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Abstract 

Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment 
and neurodegeneration. Extensive clinical and genomic studies have revealed biomarkers, risk factors, pathways, and 
targets of AD in the past decade. However, the exact molecular basis of AD development and progression remains 
elusive. The emerging single‑cell sequencing technology can potentially provide cell‑level insights into the disease. 
Here we systematically review the state‑of‑the‑art bioinformatics approaches to analyze single‑cell sequencing data 
and their applications to AD in 14 major directions, including 1) quality control and normalization, 2) dimension 
reduction and feature extraction, 3) cell clustering analysis, 4) cell type inference and annotation, 5) differential expres‑
sion, 6) trajectory inference, 7) copy number variation analysis, 8) integration of single‑cell multi‑omics, 9)  epigenomic 
analysis, 10) gene network inference, 11) prioritization of cell subpopulations,  12) integrative analysis of human and 
mouse sc‑RNA‑seq data, 13) spatial transcriptomics, and 14) comparison of  single cell AD mouse model studies and 
single cell human AD studies. We also address challenges in using human postmortem and mouse tissues and outline 
future developments in single cell sequencing data analysis. Importantly, we have implemented our recommended 
workflow for each major analytic direction and applied them to a large single nucleus RNA‑sequencing (snRNA‑seq) 
dataset in AD. Key analytic results are reported while the scripts and the data are shared with the research community 
through  GitHub. In summary, this comprehensive review provides insights into various approaches to analyze single 
cell sequencing data and offers specific guidelines for study design and a variety of analytic directions. The review and 
the accompanied software tools will serve as a valuable resource for studying cellular and molecular mechanisms of 
AD, other diseases, or biological systems at the single cell level.
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Background
Alzheimer’s disease (AD) is one of the most devastating 
forms of dementia common in the elderly, estimated to 
affect over 6.2 million individuals in the United States 
and 24 million worldwide [1, 2]. Clinically, AD patients 
present amnestic multidomain progressive dementia. 
A more definitive AD diagnosis requires evidence of 
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amyloid-beta (Aβ) plaques and Tau neurofibrillary tangle 
(NFT) accumulation within the neurodegenerative brain 
[3].

AD is a highly complex and heterogeneous disease 
caused by various pathophysiologic mechanisms. AD can 
be classified by heritable cause and age of onset, i.e., rare 
familial AD, sporadic early-onset (EOAD), and late-onset 
(LOAD) [4]. While AD often progresses through a period 
of mild cognitive impairment (MCI), not all patients with 
MCI develop AD, hinting at protective or causal factors 
that may differentially affect subsets of patients even 
within traditional subtypes. Postmortem evaluations 
revealed that AD brains may include depositions of addi-
tional pathologies (i.e., beyond Aβ and phosphorylated 
tau), such as Lewy bodies, alpha-synuclein, transactive 
response DNA-binding protein and/or vascular-related 
brain lesions [5]. Further, the recently discovered five 
molecular subtypes of AD were associated with unique 
molecular signatures and distinct sets of brain cell type-
specific key regulators [6].

Understanding the cell-type-specific changes and reg-
ulations at the single-cell level will enable us to decode 
the molecular mechanisms underlying the pathophysi-
ologic processes contributing to dementia. Indeed, 
recent single-cell sequencing studies of aged and AD 
brains revealed a series of brain cell clusters involved 
in AD [7, 8]. However, these studies primarily focused 
on clustering and differential analyses but did not fully 
exploit the single-cell sequencing data to explore, for 
example, pseudo-temporal dynamics. To mitigate these 
gaps, we reviewed the state-of-the-art bioinformat-
ics approaches to analyze single-cell transcriptome 
(single-cell/−nuclei RNA sequencing (sc/snRNA-seq)) 
and epigenome (single-cell assay for transposase-acces-
sible chromatic sequencing (scATAC-seq)) in AD, and 
integrate single-cell features with abundantly available 

AD bulk sequencing data. Specifically, we reviewed 
the following 15 topics (Fig.  1): 1) quality control and 
normalization, 2) dimension reduction and feature 
extraction, 3) cell clustering analysis, 4) cell type infer-
ence and annotation, 5) differential expression for 
disease gene identification, 6) trajectory inference, 7) 
copy number variation (CNV) analysis, 8) integration 
of single-cell multi-omics (e.g., expression associated 
quantitative trait loci (eQTL) and expression associated 
CNVs (eCNVs)), 9) epigenomic (scATAC-seq) analysis, 
10) gene network inference, 11) prioritization of cell 
clusters, 12) integration of single cell and bulk RNA-
seq data, 13) spatial single-cell transcriptomics, and 14) 
comparison between single cell AD mouse model stud-
ies and single cell human AD studies. For future direc-
tions, we discuss experimental validation strategies of  
single-cell based findings, and translations to drug dis-
coveries. Notably, we implemented our recommended 
workflow for each major analytic direction and applied 
them to a large snRNA-seq dataset in AD. Key analytic 
results were reported while the scripts and the data 
were shared with the research community through 
GitHub (see the section "Availability of data and soft-
ware code" for the details). We hope that the guidelines 
will accelerate AD research by leveraging the power of 
single-cell sequencing.

Overview of single‑cell sequencing study design
High-throughput sequencing of bulk tissue measures 
the average signals of various cell types, thus falls short 
of dissecting the cellular heterogeneity in brain tissues. 
To address this issue, single-cell sequencing has been 
recently developed to elucidate the cell-type specificity 
and identify the transcriptome, epigenome, and genome 
changes among various cellular populations. Recently, 

Fig. 1 Overview of the bioinformatics approaches to analyze scRNA‑seq, scATAC‑seq, and spatial transcriptomics data with a focus on scRNA‑seq 
data. scRNA‑seq and scATAC‑seq data (A) go through appropriate quality control (QC) to remove outliers and cells with low‑quality sequencing 
data (B), followed by normalization (B). QC‑ed and normalized data are then used for dimension reduction, and feature extraction (C) clustering 
analysis to identify cell clusters (D). Marker genes for each cell cluster will then be identified to infer its association to known or novel cell type 
(E). Meanwhile, differential gene expression is performed between cell groups of interest (e.g., AD and Control) in each cell cluster to identify 
gene expression changes associated with the disease (F). Trajectory inference can be performed on all cells, cells in each cluster or the cells from 
multiple closely related cell clusters to infer cellular dynamics during developmental or disease progression (G). Copy number variations (CNVs) 
can also be inferred from scRNA‑seq data (H). Integration of gene expression and genomic (SNPs & CNVs) data leads to the identification of 
expression‑associated quantitative trait loci (eQTLs) (I). Epigenomic analysis by scATAC‑seq can study gene expression regulatory elements in open 
chromatin regions (J) and will be detailed in Fig. 7. Gene coexpression and causal networks will be constructed for each cell cluster or multiple 
closely related cell clusters, while priors from eQTLs and epigenomic analyses can be developed for assisting causal network inference (K). Cell 
clusters can be prioritized based on the number of differentially expressed genes between disease and control across all cell clusters (L). scRNA‑seq 
data can also be integrated with bulk RNA‑seq data to robustly identify key molecular changes and network structures (M). Finally, cell cluster‑based 
networks will be analyzed to prioritize key subnetworks (e.g., coexpressed gene modules) and potential network regulators for a disease (e.g., AD) 
under study (N). Novel cell clusters, key subnetworks and key driver genes can be validated through single‑cell spatial transcriptomics analysis 
which offers more insights into spatially distributed molecular signals in a system or a disease under study (O). Key findings from human AD single 
cell sequencing data will be validated in AD mouse models and integration of mouse and human single cell data is critical for informing the 
correspondence between AD mouse models and human AD (P)

(See figure on next page.)
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scRNA-seq studies have been widely conducted in many 
research fields, such as oncology [9], developmental biol-
ogy [10], immunology [11], and neurosciences [12]. Sev-
eral protocols have been developed to measure mRNAs 
and non-coding RNAs from single cells, such as Smart-
seq [13], Quartz-seq [14], CEL-seq [15], RamDa-seq [16], 
Drop-seq [17], sci-RNA-seq [18] and Chromium (10X 
Genomics).

Single-cell genome and epigenome including single-
cell ChIP-seq [19] and scATAC-seq have also emerged 
to investigate the genomic and epigenomic status 
associated with the transcriptome of cells [20, 21]. 
Single-cell genome sequencing captures de novo ger-
mline mutations, somatic mutations, and copy number 
alterations to dissect the genetic heterogeneity at the 
cellular level [22]. scATAC-seq is useful in analyzing 

Fig. 1 (See legend on previous page.)
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the patterns of open chromatin, a hallmark of active 
regulatory elements, in single cells. Moreover, several 
advanced spatial sequencing techniques (for example, 
10x Visium) have included spatial dimensions of the 
molecular features at a near-cellular resolution [23, 
24]. Although the sequencing protocols have improved 
platforms and reagent kits to increase the detection 
sensitivity, the sequencing coverage is still limited, and 
present challenges to robustly analyzing single-cell 
sequencing data.

Several considerations should be taken into account 
for designing single-cell sequencing studies. The first 
one is tissue requirement. For example, whole single-cell 
RNA sequencing requires fresh samples, thus requiring 
the study to implement a seamless process from obtain-
ing patients’ consent, acquiring the autopsy samples, to 
preparing a single-cell library even sequencing within a 
few hours [7, 25]. On the contrary, fresh frozen samples 
in a tissue repository can be preserved for a substantial 
amount of time, providing the freedom to select sam-
ples with relevant clinical, molecular characteristics such 
as gender and APOE genotype, and their nuclei can be 
isolated for snRNA-seq data analysis. The second consid-
eration is cellular coverage. Several cell types, especially 
neurons, are underrepresented in scRNA-seq dataset, 
due to technical issues relating to size selection during 
the tissue dissociation process [26, 27], while snRNA-seq 
covers more cell types [28, 29]. However, in selecting sin-
gle-cell or single-nuclei based approaches for transcrip-
tomic profiling, it is important to recognize that each has 
its strengths and limitations. Brakken et  al. compared 
these two approaches side by side by generating matched 
datasets from the mouse visual cortex [30]. They found 
that scRNA-seq analysis has the strengths of unbiased 
transcriptomic profiling, a higher gene coverage rate, 
and a higher-power for distinguishing similar cell types. 
However, the tissue dissociation and cell-isolation proto-
cols are too harsh for certain cell types, leading to signifi-
cant under-representation. In contrast, snRNA-seq has 
the strengths of less biased cellular coverage, resistance 
to cell isolation-associated perturbations, and applicabil-
ity to both fresh and archived frozen specimens. Single-
nuclei detected transcripts are also enriched for intronic 
reads, whereas the majority of the single-cell detected 
transcripts are from exons. Interestingly, the nuclear pro-
portion of total cellular mRNA varies significantly in a 
cell-type and cortical-layer-specific manner, although the 
biological significance of such variation is still unknown. 
However, Thrupp et al. [31] found that snRNA-seq data 
is depleted of an activated microglial subpopulation 
expressing the activation signature, including APOE, 
CST3, SPP1 and CD74, but the absence of the micro-
glial subpopulation was likely due to the low sequencing 

depth. Despite these differences, it is important to note 
that the overall cell-type landscapes captured by these 
two approaches are similar [30]. Power analysis is a criti-
cal step to rationalize scRNA-seq study  design to ensure 
robustness and reproducibility of scientific findings. In 
the companion GitHub repository (see the section "Avail-
ability of data and software code" for details), we provided 
a comprehensive review of the power analysis approaches 
for single cell studies and shared the script for applying a 
recommended approach to an AD snRNA-seq study. 

