, Hahn S, Schilling S, Hoffmann T, Demuth HU, Bulic B,
Schneider-Axmann T, Bayer TA, Weggen S, Wirths O: No improvement after
chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer's
disease. Neurobiol Aging 2012, 33:833. e839-850.

55. McGeer PL, Akiyama H, Itagaki S, McGeer EG: Activation of the classical
complement pathway in brain tissue of Alzheimer patients. Neurosci Lett
1989, 107:341–346.

56. Fonseca MI, Chu SH, Berci AM, Benoit ME, Peters DG, Kimura Y, Tenner AJ:
Contribution of complement activation pathways to neuropathology
differs among mouse models of Alzheimer's disease. J Neuroinflammation
2011, 8:4.

57. Daborg J, Andreasson U, Pekna M, Lautner R, Hanse E, Minthon L, Blennow
K, Hansson O, Zetterberg H: Cerebrospinal fluid levels of complement
proteins C3, C4 and CR1 in Alzheimer's disease. J Neural Transm 2012,
119:789–797.

58. Bergamaschini L, Canziani S, Bottasso B, Cugno M, Braidotti P, Agostoni A:
Alzheimer's beta-amyloid peptides can activate the early components of
complement classical pathway in a C1q-independent manner. Clin Exp
Immunol 1999, 115:526–533.

59. Bergamaschini L, Donarini C, Gobbo G, Parnetti L, Gallai V: Activation of
complement and contact system in Alzheimer's disease. Mech Ageing Dev
2001, 122:1971–1983.

60. Kulkarni AP, Kellaway LA, Lahiri DK, Kotwal GJ: Neuroprotection from
complement-mediated inflammatory damage. Ann N Y Acad Sci 2004,
1035:147–164.

61. Zanjani H, Finch CE, Kemper C, Atkinson J, McKeel D, Morris JC, Price JL:
Complement activation in very early Alzheimer disease. Alzheimer Dis
Assoc Disord 2005, 19:55–66.

62. Crehan H, Hardy J, Pocock J: Microglia, Alzheimer's disease, and
complement. Int J Alzheimers Dis 2012, 2012:983640.

63. Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K,
Kosaka K: Occurrence of T cells in the brain of Alzheimer's disease and
other neurological diseases. J Neuroimmunol 2002, 124:83–92.

64. Town T, Tan J, Flavell RA, Mullan M: T-cells in Alzheimer's disease.
Neruomol Med 2005, 7:255–264.

65. Rodrigues MC, Sanberg PR, Cruz LE, Garbuzova-Davis S: The innate and
adaptive immunological aspects in neurodegenerative diseases.
J Neuroimmunol 2014, 269:1–8.

66. Baglio F, Saresella M, Preti MG, Cabinio M, Griffanti L, Marventano I,
Piancone F, Calabrese E, Nemni R, Clerici M: Neuroinflammation and brain
functional disconnection in Alzheimer's disease. Front Aging Neurosci
2013, 5:81.

67. Shen Y, Yang L, Li R: What does complement do in Alzheimer's disease?
Old molecules with new insights. Transl Neurodegeneration 2013, 2:21.

68. Veerhuis R: Histological and direct evidence for the role of complement
in the neuroinflammation of AD. Curr Alzheimer Res 2011, 8:34–58.

69. Eyles D, Almeras L, Benech P, Patatian A, Mackay-Sim A, McGrath J, Feron F:
Developmental vitamin D deficiency alters the expression of genes
encoding mitochondrial, cytoskeletal and synaptic proteins in the adult
rat brain. J Steroid Biochem Mol Biol 2007, 103:538–545.

70. Barrey E, Mucher E, Jeansoule N, Larcher T, Guigand L, Herszberg B,
Chaffaux S, Guerin G, Mata X, Benech P, Canale M, Alibert O, Maltere P,
Gidrol X: Gene expression profiling in equine polysaccharide storage
myopathy revealed inflammation, glycogenesis inhibition, hypoxia and
mitochondrial dysfunctions. BMC Vet Res 2009, 5:29.