Different sequencing protocols are optimized for dif-
ferent biological aspects. PCR plate-based sequencing 
protocols (e.g. Smartseq2 [32], CEL-seq [15], and MARS-
seq [33]) capture cells through cell sorter or microfluid-
ics and offer high read depth per cell with less effective 
cell captures [34]. Thus, these protocols provide high 
sensitivity to discriminate subpopulations of similar 
cell types with subtle differences [35]. On the contrary, 
droplet-based protocols (e.g. InDrop [36], Drop-seq [17], 
and 10x Chromium [37]) capture thousands to millions 
of cells with low sequencing depths per cell [34], and can 
offer exogenous spike-ins to handle technical noises sys-
tematically [38, 39]. Large numbers of cells in these pro-
tocols enable the detection of rare cell populations such 
as neuronal subtypes [40]. However, Alsema et  al. 2020 
report that single-cell sequencing of FACS sorted micro-
glia by droplet-based 10x Chromium and PCR plate-
based Smart-seq2 only displayed marginal differences, 
most likely arising from technical noises by plate-based 
protocols [25]. These indicate targeted studies for cell 
type of interest may not require large-sequencing depths 
to uncover distinct sub-populations. So far, the droplet-
based 10x Chromium snRNA-seq, which can sequence 
over 10,000 nuclei per library, is the most widely used 
sequencing platform for human cohort studies including 
AD (Table 1). 

Quality control and normalization
Data quality control (QC) and normalization are the 
essential steps to remove systematic sources of technical 
variations introduced during the single-cell data genera-
tion process while preserving the true biological varia-
tions. Due to the low amount of RNA in a single cell and 
the stochastic sampling process of sequencing, scRNA-
seq data are much noisier than bulk-tissue sequenc-
ing data [46, 47]. Excessive zero or near-zero counts by 
the so-called “dropout” events [48], often lead to highly 
sparse data, shadow the biological variations in indi-
vidual cells and require dedicated QC metrics to ensure 
that only high-quality data are selected for downstream 
analysis. Starting from a count matrix of unique molecu-
lar identifiers (UMIs), a typical data preprocessing work-
flow generally contains several steps for QC to remove 
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low-quality cells and genes, and normalize cell-specific 
biases.

Quality control on the cells
Two common quality measures are the number of 
expressed features (i.e., features detected with non-zero 
counts) and the library size (i.e., the sum of counts across 
all features). Violin plots are used to visualize the dis-
tribution of these cell-specific measures in each donor 
sample [49, 50]. Cells with very few expressed features 
or small library size indicate low RNA-capture efficiency 
and are hence considered poor quality. On the other 
hand, cells with abnormally a large number of expressed 
features suggest doublets or multiplets (i.e., two or more 
cells mistakenly captured as a single cell) [51], hypothe-
sizing that doublets or multiplets would have higher total 
RNA content (see below for a review of more elegant 
doublet detection methods). Thus, a lower and an upper 
bound for the number of expressed features can be speci-
fied for cell filtering. However, determining  the bounds 
for the number of expressed features or library size is not 
trivial as both biological and technical factors  need be 
taken into account. For example, sequencing with deeper 
depth leads to more reads and more expressed features, 
irrespective of the cell quality. Another filtering approach 
is to detect outliers. For instance, it has been proposed to 
remove cells with log-library size greater than 3 median 
absolute deviations (MADs) or  below the median log-
library size [52, 53].

The presence of doublets or multilets may severely 
confound the downstream analysis and interpretation. 
This can lead to, for example, spurious cell clusters, both 
false positive and false negative prediction of cell cluster 
markers or disease genes, biased cell-state trajectories, 
and misrepresented gene-gene correlation structure and 
gene regulatory networks [54–56]. Doublet detection can 
be facilitated through appropriate experimental design. 
These include species mixing (mixing of cells from differ-
ent species), mixing of cells from samples with different 
genotypes or genetic labels, and cell “hashing” (pooling 
of cells from separately barcoded samples) (see [55] for 
a summary of the experimental assay-based methods, 
including their limitations, for doublet detection). How-
ever, most of the existing AD single-cell datasets have 
not implemented the experimental design features. This 
review will focus on the model-based doublet detection 
approaches that are applicable to all AD scRNA-seq data-
sets currently available.

Assuming that doublets have more RNAs than singlets, 
the simplest approach is to threshold overall expression 
content (such as the number of detected genes and total 
UMI counts) to classify cells with unusually high UMI or 
gene number as potential doublets [51, 55]. However, the 
assumption that cells contain similar amount of RNA is 
unlikely to be true due to diverse cell types or different 
cell cycle states. Another simple approach is to look for 
cells expressed with marker genes of more than one dis-
tinct cell type [51, 55, 57]. However, this requires expert 

Table 1 Summary of study design and single‑cell RNA sequencing platforms in various human cohort studies of AD. PMID: PubMed id

Study PMID Platform Study design Note

Grubman et al. 2019 [41] 31768052 10x isolated single‑nuclei RNA 
sequencing

6 AD, 6 controls from tissue reposi‑
tory

Mathys et al. 2019 [8] 31042697 10x isolated single‑nuclei RNA 
sequencing

24 AD pathology, 24 no pathology 
from tissue repository

Alsema et al. 2020 [25] 33192286 10x single‑cell RNA sequencing 
and Smart‑seq2

FACS sorted microglia from 27 
autopsy samples within 6 h after 
death

10x scRNA‑seq and Smart‑seq2 
showed some differences, mainly 
small clusters suspectedly due to 
plate‑based protocols in Smart‑seq2.

Lau et al. 2020 [42] 32989152 10x isolated single‑nuclei RNA 
sequencing

12 AD and 8 control from tissue 
repository

Male and female ratio were balanced 
in AD and control

Nguyen et al. 2020 [43] 32840654 10x isolated single‑nuclei RNA 
sequencing

15 AD from tissue repository Samples were selected with varying 
APOE genotypes and pathologies, 
but matched for age and sex.

Gerrits et al. 2021 [44] 33609158 10x isolated single‑nuclei RNA 
sequencing

10 AD 10 AD samples representing Braak 
stages 0, 2 and 6, all APOE ε3/ε3 
genotypes

Morabito et al. 2021 [45] 34239132 10x isolated single‑nuclei RNA 
sequencing and ATAC sequencing

12 AD prefrontal cortex (PFC), 8 
control PFC

Olah et al. 2020 [7] 33257666 10x single‑cell RNA sequencing FACS sorted microglia from 10 AD, 
4 Mild Cognitive Impairment and 
3 temporal lobe epilepsy samples 
in DLPFC
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knowledge of the cell types and the associated markers in 
the data. There are more advanced and potentially more 
powerful computational algorithms for doublet detection 
in scRNA-seq data. In a recent benchmarking study, Xi 
and Li evaluated nine existing doublet detection meth-
ods [54], including Scrublet [55], scran/doubletCells 
[58], cxds [56], bcds [56], hybrid (combination of cxds 
and bcds) [56], DoubletDetection [59], DoubletFinder 
[60], Solo [61], and DoubletDecon [62]. Seven out of the 
eight standalone methods (except cxds which detects co-
expression of markers that are supposedly to be mutu-
ally exclusive in the same cell) first generate artificial 
doublets by mixing observed gene expression profiles 
from randomly selected droplet pairs. The major differ-
ence among these methods is the choice of embedding/
dimension reduction and classifier. Via a comprehensive 
benchmarking on 16 real datasets with experimentally 
annotated doublets and 112 realistic synthetic datasets, 
DoubletFinder showed the best prediction accuracy 
while cxds had the highest computational efficiency. 
However, one caveat of these computational algorithms is 
that they were designed to identify “neotypic” doublets, 
which consist of cells of distinct cell types, and hence dif-
ficult to capture “embedded” doublets that encapsulate 
cells from the same or highly similar cell types [55].

An important cell quality measure is the percentage 
of reads mapped to the mitochondrial genome in each 
library. As increased mitochondrial fraction indicates 
increased apoptosis, increased cell stress, and/or loss 
of cytoplasmic RNA from lysed cells [52, 63], cells with 
a high proportion of reads allocated to mitochondrial 
genomes are deemed poor-quality. A recent systematic 
survey of scRNA-seq data suggested that a mitochondrial 
proportion threshold of 10% is appropriate to distinguish 
between healthy and low-quality cells in most human tis-
sues, while in mouse tissues, the recommended thresh-
old is 5% [64]. However, just like the number of expressed 
features, selection of a threshold for  this parameter is 
highly dependent on tissue type and experimental set-
ting. For example, 30% of mitochondrial mRNA, which 
would otherwise indicate cell stress or apoptosis in tis-
sues with low energy need, is normal for a healthy heart 
muscle cell due to high energy demand [65, 66]. Mito-
chondrial transcripts are not expressed in nuclei. Yet, 
variable amounts of mitochondrial transcripts were asso-
ciated with the snRNA-seq data [8, 41, 42, 67, 68]. For 
example, in the first snRNA-seq transcriptomic analy-
sis of AD, the fraction of mitochondrial reads exhibited 
a highly skewed empirical distribution, with an elbow 
shape which distinctly separates cells with high and low 
ratios for further classification and removal by k-means 
clustering (k = 2) on the mitochondrial ratio [8].

Another source of noises in the droplet-based scRNA-
seq protocols (e.g., drop-seq or 10x Genomics Chro-
mium protocol) is the contamination of ambient RNAs 
(cell-free RNAs), which are released in the cell lysis 
from dead or apoptotic cells before droplet separa-
tion. As  ambient mRNAs are ubiquitous,  they increase 
background noise and  may significantly confound data 
quality and biological signal [69]. Several methods have 
been developed to remove the contribution of the ambi-
ent RNAs from each cell to recover the true molecular 
abundance. For example, the SoupX method estimates 
the ambient mRNA expression profile from empty drop-
lets and  the contamination fraction in each cell by mak-
ing use of known negative cell markers in an identified 
cell cluster, and then corrects the expression of each cell 
using the two paratemers [69]. There are other ambient 
RNA decontamination methods that do not require prior 
knowledge of negative cell markers, such as DecontX [70] 
which uses a Bayesian inference model to estimate and 
remove the background noise, and CellBender [71] which 
employs a deep generative model to remove the back-
ground noise from ambient RNA. In the mixed-sample 
multiplexing scRNA-seq design, where multiple samples 
of different genotypes are pooled, or in the presence of 
subclones, a method called Souporcell can demultiplex 
cells, identify doublets, and perform joint genotyping 
and ambient RNA amount estimation by modeling the 
allele counts of genetic variants available from the reads 
[72]. Ambient RNA detection and removal is an emerg-
ing area of research and just began to be included in the 
AD snRNA-seq studies [44, 73]. However, since the leak 
of cytoplasmic RNA by ruptured cells to the cell suspen-
sion is unavoidable by the isolation protocols, especially 
for the case of nuclei isolation from fresh frozen tissues, 
we expect incorporating the ambient RNA decontamina-
tion into the single cell data analysis pipeline will provide 
much cleaner downstream analysis in future applications 
of AD.

Quality control and filtering on genes
Genes with low abundance should be removed since they 
do not contain sufficient information for reliable down-
stream statistical analysis [74]. Thresholds can be set 
for  the number of cells expressing a  gene  or the  mean 
expression of a gene [52]. The cell number threshold 
could be very liberal (e.g., 2 cells in some of the published 
brain disease studies [8, 68]). Still, it is critical not to 
exceed the minimal cell cluster size that one may reason-
ably expect [75].

Further, depending on the downstream analysis, some 
feature categories such as non-coding genes may not be 
of interest and hence could be removed to reduce the 
data complexity [8]. Mitochondrially expressed genes 
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can be also discarded after cell QC in snRNA-seq data 
to avoid biases introduced during the nuclei isolation 
since mitochondrial transcripts are not expressed inside 
a nucleus [8, 67, 68].

Normalization
The observed single-cell read count data could be 
impacted by many biological and technical factors, 
including but not limited to sequencing depth, capture 
efficiency, and cell composition. Between-sample nor-
malization can remove these sample-specific biases and 
mitigate the batch effect. The simplest method is scal-
ing normalization, which corrects for sequencing depth 
difference by dividing the feature-level read counts by 
the library size (i.e., total read counts within each sam-
ple) and multiplying a constant value (e.g., 10,000). The 
library size corrected data is usually log-transformed 
after adding value 1 to prevent the logarithm of 0. This 
normalization strategy is implemented in popular tools 
like scanpy [50] and Seurat [76]. However, similar to 
bulk RNA-seq normalization, library size as a scaling 
factor is likely to bias towards highly expressed tran-
scripts. In the context of bulk RNA-seq, there are three 
most popular methods for robust scaling normalization, 
including 1) the trimmed mean of M-values (TMM) 
[77], which calculates scaling factors by trimming away 
genes with extreme fold changes between samples; 2) 
the upper-quartile (UQ) method [78], which uses per-
sample upper-quartile (75-th percentile) to scale counts; 
3) the relative log-expression (RLE) [79], which scales to 
a pseudo-reference derived from the geometric mean of 
gene counts across cells.

While these bulk-based methods are still widely used 
in scRNA-seq data [74, 80], the excessive zeros in the 
scRNA-seq data jeopardize their effectiveness in cal-
culating proper scaling factors. For example, the TMM 
method tends to overcorrect for the scaling factors [80] 
and the upper-quartile could be zero for many cells with 
low sequencing depth. Moreover, calculating the pseudo-
reference sample from the geometric mean across cells 
can be applied to only the potentially minimal number of 
genes with non-zero reads in every single cell [80]. Alter-
natively, the dropout reads can be imputed by assuming 
a mixture model that includes two latent probability dis-
tributions: the probability of the true expressed reads and 
dropout reads among the true expressed reads. These 
model-based methods include SAVER [81] (Poisson-
Gamma mixture model) and scImpute (Normal-Gamma 
mixture model) [82]. Markov Affinity-based Graph 
Imputation of Cells (MAGIC), on the other hand, uti-
lizes a diffusion kernel to identify similar cells in reduced 
dimension, and infer the dropout reads from the similar 
cells [83].

Several scRNA-seq-specific normalization methods 
have been developed and they can be primarily classi-
fied into two categories: 1) cell-based normalization by 
estimating a cell-specific global size factor to normalize 
all the genes in the same cell, and 2) gene-based nor-
malization by parametric modeling of individual genes. 
The scran package adopts the cell-based normalization 
approach by pooling the cells to estimate more robust 
size factors and avoid the impact of excessive zeros. Then 
pool-based size factors are “deconvolved” to yield cell-
specific factors [84]. In contrast, the gene-based nor-
malization methods, such as the SCnorm [85] and the 
Pearson residuals method SCTransform in the Seurat 
package [76], perform adjustments individually for each 
group of genes with different sequencing depths or dif-
ferent ranges of abundance levels. In addition to the cor-
rection for sequencing depth bias for different groups of 
genes, parametric modeling of count data can account 
for more complex technical or biological variations, such 
as batch effect, mitochondrial transcript fraction, cell 
cycle effect, cellular detection rate (fraction of detected 
genes), and the average number of counts per detected 
genes [86–89]. Moreover, cell-level and gene-level vari-
ations can be jointly modeled in a unified framework. 
For instance, for better separation of unwanted variation 
from biological signals in noisy, zero-inflated scRNA-
seq data, Risso et  al. proposed a Zero-Inflated Negative 
Binomial-based Wanted Variation Extraction (ZINB-
WaVE) method, which incorporates not only observed 
and unobserved sample-level but also gene-level covari-
ates (e.g., sequence length and GC content) [90].

Unwanted sources of variations such as batch effects 
should be adjusted using single-cell dedicated tools 
(e.g., MNN [91], CCA [92]), or general linear regres-
sion modeling tool (e.g., limma [93], ComBat [94]). Deep 
learning-based data denoising tools such as deep count 
autoencoder (DCA) [95] and single-cell variational infer-
ence (scVI) [96] are also attractive alternatives to handle 
unwanted variations in scRNA-seq.

Recommended workflow and application to AD
Figure  2 illustrates a workflow of preprocessing  sc/
snRNA-seq data, i.e., data  QC and normalization. For 
data QC, we recommend to first inspect the distribu-
tion of cell-level read count statistics, such as the total 
number of UMI counts, the number of detected genes, 
and the percentage of mitochondrial reads. If no sample 
presents dramatically different data quality, we expect 
to see similar cell-level data distribution across donors. 
Otherwise, we should check if the sample data quality 
difference is associated with any biological or techni-
cal variable. Then confounding technical variables could 
be taken into account in the data normalization. For 
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example, Seurat’s SCTransform normalization approach 
has an option “vars.to.regress” to regress out confound-
ing factors. To investigate if any particular variables play 
significant contribution to the cell-level gene expression 
variation, mixed model variance component analysis 
(such as implementation by the R package variancePar-
tition [97]) can be used to quantify the variance attrib-
utable to individual factors. For data normalization, we 
recommend evaluating several different methods. For 
example, start with the simplest approach of the global 
scaling by sequencing depth, and proceed to clustering 
and differential expression analysis (Sections  C, D, and 
E). Then compare the clustering results of the simple 
method with those from more advanced/complex meth-
ods. We favor the methods that lead to better separa-
tion of cell clusters with clear cell type annotations and 
biological meaningful signatures. In cases of combining 
multiple batches (or conditions) of single cell data where 
there is batch (or condition) specific cell clustering, an 
elegant integration method such as Seurat/CCA [92] and 
harmony [98] should be used after normalization of indi-
vidual datasets to minimize the batch difference.

In the first snRNA-seq analysis of control and  AD 
brains by Mathys et  al. [8], nuclei with fewer than 200 
detected genes or an abnormally high ratio of mitochon-
drial reads were removed. Mitochondrially encoded 
genes were removed and only protein-coding genes 
detected in at least 2 nuclei were selected. In AD snRNA-
seq study by Zhou et  al. [57], they selected the  nuclei 
with no more than 5% mitochondrial reads, 400–20,000 
UMIs and 400–7000 genes as determined by UMI/gene 
distribution. In another AD snRNA-seq study by Grub-
man et al., the nuclei with more than 10% of their UMIs 
assigned to mitochondrial genes or nuclei outside the 
5th and 95th percentiles in the number of detected genes 
or the number of UMIs were filtered out [41]. Similarly, 
AD snRNA-seq data analyses by Nguyen et al. [43], Lau 

et  al. [99], and Gerrits et  al. [44] also QCed their data 
by mitochondrial content and read count cutoffs, albeit 
with slightly different threshold values. In addition, Ger-
rits et al. conducted ambient RNA and cytoplasmic RNA 
identification to recover more cells from the raw data. In 
all these AD snRNA-seq studies, QCed data were nor-
malized by the total library size multiplied by a factor of 
10,000, except in the Zhou et al. study where they further 
regressed the total number of UMIs by a negative bino-
mial model.

Feature selection and dimension reduction
Dimension reduction is to identify a few latent variables 
that explain the most variance in data. Selecting the most 
informative gene features can improve the detection effi-
ciency and quality of the latent variables. The criteria for 
selecting informative genes include high biological vari-
ances with which the technical variance is modeled by 
the fitted relationship between mean and variance or 
spike-ins [74, 76, 84], and strong correlations with dif-
ferent cell types [17, 92] or known pathways (PAGODA) 
[100].