71. Terrier B, Joly F, Vazquez T, Benech P, Rosenzwajg M, Carpentier W, Garrido
M, Ghillani-Dalbin P, Klatzmann D, Cacoub P, Saadoun D: Expansion of
functionally anergic CD21-/low marginal zone-like B cell clones in
hepatitis C virus infection-related autoimmunity. J Immunol 2011,
187:6550–6563.

72. Barrey E, Jayr L, Mucher E, Gospodnetic S, Joly F, Benech P, Alibert O, Gidrol
X, Mata X, Vaiman A, Guerin G: Transcriptome analysis of muscle in horses



Landel et al. Molecular Neurodegeneration 2014, 9:33 Page 16 of 18
http://www.molecularneurodegeneration.com/content/9/1/33
suffering from recurrent exertional rhabdomyolysis revealed energetic
pathway alterations and disruption in the cytosolic calcium regulation.
Anim Genet 2012, 43:271–281.

73. Mille-Hamard L, Billat VL, Henry E, Bonnamy B, Joly F, Benech P, Barrey E:
Skeletal muscle alterations and exercise performance decrease in
erythropoietin-deficient mice: a comparative study. BMC Med Genet
2012, 5:29.

74. Almeras L, Eyles D, Benech P, Laffite D, Villard C, Patatian A, Boucraut J,
Mackay-Sim A, McGrath J, Feron F: Developmental vitamin D deficiency
alters brain protein expression in the adult rat: implications for
neuropsychiatric disorders. Proteomics 2007, 7:769–780.

75. Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N,
Suzumura A: Production of interferon-gamma by microglia. Mult Scler
2006, 12:558–564.

76. Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde TE,
Das P: IFN-gamma promotes complement expression and attenuates
amyloid plaque deposition in amyloid beta precursor protein transgenic
mice. J Immunol 2010, 184:5333–5343.

77. Zhang J, Ke KF, Liu Z, Qiu YH, Peng YP: Th17 cell-mediated neuroinflammation
is involved in neurodegeneration of abeta1-42-induced Alzheimer's disease
model rats. PLoS One 2013, 8:e75786.

78. Lynch MA: The impact of neuroimmune changes on development of
amyloid pathology; relevance to Alzheimer's disease. Immunology 2013,
141:292–301.

79. Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I: Abeta(1)(−)(4)
(2)-RAGE interaction disrupts tight junctions of the blood–brain
barrier via Ca(2)(+)-calcineurin signaling. J Neurosci 2012,
32:8845–8854.

80. Browne TC, McQuillan K, McManus RM, O'Reilly JA, Mills KH, Lynch MA:
IFN-gamma Production by amyloid beta-specific Th1 cells promotes
microglial activation and increases plaque burden in a mouse model of
Alzheimer's disease. J Immunol 2013, 190:2241–2251.

81. O'Keefe GM, Nguyen VT, Benveniste EN: Regulation and function of class II
major histocompatibility complex, CD40, and B7 expression in
macrophages and microglia: Implications in neurological diseases.
J Neurovirol 2002, 8:496–512.

82. Tooyama I, Kimura H, Akiyama H, McGeer PL: Reactive microglia express
class I and class II major histocompatibility complex antigens in
Alzheimer's disease. Brain Res 1990, 523:273–280.

83. Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G:
Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's
disease. Mol Neurodegener 2008, 3:13.

84. Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L,
Bucala R, Shachar I: Macrophage migration inhibitory factor induces B cell
survival by activation of a CD74-CD44 receptor complex. J Biol Chem
2008, 283:2784–2792.

85. Matsuda S, Matsuda Y, D'Adamio L: CD74 interacts with APP and
suppresses the production of Abeta. Mol Neurodegener 2009, 4:41.

86. Bekpen C, Xavier RJ, Eichler EE: Human IRGM gene "to be or not to be".
Semin Immunopathol 2010, 32:437–444.

87. Taylor GA, Feng CG, Sher A: p47 GTPases: regulators of immunity to
intracellular pathogens. Nat Rev Immunol 2004, 4:100–109.