Then, the latent variables underlying the informative 
genes are identified by various techniques. Principal 
Component Analysis (PCA) is an efficient linear algo-
rithm applicable to large-scale matrices and preserves 
both local and long-range structures. Each principal 
component is an orthogonal vector to the rest, and their 
linear combinations can reconstruct the global transcrip-
tome. The PCA dimension can be determined by select-
ing top PCs accounting for 80 ~ 90% of total variances, 
PCs with significantly higher loading than bootstrapped 
data, or detecting an elbow point in the PC loading plot 
[92]. Several PCA variants have emerged to handle drop-
out reads via zero-inflated negative binomial distribution 
(ZINB) [90].

Fig. 2 A workflow of sc/snRNA‑seq data preprocessing. After obtaining the single cell or single nucleus sequencing count data, a series of 
quality control processes are conducted to filter low quality cells with unusually high or low gene coverage or sequencing depth, unusually high 
mitochondrial content, ambient RNA, and doublets etc. QCed count data is normalized by either a global scaling approach or advanced parametric 
modeling of the zero‑inflated count data distribution. If there exists batch or condition‑specific clustering of the cells, a data integration method like 
MNN and CCA can be used to correct the batch difference to ensure that cells of the same cell type cluster together
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t-distributed stochastic neighbor embedding (t-SNE) 
is a non-linear approach to preserve the local struc-
tures in the high-dimensional data [101]. Due to the 
emphasis on the local structure, t-SNE has gained 
popularity for effectively segregating clusters, but loses 
long-range structures [34]. Diffusion map (DM) is 
another popular non-linear method that projects both 
local and long-range structures to a lower dimension 
and is optimized to trace gradual changes in a tran-
scriptome [102]. However, DM and t-SNE are com-
putationally expensive. Recently, a computationally 
more scalable method, uniform manifold approxima-
tion, and projection (UMAP), has been proposed to 
include more long-range structures than t-SNE [103]. 
UMAP shows superior performances in segregating 
local clusters than t-SNE while recovering some of the 
global structures in scRNA-seq data [103]. The non-
linear projection methods (DM, t-SNE, UMAP) can 
be applied directly to the transcriptome or the PCs 
of interest to compress the data in 2 or 3 dimensions. 
It is worth noting that, however, they may distort the 
overall data structure and introduce non-biological 
artifacts [104] and are often recommended for visu-
alization purposes explicitly. Overall, dimension 
reduction is useful for visual inspections of cell-level 
patterns in AD. After data quality control and selec-
tion of highly variable genes with, for instance, sig-
nificant dispersions (FDR < 0.05), cells often aggregate 
into clusters with distinct molecular characteristics. 
Such patterns define not only cell types with respec-
tive marker gene expressions in the reduced dimen-
sions but also heterogeneous distributions of cells in 
AD samples in contrast with those from healthy con-
trol ones.

Unsupervised cell clustering analysis
Unsupervised cell clustering is a data-driven pro-
cess to group cells that share similar molecular pat-
terns in scRNA-seq reads. As this is an “unsupervised” 
approach, it minimizes the impact of external bias and 
serves to provide biological insights to understand dis-
tinct cell populations in the tissue of interest [34, 105].

The cell clustering approaches can be categorized 
into gene expression-based and genotype-based 
approaches. Gene expression-based approaches regard 
each cluster as a unique cell type or sub-population 
of a known cell type with a distinct expression pat-
tern. However, the high-dimensionality of single-cell 
transcriptome incurs the “curse of dimensionality”, 
enforcing distances among the homogeneous cells 
and making it impossible to distinguish distinct cell 
populations [34]. This often necessitates dimension 

reduction before the clustering analysis. Once clus-
ters are identified, the uniquely expressed genes in 
each cluster can serve as de novo markers to pinpoint, 
if any, the associated cell type and identify pathways 
underlying them [74, 92]. Further, gradual expression 
changes among these clusters may indicate temporal 
cellular dynamics to infer cell trajectory [106] or sub-
clonal evolution [107].

On the other hand, genotype-based cell clustering 
approaches utilize sequencing reads to identify single 
nucleotide variants (SNVs) in individual cells and group 
the cells bearing a similar set of SNVs. The resulting 
cell clusters can be utilized to demultiplex the reads for 
individuals with distinct genotypes [108–110], iden-
tify clonal populations [107], or screen doublets and 
ambient RNA contamination [72]. We have curated the 
overview of the single-cell clustering tools in Table 2.

Expression‑based clustering approaches
Clustering analysis is performed to infer coherent struc-
tures, often from the reduced dimensions. This involves 
evaluating cell-cell similarity and applying a suitable clus-
tering algorithm to detect a certain number of segregated 
clusters at some resolution(s). Traditional metrics and 
clustering algorithms from bulk RNA-sequencing data 
analysis have been readily adopted in scRNA-seq analy-
sis [105]. For example, SIMLR (Single-cell Interpretation 
via Multi-kernel LeaRning) utilizes Euclidean distance, 
Pearson’s correlation and Spearman’s correlation jointly 
to learn a consensus Gaussian kernel to detect diagonal 
block structures in these matrices [112]. Similarly, SC3 
performs consensus clustering by iteratively performing 
PCA and k-means on a small subset of principal com-
ponents, where Euclidean, Pearson, and Spearman cor-
relations jointly evaluate the cell distances [111]. While 
these consensus methods over multiple similarity matri-
ces identify robust clusters, their scalability is limited to 
~ 10,000 to ~ 20,000 cells as calculation of global similar-
ity, and consensus search are computationally expensive 
[111]. Density-based clustering (e.g. DBSCAN [113]) 
is a computationally affordable approach that searches 
for evenly distributed cells in lower dimension space by 
t-SNE or DM [9, 119]. However, these approaches may 
suffer stochasticity or distorted data structure due to the 
dimension reduction.

Graph‑theoretic approach
Graph-theoretic approaches do not require dimension 
reduction and can retain both local and long-range struc-
tures in the form of cell-cell networks. k-nearest neighbor 
(kNN) network has been a popular method to construct 
these cell-cell networks, linking a cell with k most similar 
or closest cells [74, 92, 114–116]. In scRNA-seq settings, 
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detection of kNN cells requires additional post-process-
ing to account for drop-out reads and sparse expressions. 
The optimal partition of kNN-graph is computed through 
quality metrics such as Girvan-Newman (GN) modular-
ity [120] or edge density measures. PhenoGraph con-
structs kNN network in Euclidean space, prunes spurious 
links by Jaccard index, then detects the coherent subnet-
works by optimizing GN modularity with Louvain’s algo-
rithm [114]. Louvain’s algorithm iteratively merges nodes 
to improve the global GN modularity, while the modu-
larity measure acts as a scale parameter to capture from 
scattered and subnetworks (low modularity) to coherent 
and large subnetworks (large modularity) [121]. Seurat’s 
popular scRNA-seq analysis workflow adopts a similar 
strategy to PhenoGraph and allows the users to specify 
the resolution of resulting clusters [92]. MetaCell, on 
the other hand, first  utilizes Spearman’s correlation in 
z-score transformed expression data, then applies a series 
of regularization steps to the adjacency matrix to remove 
spurious interactions, and finally  identifies subnetworks 
with high edge densities [116]. SNN-Cliq detects dense 
subnetworks via quasi-clique detection in the mutual 
nearest neighbor network [115].

Overall, the kNN approach has become popular as it 
does not make assumptions about the underlying geom-
etry. However, the choice of the kNN parameter has not 
reached a consensus in the field. Correlation between 
link weights and shared neighbors [114], global network 
connectivity [74] and convergence upon iterative regu-
larizations [116] are the imporant criteria adopted by 
the aforementioned clustering analysis approaches.

Deep neural network approach
Deep neural networks consist of several layers of encod-
ers mapping the input data into a low-dimensional 
manifold, from which the following decoder layers can 
reconstruct denoised, full-rank data. The applications 
in scRNA-seq include denoising single-cell transcrip-
tome [95, 122], batch effect removal [118], probabilistic 
modeling of gene expressions or cell types [95, 96, 123] 
or dimension reduction [96, 117, 118, 124]. In cell clus-
tering, these versatile functions of deep neural networks 
have become an attractive avenue to unveil complex cell 
architectures in scRNA-seq. Recent releases of Tensor-
Flow [125, 126] with massive GPU parallelization have 
boosted the application of deep neural network learn-
ing to dissect complex patterns in in high-dimensional 
scRNA-seq data.

Classically, compared to the original input, these deep 
neural network models are trained by minimizing the 
reconstructed data loss. However, naïve model learn-
ing in this way could lead to over-fitting where non-
biological sources of errors (e.g., drop-out reads, low 

coverage) in scRNA-seq contribute differently to the 
data noises [122]. Deep count autoencoder (DCA) and 
single-cell variational inference (scVI) define the recon-
struction error as the log-likelihood of the noise model 
such as ZINB to denoise and impute the drop-out reads. 
The denoised data are utilized to infer cell clusters. 
scVI performs k-means clustering in the denoised low-
dimensional latent space [96]. Similarly, scVI uses deep 
generative, variational autoencoder [127] with Gaussian 
mixture model to identify cell clusters and offer a statis-
tically interpretable framework for downstream analyses 
[117]. On the contrary, DESC is a model-free approach in 
which a neural network generates a low-dimensional rep-
resentation of the input data by minimizing the recon-
struction loss [118]. An iterative clustering  approach is 
to combine Louvain’s algorithm and cluster refinement to 
improve cluster purity [118].

Overall, deep neural network-based approaches offer a 
promising avenue to model non-linear patterns in single-
cell transcriptomes, with computational scalability and 
flexibility to adapt different single-cell transcriptome 
models. However, they also face similar challenges as 
other approaches, such as adequate feature selections and 
choice of the ‘right’ models for single-cell transcriptome.

Genotype‑based approaches
RNA reads from scRNA-seq provide a unique opportu-
nity to infer SNVs per cell to demultiplex for individual 
samples [108–110], or cluster cells to trace clonal evo-
lution [107] or genotype distributions [72]. However, 
challenges in scRNA-seq variant calling lurk from RNA-
splicing, low transcript abundance, allelic drop-out, 
higher error rate from reverse transcription, incomplete 
transcript coverage, and 3′- or 5′-end bias in coverages 
[128, 129]. To handle these challenges, the pre-process-
ing involves splice-aware alignment (e.g., STAR, mini-
map2), in conjunction with mpileup in samtools to detect 
variants present in low-coverage regions [72, 129]. To 
further enhance the confidence in the detected variants, 
pre-compiled variants from external data sets such as 
whole-genome sequencing (WGS) from bulk samples are 
used to detect the reads bearing the alternate alleles with 
VarTrix [72, 129].

scSplit [109], demuxlet [110] and Vireo [108] are tools 
dedicated to demultiplex mixed reads from individuals 
with known (demuxlet) or unknown genotypes (scSplit, 
Vireo). They are capable of detecting the doublets as 
outliers by the allele fraction model, which specifies the 
expected range of observed alternate alleles in singlet 
cells. On the other hand, Souporcell [72] and DENDRO 
[107] are specialized in clustering cells with the variant 
matrix to identify subclones and heterogeneity in the 
cell populations. Souporcell leverages mixture models 
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to infer centroids in the alternate allele fraction space 
[72]. DENDRO is tuned more specifically for identify-
ing sub-clones by measuring genetic divergence between 
the cells. ZINB models the allelic expressions to account 
for drop-out reads, and different degrees of genetic dif-
ferences are utilized to construct a phylogeny tree across 
the cells, where each branching point characterizes sub-
clonal expansion [107].

Evaluation of cell clustering quality
Unsupervised cell clustering is an essential component 
of single-cell transcriptome data analysis, and has been 
increasingly applied to single-cell transcriptomes [130]. 
However, there is no consensus on evaluating the clus-
ter qualities to identify the best set of clusters reflecting 
the underlying geometry and biology in scRNA-seq. In 
the clustering analysis, the quality of clusters is evaluated 
by comparing with external gold-standard information 
(external validation) or the internal geometry in the data 
(internal validation) [131]. Internal validation evaluates 
intra-cluster compactness and inter-cluster separabil-
ity using various indices such as Dunn’s index [132] and 
Davies-Bouldin index [133] that define different aspects 
of the underlying data geometry [134], and then deter-
mines the optimal number of clusters [134]. On the other 
hand, external validation evaluates how well the clusters 
capture relevant information outside the analyzed data. 
External data can be gold-standard clusters that a clus-
tering algorithm must reproduce (e.g., known subtypes, 
simulated data with known clusters) [135, 136]. Their 
concordances can be evaluated by mutual information 
[137] or adjusted Rand index [134, 138].

As a rule of thumb, a good clustering analysis for 
scRNA-seq data in AD should reflect major cell popula-
tions with robust over-expression of the markers [26, 42, 
74, 139], mix cells from different batches of samples [92], 
and capture key pathways associated with AD patholo-
gies [8, 140] such as immune response, synaptic transmis-
sions and myelination. Furthermore, the reproducibility 

of the identified clusters should be examined by cross-
validation or bootstrapping approaches [7], concordant 
cell populations in animal models [140–142] or respec-
tive bulk cohorts [7, 9, 140].

Applications to AD
Several early scRNA-seq studies leveraged brain cells 
from preclinical disease models to understand cell archi-
tectures in neurodegenerative brains under controlled 
environments. In these studies, cell clustering analysis 
identified catalogs of distinct cell populations in mouse 
brains [119, 141], microglial subpopulations from brains 
undergoing neurodegeneration in mice and humans [139, 
140], and differentially regulated neuronal stem cell sub-
population in AD model zebrafish [142].

Studies on the single-cell transcriptome of neurode-
generative human brains have emerged to pinpoint cell 
populations associated with AD-associated traits. Dar-
manis et al. 2015 sequenced 466 cells from healthy adult 
temporal lobe tissue [26]. Gaussian mixture clustering 
in t-SNE space revealed major brain cell types and dis-
tinct neuronal subpopulations with adult-brain-specific 
MHC-I expressions compared to fetal brains [26]. Olah 
et  al. 2020 analyzed 16,242 cells from fresh prefrontal 
cortex samples from AD and healthy controls [7]. The 
study performed iterative Louvain’s clustering on differ-
ent combinations of the first 15 PCs to identify robust 
microglial subpopulations depleted in AD [7].

The first phase of unsupervised clustering may be 
limited in resolution and overlook underlying fine clus-
tering structures. Several studies biologically guided 
sub-clustering in major cell types to dissect distinct sub-
populations. With this strategy, Lau et al. 2020 identified 
43 unique cell clusters from 169,496 nuclei from pre-
frontal cortical samples of postmortem AD and control 
brains [42]. These clusters included loss of protective 
glial cells and enriched angiogenic endothelial cells in 
AD brains [42]. Similarly, Mathys et al. 2019 performed 
two-stage Louvain’s clustering on kNN on 80,660 nuclei 

Fig. 3 Recommended workflow of feature selection, dimension reduction, and clustering, and applications in AD. A Recommended workflow of 
dimension reduction and unsupervised clustering analysis of AD scRNA‑seq data. Software tools are provided for each step. B Technical variance 
vs biological variance plot from the ROSMAP snRNA‑seq data. The red dots depict genes with significantly greater biological variance than the 
technical variance (FDR < 0.05) and the top 20 most significant genes are labeled. C PC versus percentage of the variance explained. Vertical lines 
indicate recommended number of PCs from different workflows (red: PC denoising workflow from scran, blue: elbow point from Seurat, green: 
default number of PCs in Seurat). D UMAP plot of snRNA‑seq from ROSMAP cohort. Clustering by PhenoGraph implemented in Seurat is marked by 
numeric labels. The cell types identified by marker gene expressions in (E) are highlighted as different border colors with relevant cell type name 
labels (Ast: astrocyte; End, endothelial; Ex: excitatory neurons; In: inhibitory neurons; Mic, microglia; Oli, oligodendrocytes; Opc: oligodendrocytes 
progenitor cells), and AD pathology (Healthy ‑ green, early AD – yellow, late AD ‑ red) are highlighted as different point colors. E dot plots of brain 
cell type markers showing their cluster‑wise expressions. Clusters on the y‑axis are ordered according to their proximity in the UMAP plot in (D). F 
Proportions of cells at different AD stages. FET is performed to evaluate whether the cells from each AD stage are enriched in each cell cluster. As 
significant enrichment is based on a cutoff of 0.05 for corrected FET p‑value. In the plot, red dots represent the cases with fold enrichment (FE) > 1.3

(See figure on next page.)
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from post mortem prefrontal cortices of 24 AD patients 
with varying pathology and 24 control subjects [8], and 
identified sub-clusters associated with AD-related traits 
and female over-representation in the AD-associated 
sub-clusters [8].

Recommended workflow: from feature selection, dimension 
reduction to clustering
This section illustrates the overall recommended 
workflow from feature selection to clustering analysis 
(Fig. 3A) and the scripts for these analyses can be found 

Fig. 3 (See legend on previous page.)
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in the companion GitHub repository (see the section 
"Availability of data and software code" for details). For 
feature selection, gene dispersion, the gene-wise devia-
tion from the fitted relationship between mean and var-
iance from log-normalized expressions, can serve as the 
quality metrics for informative features [52] (Fig.  3A). 
However, in many single-cell AD studies, the cells 
are confounded with many ‘undesired’ variables (e.g. 
batches, varying sample quality, different sample prepa-
ration procedures), shadowing the meaningful biologi-
cal signals, and the effects of these undesired variables 
should be blocked during the gene dispersion modeling 
[91]. We analyzed the gene dispersions in the  snRNA-
seq data from the ROSMAP cohort, consisting of post-
mortem brain tissues from 48 individuals with varying 
AD pathology [8] (Fig. 3B). Using scran workflow, indi-
vidual-wise dispersions were first calculated, then sum-
marized into a combined dispersion per gene. Overall, 
genes with significant dispersions with FDR < 0.05 
exhibit high biological variances compared to the tech-
nical variances as modeled by the mean-variance curve. 
This is exemplified by VCAN, an oligodendrocyte pro-
genitor cell marker [143], and APOE, whose polymor-
phism is a major genetic risk determinant of AD [144] 
and a marker for astrocyte and activated microglia [8] 
(Fig. 3B).

Then, log-normalized gene expressions across the genes 
with significant dispersion should be used to perform 
dimension reduction by PCA. Alternatively, data integra-
tion workflows (e.g. CCA [92], MNN [91] and Harmony 
[98]) offer adjusted features for undesired batch vari-
ables, and PCA can be applied to them. Although PCA is 
not a prerequisite for several down-stream analyses (e.g. 
deep learning-based clustering), PCA offers a time-cost 
effective option to identify a few key variables in high-
dimensional data, and have been adopted routinely in 
popular scRNA-seq workflows such as scran [52], Seu-
rat [92] and scanpy [50]. During PCA, determining the 
number of PCs is crucial, and several criteria such as the 
elbow in explained variance curve, correlations to tech-
nical variance, or PCs with significant variances when 
randomly permuted should be examined (see Fig.  3C). 
Among these criteria, random permutation-based evalu-
ation (e.g., Jackstraw statistics in Seurat) is computation-
ally expensive, and may not be suitable for large-scale 
scRNA-seq data sets (number of cells > 10,000). Instead, 
the simple elbow detection in the explained variance 
curve (blue line in Fig. 3C) can be effective without huge 
computational burden.

Then, the clustering analysis identifies cells with coher-
ent expression patterns (i.e. expression-based clusters). 
Depending on the nature of the method, the selected 

gene expression features may be used directly (e.g., 
autoencoder-based methods), otherwise, the selected 
PCs should be utilized for methods relying on cell-cell 
distance metrics (e.g. kNN-based methods, k-means 
clustering). While deep learning-based methods can 
simultaneously handle undesired variables and capture 
non-linear patterns [118], they often require GPU-ena-
bled parallel computation capacity. Thus, in the absence 
of such high-computation power, we recommend kNN-
based methods which can capture local structures and 
non-linear patterns via complex network topology. Then, 
the selected PCs can be embedded on the lower dimen-
sions, usually 2- or 3-dimensional space via UMAP to 
visualize the resulting clusters (Fig. 3D). To evaluate the 
clusters, the cell clusters associated with similar brain 
cell types such as excitatory/inhibitory neurons, astro-
cytes, oligodendrocytes, and microglia should express 
the respective cell type markers and be located in prox-
imity as demonstrated in the ROSMAP cohort examples 
in Fig. 3D-E.