88. He S, Wang C, Dong H, Xia F, Zhou H, Jiang X, Pei C, Ren H, Li H, Li R, Xu H:
Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a
mouse model of stroke. Autophagy 2012, 8:1621–1627.

89. Wang C, Wang C, Dong H, Wu XM, Wang C, Xia F, Li G, Jia X, He S, Jiang X,
Li H, Xu H: Immune-related GTPase Irgm1 exacerbates experimental
auto-immune encephalomyelitis by promoting the disruption of
blood–brain barrier and blood-cerebrospinal fluid barrier. Mol Immunol
2013, 53:43–51.

90. Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA: The p47 GTPase
Lrg-47 (Irgm1) links host defense and hematopoietic stem cell
proliferation. Cell Stem Cell 2008, 2:83–89.

91. Zhao YO, Khaminets A, Hunn JP, Howard JC: Disruption of the Toxoplasma
gondii parasitophorous vacuole by IFNgamma-inducible immunity-
related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog
2009, 5:e1000288.

92. Xu H, Wu ZY, Fang F, Guo L, Chen D, Chen JX, Stern D, Taylor GA, Jiang H,
Yan SS: Genetic deficiency of Irgm1 (LRG-47) suppresses induction of
experimental autoimmune encephalomyelitis by promoting apoptosis of
activated CD4+ T cells. FASEB J 2010, 24:1583–1592.
93. Henry SC, Daniell XG, Burroughs AR, Indaram M, Howell DN, Coers J,
Starnbach MN, Hunn JP, Howard JC, Feng CG, Sher A, Taylor GA: Balance
of Irgm protein activities determines IFN-gamma-induced host defense.
J Leukoc Biol 2009, 85:877–885.

94. Hunn JP, Howard JC: The mouse resistance protein Irgm1 (LRG-47):
a regulator or an effector of pathogen defense? PLoS Pathog 2010,
6:e1001008.

95. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di
Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo
E, Ballabio A: A gene network regulating lysosomal biogenesis and
function. Science 2009, 325:473–477.

96. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S,
Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC,
Ballabio A: TFEB links autophagy to lysosomal biogenesis. Science 2011,
332:1429–1433.

97. Zhang X, Garbett K, Veeraraghavalu K, Wilburn B, Gilmore R, Mirnics K,
Sisodia SS: A role for presenilins in autophagy revisited: normal
acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci
2012, 32:8633–8648.

98. Li Y, Xu C, Schubert D: The up-regulation of endosomal-lysosomal
components in amyloid beta-resistant cells. J Neurochem 1999,
73:1477–1482.

99. Pasternak SH, Callahan JW, Mahuran DJ: The role of the endosomal/
lysosomal system in amyloid-beta production and the pathophysiology
of Alzheimer's disease: reexamining the spatial paradox from a
lysosomal perspective. J Alzheimers Dis 2004, 6:53–65.

100. Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R: The
Alzheimer's beta-secretase BACE1 localizes to normal presynaptic
terminals and to dystrophic presynaptic terminals surrounding amyloid
plaques. Acta Neuropathol 2013, 126:329–352.

101. Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H:
Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid
pathology and restores lysosomal acidification and mammalian target of
rapamycin activity in the Alzheimer disease mouse model: in vivo and
in vitro studies. J Biol Chem 2013, 288:1295–1306.

102. Nixon RA, Cataldo AM, Mathews PM: The endosomal-lysosomal system of
neurons in Alzheimer's disease pathogenesis: a review. Neurochem Res
2000, 25:1161–1172.

103. Gobin SJ, Peijnenburg A, Keijsers V, van den Elsen PJ: Site alpha is crucial
for two routes of IFN gamma-induced MHC class I transactivation:
the ISRE-mediated route and a novel pathway involving CIITA. Immunity
1997, 6:601–611.