To further assess the biological significance of cell 
clusters in AD, enrichment of cells from various AD 
pathology (e.g. Braak staging, CERAD score, cognitive 
declines, AD pathology diagnosis) can guide pinpoint-
ing potential key cell populations underlying AD. We 
demonstrated enrichments of cells from healthy controls 
(no pathology), early AD (early pathology) and late AD 
(late pathology) from analyzing the ROSMAP snRNA-
seq data (Fig. 3F) by Fisher’s Exact Test (FET). Here we 
used the sample pathology status defined in the original 
study by Mathys et  al. [8]. Specifically, AD-pathology 
means increased AD pathological measurements such 
as β-amyloid (Aβ) while no-pathology represents no or 
very low AD pathological measurements. Based upon the 
degree of amyloid neurofibrillary tangle burdens, AD-
pathology is further classified into two subgroups includ-
ing early (modest burden) and late pathology stage AD 
pathology (higher burden). With a stringent threshold 
of 0.05 for corrected FET p-value < 0.05 and enrichment 
fold change (EFC) > 2, it readily uncovers over-repre-
sented cell populations in severe AD such as cluster 3 
(an oligodendrocyte subpopulation), cluster 18 (micro-
glial subpopulation), and cluster 16 (inhibitory neuron 
subpopulation).

In contrast to the expression-based clustering, the 
genotype-based clustering methods can facilitate several 
data quality control concerns when raw reads are avail-
able. For instance, cell clusters with distinct genotypes 
represent cells from different individuals and provide a 
systematic way to evaluate the agreement with the clini-
cal annotations [145]. Further, doublet cells can be dis-
cerned via leveraging the allele fraction model (Fig. 3A).
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Cell type inference and annotation
An essential goal of clustering analysis is to characterize 
the identity of the cells within each cluster. Marker genes 
can characterize a cluster with biologically meaningful 
functions and inform respective cell types. For example, 
the cell types in the human brains can be annotated by 
interrogating the expression patterns of known marker 
genes: NRGN (excitatory neurons), GAD1 (inhibitory 
neurons), AQP4 (astrocytes), MBP (oligodendrocytes), 
CSF1R and CD74 (microglia), VCAN (oligodendrocyte 
progenitor cells), FLT1 (endothelial cells), and AMBP 
(pericytes) [8].

The drawback of the marker gene-based method is that 
the markers are often limited to major cell types, hinder-
ing the annotation of novel cell clusters or cell subclus-
ters with unknown biological functions. To overcome 
this drawback, an alternative approach is to use reference 
signatures derived from existing single-cell datasets [146, 
147]. To find the best-matched cell type, the de novo clus-
ter marker genes can be compared with the signatures 
from the reference single-cell databases by enrichment 
test or overlapping statistics. The de novo cluster marker 
genes can be defined as the up-regulated genes in a clus-
ter of interest against the rest clusters through differential 
expression (DE) analysis (see  the Differential expression 
for disease gene identification section below). For large 
single-cell datasets, an iteration of clustering and sub-
clustering analyses may be needed to reveal the structure 
of cell clusters. Various automated cell type annotation 
tools have been developed to assist with cell type annota-
tion. For example, scQuery is a web server that predicts 
cell types based on over 500 different scRNA-seq experi-
ments [148]. Garnett and scmap allow users to build their 
own databases or train new cell classifiers to classify cells 
of interest [149, 150]. These automated annotation tools 
can be combined with the marker gene-based methods 
to facilitate the annotation of large complex single-cell 
datasets.

Differential expression for disease gene identification
DE analysis is useful to discover unique gene expression 
profiles in novel cell clusters or under disease conditions. 
In scRNA-seq experiments, DE analysis is presented with 
additional challenges such as low read depth per cell, the 
dropout event [151], and multimodality in gene expres-
sion values [152]. As the sequenced tissues consist of cells 
from different types at different states, the heterogeneity 
leads to variable distributions of gene expression in dif-
ferent cells. Moreover, the stochastic nature of transcrip-
tion may introduce variability to gene expression levels 
[153].

A variety of DE methods have been developed to 
model the dropout events and the multimodal nature 

of scRNA-seq data. For example, MAST employs a 
generalized linear model (GLM) and considers the 
dropouts with a bimodal distribution [89]. Monocle 
employs a Tobit model to account for dropout events 
and fits the data with a generalized additive model 
(GAM) [89]. SCDE models the gene expression as a 
mixture of ZINB distributions and applies a Bayesian 
model to estimate the posterior probability for the DE 
genes [48]. D3E models gene expression distribution 
by the bursting model of transcriptional regulation 
[154]. scDD applies a multimodal Bayesian modeling 
framework to model the multimodal distributions of 
single cells [155].

To benchmark the performance of different DE meth-
ods, extensive experiments have been performed to 
evaluate many single-cell-based tools as well as popular 
bulk-tissue-based approaches. Interestingly, the com-
parative study showed that the single-cell-based tools did 
not perform better than the bulk-tissue-based methods 
such as limma [93], DESeq2 [156], and edgeR [157]. The 
performance of many tools specially designed for scRNA-
seq is even worse than the simple t-test or Wilcoxon 
rank-sum test [158]. Both scRNA-seq and bulk RNA-seq 
DE tools need to strike a balance between sensitivity and 
precision [159, 160]. As bulk RNA-seq tools are not spe-
cifically designed to model the gene expression profiles of 
scRNA-seq data, they may suffer poor performance due 
to zero inflation or multimodality. Indeed, the perfor-
mance of bulk RNA-seq tools could be further improved 
by combining with a weighting strategy to down-weight 
excess zeros [161].

Recommended workflow and applications to AD
Different scRNA-seq DE methods have been applied to 
reveal gene signatures associated with AD pathology. 
The bulk-tissue-based DE methods, which have efficient 
computational speed and sophisticated pipeline, can be 
directly used for the general purpose of scRNA-seq stud-
ies. For example, Grubman et al. used edgeR to identify 
cluster marker genes as well as the individual-specific 
and sex-specific differentially expressed genes (DEGs) 
from 13,214 nuclei of entorhinal cortex samples [41]. 
Meanwhile, as no single DE tool is superior in all scenar-
ios, we recommend a combination of different methods 
to identify the most robust DEGs out of consensus calls. 
The AD study by Mathys et al. combined Wilcoxon rank-
sum test and a Poisson mixed model which accounted for 
individual variability to identify a consensus list of 1031 
DEGs in AD-pathology versus no-pathology individuals 
across cell types [8]. We applied MAST to the ROSMAP 
AD snRNA-seq data and shared the script through the 
companion GitHub repository (see the section "Availabil-
ity of data and software code" for details).
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The aforementioned DE methods depend on pre-
defined cell clusters or groups, but the optimal number 
of cell clusters and/or biologically relevant clusters in 
scRNA-seq data is often hard to find out. singleCellHay-
stack addresses this issue by applying the Kullback–Lei-
bler Divergence method to identify genes expressed in 
subsets of non-randomly positioned cells in a multidi-
mensional space [162]. By comparing gene expression 
profiles to a reference distribution of all cells, singleCell-
Haystack can identify differentially expressed genes in an 
unbiased way without relying on cell clusters. The clus-
ter-independent method may serve as a complementary 
approach for DE analysis when biologically meaningful 
clusters are not available for scRNA-seq data.

Trajectory inference
Trajectory inference aims at estimating dynamic changes 
in a single-cell transcriptome landscape, assuming that 
the cell-wise transcriptome is a static snapshot at a 
time point along some cellular process. The cascades of 
these snapshots compose of a dynamic trajectory of cells 
undergoing continuous changes in the cell states, known 
as ‘pseudo-temporal trajectory’. Trajectory inference 
assigns a one-dimensional coordinate, known as pseu-
dotime [163], per cell to approximate the departure from 
the beginning of the trajectory. It allows us to reconstruct 
dynamic biological processes without sampling tissues at 
different time points, identify critical transition points 
between distinct cell states, and analyze shifts in cell-type 
composition and cell synchronization [163, 164].

The inferred pseudotime may not progress uniformly 
in real-time along a trajectory, as the trajectory infer-
ences are based on inferring tree-like geometry in the 
data rather than by ‘real world’ clocks [165]. RNA veloc-
ity provides an alternative way to time-stamp cells by uti-
lizing RNA kinetics. According to the central dogma of 
molecular biology, the rate of change in mature mRNA 
abundance, i.e., RNA velocity, can be described by com-
petition between mature, spliced mRNA produced from 
unspliced pre-mRNA and degraded mature mRNA [166]. 
In this framework, a greater abundance of pre-mRNA 
than the mature mRNA indicates an up-regulation, and a 
down-regulation in the contrary [166, 167]. The summa-
rized kinetics in the global cell transcriptome can facili-
tate trajectory inference [168].

Information on cellular dynamics could  improve our 
understanding of AD pathologies, such as identification 
of marker genes for early diagnosis and prompt inter-
vention of neurodegenerative diseases whose pathogen-
esis precedes many years before clinical manifestation. 
Herein, we review different computational approaches 
in cell trajectory inference and discuss its outlooks in AD 
scRNA-seq analysis.

Overview of trajectory inference methods
Inspired by the metaphorical epigenetic landscape con-
ceived by Waddington, Trapnell et al. adopted a dynami-
cal systems framework. They described the biological 
process as cells moving in the “gene regulation space” 
along a particular “trajectory” to finally reach a stable 
state that corresponds to a clearly defined cell type or 
an “attractor” in dynamical systems [169]. In this frame-
work, trajectory inference consists of three components: 
determination of gene regulation space (dimensional-
ity reduction), identification of the attractors (unsuper-
vised cell clustering), and the inference of the trajectory 
(graph-based data approximation followed by pathfind-
ing and cell ordering). Here, we will primarily focus on 
the third component as the first two have been exten-
sively discussed in the prior sections in this review.

Graph-based data approximation is used to extract the 
geometrical skeletons of a given data point cloud. Such 
graph types include, for example, principle curves [170], 
minimum spanning trees (MST) [171], nearest neighbor 
(NN) graphs [172], and more complex networks. Early 
trajectory inference methods contemplate the trajec-
tory structures to be non-branching (Wanderlust [173]), 
bifurcated (Wishbone [174]), or even cyclic (DeepCy-
cle on single-cell imaging data [175]), and require prior 
biological knowledge or user-provided input. Emerging 
methods, some of which will be covered subsequently, 
allow unbiased inference of trajectory structures from 
transcriptomic data at the cost of increased computa-
tional complexity, which would impact their scalability 
and usability.

MST is a tree-graph which spans the entire data points 
with the minimum overall distance. While each node 
in the MST represents a single cell, the edge can be the 
similarity between gene expression profiles or transition 
probability between neighboring cells. Monocle, one of 
the pioneer algorithms for trajectory inference, applies 
the independent component analysis (ICA) and con-
structs an MST over all the cells [163]. SCOUP models 
the probability of a cell differentiating into a neighbor-
ing cell in a PCA-reduced space based on the Ornestain-
Uhlenbeck (OU) process and assumes that a mixture of 
OU processes represents multiple cell fates during differ-
entiation defined by the shortest paths in the MST [176].