104. Muhlethaler-Mottet A, Di Berardino W, Otten LA, Mach B: Activation of the
MHC class II transactivator CIITA by interferon-gamma requires cooperative
interaction between Stat1 and USF-1. Immunity 1998, 8:157–166.

105. Driggers PH, Ennist DL, Gleason SL, Mak WH, Marks MS, Levi BZ, Flanagan
JR, Appella E, Ozato K: An interferon gamma-regulated protein that binds
the interferon-inducible enhancer element of major histocompatibility
complex class I genes. Proc Natl Acad Sci U S A 1990, 87:3743–3747.

106. Weisz A, Kirchhoff S, Levi BZ: IFN consensus sequence binding protein
(ICSBP) is a conditional repressor of IFN inducible promoters. Int Immunol
1994, 6:1125–1131.

107. Perez C, Wietzerbin J, Benech PD: Two cis-DNA elements involved in
myeloid-cell-specific expression and gamma interferon (IFN-gamma)
activation of the human high-affinity Fc gamma receptor gene: a novel
IFN regulatory mechanism. Mol Cell Biol 1993, 13:2182–2192.

108. Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, Inoue
K: IRF8 is a critical transcription factor for transforming microglia into a
reactive phenotype. Cell Reports 2012, 1:334–340.

109. Tamura T, Yanai H, Savitsky D, Taniguchi T: The IRF family transcription
factors in immunity and oncogenesis. Annu Rev Immunol 2008,
26:535–584.

110. Wang H, Morse HC 3rd: IRF8 regulates myeloid and B lymphoid lineage
diversification. Immunol Res 2009, 43:109–117.

111. Marquis JF, Kapoustina O, Langlais D, Ruddy R, Dufour CR, Kim BH,
MacMicking JD, Giguere V, Gros P: Interferon regulatory factor 8 regulates
pathways for antigen presentation in myeloid cells and during
tuberculosis. PLoS Genet 2011, 7:e1002097.

112. Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD, Stevenson
MM, Gros P: Irf8-regulated genomic responses drive pathological
inflammation during cerebral malaria. PLoS Pathog 2013, 9:e1003491.



Landel et al. Molecular Neurodegeneration 2014, 9:33 Page 17 of 18
http://www.molecularneurodegeneration.com/content/9/1/33
113. Ju XS, Ruau D, Jantti P, Sere K, Becker C, Wiercinska E, Bartz C, Erdmann B,
Dooley S, Zenke M: Transforming growth factor beta1 up-regulates
interferon regulatory factor 8 during dendritic cell development. Eur J
Immunol 2007, 37:1174–1183.

114. Suzumura A, Sawada M, Yamamoto H, Marunouchi T: Transforming growth
factor-beta suppresses activation and proliferation of microglia in vitro.
J Immunol 1993, 151:2150–2158.

115. Frei K, Lins H, Schwerdel C, Fontana A: Antigen presentation in the central
nervous system. The inhibitory effect of IL-10 on MHC class II expression
and production of cytokines depends on the inducing signals and the
type of cell analyzed. J Immunol 1994, 152:2720–2728.

116. Qin L, Crews FT: NADPH oxidase and reactive oxygen species contribute
to alcohol-induced microglial activation and neurodegeneration.
J Neuroinflammation 2012, 9:5.

117. Qin L, Liu Y, Hong JS, Crews FT: NADPH oxidase and aging drive
microglial activation, oxidative stress, and dopaminergic
neurodegeneration following systemic LPS administration. Glia 2013,
61:855–868.

118. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM: Increased lipid
peroxidation precedes amyloid plaque formation in an animal model of
Alzheimer amyloidosis. J Neurosci 2001, 21:4183–4187.

119. Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ: Mitochondrial
alterations near amyloid plaques in an Alzheimer's disease mouse
model. J Neurosci 2013, 33:17042–17051.

120. Hong I, Kang T, Yoo Y, Park R, Lee J, Lee S, Kim J, Song B, Kim SY, Moon M,
Yun KN, Kim JY, Mook-Jung I, Park YM, Choi S: Quantitative proteomic a
nalysis of the hippocampus in the 5XFAD mouse model at early stages
of Alzheimer's disease pathology. J Alzheimers Dis 2013, 36:321–334.