As MST is often sensitive to noise and outliers, Water-
fall [177] and TSCAN [178] construct a cluster-based 
MST to improve the robustness. Slingshot takes one step 
further by implementing simultaneous principal curves 
compatible with any dimensionality reduction method to 
infer multiple fates that individual cells may take during 
development [106].

Some algorithms use the kNN graphs to overcome 
the impact of noise and outliers. SLICER takes the 
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shorted path on a kNN graph in a reduced space by 
locally-linear-embedding (LLE) and determines the 
branching location by geodesic entropy [179]. Diffusion 
Pseudotime (DPT) takes a random walk in the near-
est neighbor graph in the high-dimensional space. The 
pseudotime is inferred by Euclidean distance between 
the probability vectors, rather than gene expression, 
of any two cells differentiating into all possible fates 
[102]. However, it might be inappropriate to use a fixed 
neighborhood size in some cases, as the data are not 
evenly distributed across the defined space. Moreover, 
the computational cost of kNN increases drastically 
with the number of cells.

Others construct complex networks for cell projec-
tion to allow assumption-free inference of trajectory 
topologies. For instance, scEpath [180] builds an energy 
landscape and infer transition probabilities and lineage 
relationships between cell stages. Hopland [181] maps 
cells onto Waddington’s epigenetic landscape and infer 
pseudotime sequences by geodesic distance.

Another attention-drawing question is whether a con-
tinuous transition process is presumed in the trajectory 
inference algorithms. While the answer is yes in most 
cases, some would argue that due to limited sampling 
rate/depth, the experimental data do not always conform 
to such assumptions. Several methods have been devel-
oped to tackle this issue. For example, PArtition-based 
Graph Abstraction (PAGA) [182] models the connectiv-
ity of cell groups and reconstructs both continuous and 
disconnected topologies at multiple resolutions [183]. 

Monocle 3 [184] adopts a similar idea to PAGA. It first 
projects the cells onto a lower-dimensional manifold 
by UMAP and merged adjacent groups of cells identi-
fied by the Louvain community detection algorithm into 
“supergroups” to resolve the developmental trajectories. 
Another example is TinGa, a growing neural graph-
based algorithm that also allows disconnected topolo-
gies [185].

Overview of RNA velocity
The balance between spliced and unspliced mRNA, 
termed RNA velocity, measures the transcriptional 
dynamics in the cells and facilitates trajectory inference. 
In scRNA-seq, Manno et al. 2018 first utilized the relative 
abundances of exonic and intronic reads to infer the cell-
level RNA velocity with a simplified model assuming the 
same rate of pre-mRNA processing for all genes [166–
168, 186, 187]. The cell-level RNA velocity inference was 
applied to scRNA-seq data of mammalian embryo brains 
and captured dynamic changes in developmental trajec-
tories [168, 187]. Bergen et al. 2020 developed scVelo to 
implement a more generalized kinetic model with gene-
specific pre-mRNA processing rate and infer the kinet-
ics-based cell trajectories in scRNA-seq [187]. While 
RNA velocity was analyzed mostly in developmental 
processes, these have not been applied in AD single-cell 
transcriptome. Potentially, RNA velocity underlying AD-
specific microglial or neuronal subpopulations may shed 
light on key dynamical splicing activities contributing to 
these AD-specific cell fates.

Fig. 4 Trajectory inference of an excitatory neuron cluster of the ROSMAP AD snRNA‑seq data. A Numbered cell states in different colors and two 
potential trajectory paths as indicated by curved arrows. B Pseudotime indicated by gradient color intensity
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Recommended workflow and application of trajectory 
inference to AD
A typical workflow may involve the following steps: 1) 
conduct data QC, normalization, dimension reduction, 
and clustering as described above or according to the 
trajectory inference software package; 2) choose genes 
that are informative of the cell state progress, such as cell 
type markers and highly variable genes; 3) conduct data 
dimension reduction; 4) infer the trajectory and order 
cells by pseudotime in the trajectory; 5) identify genes 
regulated over the course of trajectory, such as genes that 
correlate with the pseudotime or distinguish between cell 
state along the trajectory branches; and 6) perform addi-
tional analyses, such as constructing Granger’s causality 
network using pseudotime information and identifying 
trajectory path that correlate with covariates of interest 
such as AD pathology traits; and 7) generate biologically 
meaningful hypothesis for experimental validation. As 
an example, we conducted a trajectory inference for an 
excitatory neuron cluster of the ROSMAP AD snRNA-
seq data using Monocle (Fig.  4). A  pipeline implement-
ing this trajectory analysis is provided in the companion 
GitHub repository  (see the section "Availability of data 
and software code" for details).

scRNA-seq-based trajectory inference methods have 
been extensively utilized to study the developmental 
processes and immune systems where cells undergo 
active transitions from one state to another [188–192]. 
A unique disease-associated microglia subtype was 
identified in AD transgenic mouse brains by trajectory 
inference [139]. Several AD cohort studies [193–195] 
generalized this concept and aligned the individual sub-
jects along the disease trajectory. The inferred models 
successfully predicted the clinical deterioration and con-
version to advanced disease stage from baseline gene 
expression and disease subtype stratification.

With the development of high-throughput single-cell 
sequencing techniques, multi-omics data can be simul-
taneously measured in the same cell. G&Tseq sequences 
both genome and transcriptome [196], REAPseq meas-
ures protein and transcripts [197], scTrio-seq [198] quan-
tifies genetic, epigenetic, and transcriptomic changes, 
and paired-seq [199] jointly examines the chromatin 
accessibility with transcriptomic heterogeneity. Despite 
the modest coverage, such methods add comprehen-
sive information to help infer the trajectory of cells. 
Algorithms have been developed to compare cross-
experiment, cell-type-specific differences and integrate 
multi-omics at the single-cell scale [200]. Recently, a 
microarray-based spatial scRNA-seq further resolves the 
spatial distribution of cell subpopulations in pancreatic 
tumors [201]. Such progress will prime the ground for 
novel findings in complex diseases, including AD.

Trajectory inference opens new venues to capture bio-
logically critical dynamic changes that were considered 
as noises, and enables additional insights via trajectory-
based differential analysis [202–204], latent variables-
pseudotime interactions [205], pseudotime-based gene 
co-expression network analysis [206], and gene regula-
tory network inference [207], which will be discussed in 
the section “Single cell gene network analysis”.

Copy number variation detection
While scRNA-seq is primarily designed to quantify the 
cell-level expression abundance, the sequencing data 
contains a substantial portion of the information about 
the genomic variations, including SNPs and Copy num-
ber variations (CNVs). CNVs are one major type of 
genetic variation. Based on the CNV map of the human 
genome [208], CNVs occupy 4.8 to 9.5% of the human 
genome in healthy individuals [208–210]. Copy number 
aberration is involved in the pathogenic process of many 
diseases, for example, a variety of cancers [9, 211–214], 
Parkinson’s disease [215, 216], schizophrenia [217], men-
tal retardation [218], and AD [218–222]. Our recent 
study found thousands of AD-specific CNVs based on 
bulk-tissue based whole-genome sequencing data of 
postmortem brains from AD cases. Whether there are 
cell- or cell cluster-specific de novo CNVs in AD remains 
unclear.

Compared with many previous successful CNV call-
ing methods based on bulk tissue sequencing data 
[223–233], CNV detection from scRNA-seq is challeng-
ing due to several technical limitations, including low 
and non-uniform genome coverage, amplification biases 
[234, 235] and prevalent monoallelic detection due to 
transcriptional stochasticity [234, 236–238]. The monoal-
lelic bias is more pronounced for lowly expressed genes 
than highly expressed genes. The monoallelic bias is still 
high for polymorphic loci with good coverage [237, 238]. 
Further, 3′-ended scRNA-seq have poor coverage in the 
5′-end. Thus, the mutations in the 5′ end may not be suf-
ficiently covered. Together, these limitations reduce the 
reliability of CNV calling at the gene level in scRNA-
seq. Instead, previous studies have suggested large-scale 
CNVs can be reliably inferred from scRNA-seq at full 
chromosome-level or chromosome-arm-level [212, 239, 
240].

Despite these challenges, several methods, including 
InferCNV [241], HoneyBADGER [236], CONICS [239], 
CONICSmat [239], and CaSpER [242] have been devel-
oped to detect CNVs from scRNA-seq data (Table  3). 
InferCNV [241], as a part of the TrinityCTAT toolkit, is 
the first and the most popular scRNA-seq CNV detec-
tion method to predict chromosome-scale CNVs. It cal-
culates residual transcriptomic expression profiles of 



Page 20 of 52Wang et al. Molecular Neurodegeneration           (2022) 17:17 

Ta
bl

e 
3 

Su
m

m
ar

y 
of

 C
N

V 
ca

lli
ng

 m
et

ho
ds

 fo
r s

cR
N

A
‑s

eq
 d

at
a

M
et

ho
d

Br
ie

f E
xp

la
na

tio
n

In
pu

t
Re

so
lu

tio
n

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

e

In
fe

rC
N

V
H

id
de

n 
M

ar
ko

v 
m

od
el

: i
3 

an
d 

i6
 

m
od

el
 +

 B
ay

es
ia

n 
an

al
ys

is
. T

he
 i3

 
m

od
el

: d
el

et
io

n,
 n

eu
tr

al
 a

nd
 a

m
pl

ifi
‑

ca
tio

n 
st

at
es

. T
he

 i6
 m

od
el

: c
om

pl
et

e 
lo

ss
, l

os
s 

of
 o

ne
 c

op
y,

 n
eu

tr
al

, a
dd

iti
on

 
of

 o
ne

 c
op

y,
 a

dd
iti

on
 o

f t
w

o 
co

pi
es

, 
an

d 
m

or
e 

th
an

 th
re

e 
co

pi
es

.