121. Errante PR, Frazao JB, Condino-Neto A: The use of interferon-gamma
therapy in chronic granulomatous disease. Recent Patents Anti-infective
drug Dis 2008, 3:225–230.

122. Manea A, Tanase LI, Raicu M, Simionescu M: Jak/STAT signaling pathway
regulates nox1 and nox4-based NADPH oxidase in human aortic smooth
muscle cells. Arterioscler Thromb Vasc Biol 2010, 30:105–112.

123. Marchi LF, Sesti-Costa R, Ignacchiti MD, Chedraoui-Silva S, Mantovani B: In
vitro activation of mouse neutrophils by recombinant human interferon-
gamma: increased phagocytosis and release of reactive oxygen species
and pro-inflammatory cytokines. Int Immunopharmacol 2014, 18:228–235.

124. Matute JD, Arias AA, Dinauer MC, Patino PJ: p40phox: the last NADPH
oxidase subunit. Blood Cells Mol Dis 2005, 35:291–302.

125. Tian W, Li XJ, Stull ND, Ming W, Suh CI, Bissonnette SA, Yaffe MB, Grinstein
S, Atkinson SJ, Dinauer MC: Fc gamma R-stimulated activation of the
NADPH oxidase: phosphoinositide-binding protein p40phox regulates
NADPH oxidase activity after enzyme assembly on the phagosome.
Blood 2008, 112:3867–3877.

126. Utomo A, Cullere X, Glogauer M, Swat W, Mayadas TN: Vav proteins in
neutrophils are required for FcgammaR-mediated signaling to Rac
GTPases and nicotinamide adenine dinucleotide phosphate oxidase
component p40(phox). J Immunol 2006, 177:6388–6397.

127. Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T,
Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S:
Activation of NADPH oxidase in Alzheimer's disease brains. Biochem
Biophys Res Commun 2000, 273:5–9.

128. Abramov AY, Canevari L, Duchen MR: Beta-amyloid peptides induce
mitochondrial dysfunction and oxidative stress in astrocytes and death
of neurons through activation of NADPH oxidase. J Neurosci 2004,
24:565–575.

129. Ponomarev ED, Shriver LP, Dittel BN: CD40 expression by microglial cells is
required for their completion of a two-step activation process during
central nervous system autoimmune inflammation. J Immunol 2006,
176:1402–1410.

130. Wojtera M, Sobow T, Kloszewska I, Liberski PP, Brown DR, Sikorska B:
Expression of immunohistochemical markers on microglia in Creutzfeldt-
Jakob disease and Alzheimer's disease: morphometric study and review
of the literature. Folia Neuropathol 2012, 50:74–84.

131. Walker FR, Nilsson M, Jones K: Acute and chronic stress-induced disturbances
of microglial plasticity, phenotype and function. Curr Drug Targets 2013,
14:1262–1276.

132. Peress NS, Fleit HB, Perillo E, Kuljis R, Pezzullo C: Identification of Fc gamma
RI, II and III on normal human brain ramified microglia and on microglia
in senile plaques in Alzheimer's disease. J Neuroimmunol 1993, 48:71–79.
133. Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G: The Rac target
NADPH oxidase p67phox interacts preferentially with Rac2 rather than
Rac1. J Biol Chem 1996, 271:83–88.

134. Dorseuil O, Vazquez A, Lang P, Bertoglio J, Gacon G, Leca G: Inhibition of
superoxide production in B lymphocytes by rac antisense
oligonucleotides. J Biol Chem 1992, 267:20540–20542.

135. Rogers J, Lue LF: Microglial chemotaxis, activation, and phagocytosis of
amyloid beta-peptide as linked phenomena in Alzheimer's disease.
Neurochem Int 2001, 39:333–340.

136. Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS,
Graves MC, Gustavson A, Sayre J, Sofroni E, Suarez T, Chiapelli F, Bernard G:
Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer's
disease patients. J Alzheimers Dis 2005, 7:221–232. discussion 255–262.

137. Koenigsknecht J, Landreth G: Microglial phagocytosis of fibrillar beta-
amyloid through a beta1 integrin-dependent mechanism. J Neurosci
2004, 24:9838–9846.

138. Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, Heine
H, Penke B, Neumann H, Fassbender K: LPS receptor (CD14): a receptor for
phagocytosis of Alzheimer's amyloid peptide. Brain 2005, 128:1778–1789.

139. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H,
Getachew R, Narasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton
J, Gambhir SS, Pollard JW, Wyss-Coray T: Colony-stimulating factor 1
receptor (CSF1R) signaling in injured neurons facilitates protection and
survival. J Exp Med 2013, 210:157–172.

140. Neumann H, Daly MJ: Variant TREM2 as risk factor for Alzheimer's disease.
N Engl J Med 2013, 368:182–184.

141. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E,
Cruchaga C, Sassi C, Kauwe JS, Lupton MK, Ryten M, Brown K, Lowe J, Ridge
PG, Hammer MB, Wakutani Y, Hazrati L, Proitsi P, Newhouse S, Lohmann E,
Erginel-Unaltuna N, Medway C, Hanagasi H, Troakes C, Gurvit H, Bilgic B, Al-
Sarraj S, Benitez B, Cooper B, Carrell D, et al: TREM2 variants in Alzheimer's
disease. N Engl J Med 2013, 368:117–127.

142. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J,
Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H,
Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas
C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A,
Stefansson K: Variant of TREM2 associated with the risk of Alzheimer's
disease. N Engl J Med 2013, 368:107–116.

143. Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H: TREM2-
transduced myeloid precursors mediate nervous tissue debris clearance
and facilitate recovery in an animal model of multiple sclerosis. PLoS Med
2007, 4:e124.

144. Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M,
Panina-Bordignon P: Blockade of TREM-2 exacerbates experimental
autoimmune encephalomyelitis. Eur J Immunol 2007, 37:1290–1301.

145. Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T:
TREM2 is upregulated in amyloid plaque-associated microglia in aged
APP23 transgenic mice. Glia 2008, 56:1438–1447.

146. Hamerman JA, Tchao NK, Lowell CA, Lanier LL: Enhanced Toll-like receptor
responses in the absence of signaling adaptor DAP12. Nat Immunol 2005,
6:579–586.

147. Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE,
Lanier LL: Cutting edge: inhibition of TLR and FcR responses in
macrophages by triggering receptor expressed on myeloid cells
(TREM)-2 and DAP12. J Immunol 2006, 177:2051–2055.

148. Vardy ER, Rice PJ, Bowie PC, Holmes JD, Grant PJ, Hooper NM: Increased
circulating insulin-like growth factor-1 in late-onset Alzheimer's disease.
J Alzheimers Dis 2007, 12:285–290.

149. Freude S, Schilbach K, Schubert M: The role of IGF-1 receptor and insulin
receptor signaling for the pathogenesis of Alzheimer's disease: from
model organisms to human disease. Curr Alzheimer Res 2009, 6:213–223.

150. Pang Y, Zheng B, Campbell LR, Fan LW, Cai Z, Rhodes PG: IGF-1 can either
protect against or increase LPS-induced damage in the developing rat
brain. Pediatr Res 2010, 67:579–584.

151. Ryu BR, Ko HW, Jou I, Noh JS, Gwag BJ: Phosphatidylinositol 3-kinase-
mediated regulation of neuronal apoptosis and necrosis by insulin and
IGF-I. J Neurobiol 1999, 39:536–546.

152. Davila D, Torres-Aleman I: Neuronal death by oxidative stress involves
activation of FOXO3 through a two-arm pathway that activates stress
kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell
2008, 19:2014–2025.



Landel et al. Molecular Neurodegeneration 2014, 9:33 Page 18 of 18
http://www.molecularneurodegeneration.com/content/9/1/33
153. Madathil SK, Carlson SW, Brelsfoard JM, Ye P, D'Ercole AJ, Saatman KE:
Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1
Protects Hippocampal Neurons and Reduces Behavioral Deficits
following Traumatic Brain Injury in Mice. PLoS One 2013, 8:e67204.

154. Repovic P, Benveniste EN: Prostaglandin E2 is a novel inducer of
oncostatin-M expression in macrophages and microglia. J Neurosci 2002,
22:5334–5343.

155. Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL: Oncostatin M is a
neuroprotective cytokine that inhibits excitotoxic injury in vitro and
in vivo. FASEB J 2006, 20:2369–2371.

156. Ganesh K, Das A, Dickerson R, Khanna S, Parinandi NL, Gordillo GM, Sen CK,
Roy S: Prostaglandin E(2) induces oncostatin M expression in human
chronic wound macrophages through Axl receptor tyrosine kinase
pathway. J Immunol 2012, 189:2563–2573.

157. Park KW, Nozell SE, Benveniste EN: Protective role of STAT3 in NMDA and
glutamate-induced neuronal death: negative regulatory effect of SOCS3.
PLoS One 2012, 7:e50874.

158. Sleegers K, Brouwers N, Van Broeckhoven C: Role of progranulin as a
biomarker for Alzheimer's disease. Biomark Med 2010, 4:37–50.

159. Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, Burkhardt M,
Kulkarni V, Crispino J, Hering H, Hutton M: Progranulin is a
chemoattractant for microglia and stimulates their endocytic activity.
Am J Pathol 2011, 178:284–295.

160. Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y, Lin EA,
Kong L, Su J, Yin F, Ding AH, Zanin-Zhorov A, Dustin ML, Tao J, Craft J, Yin
Z, Feng JQ, Abramson SB, Yu XP, Liu CJ: The growth factor progranulin
binds to TNF receptors and is therapeutic against inflammatory arthritis
in mice. Science 2011, 332:478–484.

161. Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-
Bromage H, Tempst P, Wright CD, Ding A: Conversion of proepithelin to
epithelins: roles of SLPI and elastase in host defense and wound repair.
Cell 2002, 111:867–878.

162. Okura H, Yamashita S, Ohama T, Saga A, Yamamoto-Kakuta A, Hamada Y,
Sougawa N, Ohyama R, Sawa Y, Matsuyama A: HDL/apolipoprotein A-I
binds to macrophage-derived progranulin and suppresses its conversion
into proinflammatory granulins. J Atheroscler Thromb 2010, 17:568–577.

163. Bhattacharya S, Haertel C, Maelicke A, Montag D: Galantamine slows down
plaque formation and behavioral decline in the 5XFAD mouse model of
Alzheimer's disease. PLoS One 2014, 9:e89454.

164. ArrayExpress database. [www.ebi.ac.uk/arrayexpress]
165. Ingenuity Systems. [www.ingenuity.com]
166. Prediguard. [www.laboratoire-genex.fr]

doi:10.1186/1750-1326-9-33
Cite this article as: Landel et al.: Temporal gene profiling of the 5XFAD
transgenic mouse model highlights the importance of microglial
activation in Alzheimer’s disease. Molecular Neurodegeneration 2014 9:33.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.ebi.ac.uk/arrayexpress
http://www.ingenuity.com
http://www.laboratoire-genex.fr

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Temporal distribution of dysregulated genes reveals dramatic changes from M4 onwards
	DEG-related functions support alterations in inflammation pathways and behavior
	Establishment of neuroinflammation through activation of complement
	Altered expression of interferon gamma-induced genes
	Potential role of IRF8 in the expression of interferon gamma-regulated genes
	Involvement of NADPH oxidase (NOX) complex in microglial activation
	Microglial phagocytosis
	Other neuroprotective activities
	Limitations of the study

	Materials and methods
	Animals
	RNA isolation
	Real-time quantitative PCR (qPCR)
	Microarray assay
	Microarray data analysis

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