Ex
pr

es
si

on
 p

ro
fil

in
g

Id
en

tifi
ca

tio
n 

of
 la

rg
e‑

sc
al

e 
ch

ro
m

o‑
so

m
e‑

sc
al

e 
C

N
Vs

1)
 In

fe
rC

N
V 

ca
n 

w
or

k 
bo

th
 w

ith
 a

nd
 

w
ith

ou
t n

or
m

al
‑c

el
l r

ef
er

en
ce

;
2)

 it
 p

ro
vi

de
s 

tw
o 

an
al

ys
is

 m
od

es
 

in
cl

ud
in

g 
pr

ed
efi

ne
d 

ce
ll 

ty
pe

s 
as

 
w

ho
le

 s
am

pl
es

, o
r s

ub
cl

us
te

rs
 b

as
ed

 
on

 C
N

V 
pa

tt
er

ns
;

3)
 In

fe
rC

N
V 

pr
ov

id
es

 a
n 

in
te

ra
ct

iv
e 

R 
Sh

in
y 

W
eb

 A
pp

In
fe

rC
N

V 
as

su
m

es
 th

e 
co

py
 n

um
be

r 
do

sa
ge

 is
 c

on
st

an
t o

ve
r t

he
 w

ho
le

 
pr

ed
ic

te
d 

re
gi

on
.

H
on

ey
BA

D
G

ER
H

id
de

n 
M

ar
ko

v 
m

od
el

 a
nd

 B
ay

es
ia

n 
ap

pr
oa

ch
A

lle
lic

 im
ba

la
nc

e 
an

d 
no

rm
al

iz
ed

 
ex

pr
es

si
on

 p
ro

fil
in

g

Ro
bu

st
 id

en
tifi

ca
tio

n 
of

 s
ub

‑c
lo

na
l 

fo
ca

l a
lte

ra
tio

ns
 a

s 
sm

al
l a

s 
10

 M
b;

 
id

en
tifi

ca
tio

n 
of

 C
N

Vs
 a

t c
hr

om
o‑

so
m

e‑
ar

m
‑le

ve
l w

ith
 fr

eq
ue

nc
y 

as
 

lo
w

 a
s 

30
%

 o
f t

ar
ge

t c
el

ls
, a

nd
 a

t t
he

 
fu

ll 
ch

ro
m

os
om

e‑
le

ve
l.

1)
 Id

en
tif

ca
tio

n 
of

 C
N

Vs
 a

s 
sm

al
l a

s 
10

 M
b,

 m
uc

h 
hi

gh
er

 c
om

pa
re

d 
w

ith
 

av
er

ag
e 

ex
pr

es
si

on
‑b

as
ed

 m
et

ho
ds

;
2)

 D
et

ec
tio

n 
of

 d
et

ec
t c

op
y‑

nu
m

be
r 

ne
ut

ra
l l

os
s‑

of
‑h

et
er

oz
yg

os
ity

 e
ve

nt
s.

1)
 U

se
 o

f W
ES

 o
r c

om
m

on
 n

at
ur

al
 S

N
P 

in
fo

rm
at

io
n 

fro
m

 o
th

er
 p

ub
lic

 d
at

as
et

s 
as

 re
fe

re
nc

e 
to

 g
en

er
at

e 
he

te
ro

zy
go

us
 

SN
P 

po
si

tio
ns

;
2)

 In
st

ea
d 

of
 e

st
im

at
in

g 
pr

ec
is

e 
co

py
 

nu
m

be
r, 

it 
ai

m
s 

at
 d

is
tin

gu
is

hi
ng

 c
op

y 
nu

m
be

r a
lte

ra
tio

n 
re

gi
on

s 
fro

m
 c

op
y 

nu
m

be
r n

eu
tr

al
 re

gi
on

s.

CO
N

IC
S

Co
m

pa
ris

on
 o

f c
on

tr
ol

 d
is

tr
ib

ut
io

n 
an

d 
ob

se
rv

ed
 d

is
tr

ib
ut

io
n 

at
 e

ac
h 

C
N

VR
 re

gi
on

 in
 e

ac
h 

ce
ll.

Ex
pr

es
si

on
 p

ro
fil

in
g

C
N

V 
re

gi
on

s 
in

fe
rr

ed
 fr

om
 o

th
er

 D
N

A
 

se
qu

en
ci

ng
 d

at
a 

or
 th

e 
ch

ro
m

os
om

e‑
ar

m
 le

ve
l.

CO
N

IC
S 

pr
ov

id
es

 ro
ut

in
es

 fo
r f

ur
th

er
 

di
ffe

re
nt

ia
l‑e

xp
re

ss
io

n,
 p

hy
lo

ge
ny

, 
an

d 
co

‑e
xp

re
ss

io
n 

ne
tw

or
k 

an
al

ys
is

.

1)
 P

re
de

fin
ed

 C
N

V 
lo

ca
tio

ns
 in

 o
rt

ho
go

‑
na

l D
N

A
 s

eq
ue

nc
in

g 
da

ta
 s

uc
h 

as
 W

ES
.

2)
 In

ca
pa

bl
e 

of
 id

en
tif

yi
ng

 n
ov

el
 C

N
V 

re
gi

on
s.

CO
N

IC
Sm

at
Ba

ye
si

an
 a

pp
ro

ac
h:

 c
hi

‑s
qu

ar
ed

 
lik

el
ih

oo
d‑

ra
tio

 te
st

 b
y 

co
m

pa
rin

g 
2‑

co
m

po
ne

nt
 G

au
ss

ia
n 

m
ix

tu
re

 
m

od
el

 a
nd

 1
‑c

om
po

ne
nt

 G
au

ss
ia

n 
m

od
el

.

Ex
pr

es
si

on
 p

ro
fil

in
g

ch
ro

m
os

om
al

‑a
rm

‑le
ve

l
1)

 N
o 

ne
ed

 o
f a

n 
ex

pl
ic

it 
no

rm
al

 c
on

‑
tr

ol
 d

at
as

et
, o

r D
N

A
‑s

eq
ue

nc
in

g 
da

ta
;

2)
 P

ro
vi

di
ng

 ro
ut

in
es

 fo
r f

ur
th

er
 

di
ffe

re
nt

ia
l‑e

xp
re

ss
io

n,
 p

hy
lo

ge
ny

, 
an

d 
co

‑e
xp

re
ss

io
n 

ne
tw

or
k 

an
al

ys
es

.

1)
 Id

en
tifi

ca
tio

n 
of

 C
N

Vs
 a

t t
he

 m
eg

a 
ba

se
 s

ca
le

. 2
) I

nc
ap

ab
le

 o
f i

de
nt

ify
in

g 
ge

ne
‑le

ve
l C

N
Vs

.

Ca
Sp

ER
H

id
de

n 
M

ar
ko

v 
m

od
el

 a
nd

 B
ay

es
ia

n 
ap

pr
oa

ch
A

lle
le

 fr
eq

ue
nc

y 
sh

ift
+

 e
xp

re
ss

io
n 

pr
ofi

lin
g

la
rg

e‑
sc

al
e 

ge
ne

‑b
as

ed
, a

nd
 

se
gm

en
t‑

ba
se

d 
C

N
V 

ca
lls

1)
 V

ar
ia

nt
 c

al
lin

g 
is

 n
ot

 n
ee

de
d 

an
d 

th
is

 c
an

 s
pe

ed
 u

p 
th

e 
w

ho
le

 d
et

ec
‑

tio
n 

pr
oc

es
s;

2)
 C

aS
pE

R 
pr

ov
id

es
 a

 n
um

be
r o

f 
do

w
ns

tr
ea

m
 a

na
ly

se
s: 

in
fe

r c
lo

na
l 

ev
ol

ut
io

n,
 d

is
co

ve
r m

ut
ua

l‑e
xc

lu
si

ve
 

an
d 

co
‑o

cc
ur

rin
g 

C
N

V 
ev

en
ts

, i
de

nt
ify

 
ge

ne
 e

xp
re

ss
io

n 
si

gn
at

ur
e 

of
 th

e 
id

en
tifi

ed
 c

lo
ne

s.

1)
 T

he
 tr

ue
 p

os
iti

ve
 ra

te
 o

nl
y 

re
ac

he
s 

60
–8

0%
. 2

) T
he

 d
et

ec
tio

n 
ac

cu
ra

cy
 fo

r 
de

le
tio

n 
is

 m
uc

h 
hi

gh
er

 th
an

 a
m

pl
ifi

ca
‑

tio
n.



Page 21 of 52Wang et al. Molecular Neurodegeneration           (2022) 17:17  

target cells using a given set of normal reference cells as 
the baseline. It identifies potential copy number altera-
tion (CNA) regions using the Hidden Markov Model 
(HMM). To reduce the false-positive rate, a Bayesian 
mixture model is further implemented to estimate the 
copy number status of each CNA region in each cell 
based on the maximized posterior probability [241]. It 
can work with and without normal-cell reference. If there 
are no reference cells, the average signal of all target cells 
will be used as the baseline. It should be kept in mind, 
though, CNVs shared by all target cells are indistinguish-
able without reference cells [241]. HoneyBADGER [236] 
was developed based on a similar algorithm framework 
as InferCNV, which integrates the HMM and Bayesian 
inference. To improve the CNV calling accuracy and sen-
sitivity, HoneyBADGER takes continuous allelic imbal-
ance patterns at common SNP loci into consideration. 
The monoallelic bias rate is also adjusted in their pos-
terior probability model. Based on in-silico simulation, 
HoneyBADGER can identify sub-clonal CNVs as small 
as 10 Mb, and chromosome-arm-level CNV events with 
cell frequency as low as 30%. The inference resolution of 
the method is higher than the solely normalized expres-
sion profile-based method [236]. Like InferCNV, Honey-
BADGER also needs expression profiles of normal cells 
as a reference to calculate residual expression magnitude. 
Besides the normal cell reference, it also needs whole-
genome sequencing or whole-exome sequencing (WES) 
data from the same sample to get heterozygous SNP posi-
tions. If WES data from the same sample is not available, 
the common SNPs (population frequency ≥ 10%) from 
natural populations can be used as a location reference. 
Furthermore, another scRNA-seq CNV calling method 
CONICS (COpy-Number analysis In single-Cell RNA-
Sequencing), released in 2018 [239], infers the CNV 
status of given cells based on pre-inferred CNV regions 
from additional bulk-tissue DNA sequencing data (for 
example, WES data). If the extra DNA-sequencing data 
or control scRNA-seq data is not available, it also pro-
vides an extra caller named CONICSmat. CONICSmat is 
based on Bayesian inference from averaged gene expres-
sion profiling of target scRNA-seq data. HMM is not 
used to infer potential CNV region in CONICS/CON-
ICSmat. Potential CNV location is inferred from addi-
tional bulk-tissue DNA sequencing data. As a result, its 
resolution depends on the resolution of the bulk-tissue 
DNA CNV calling method. Without extra bulk-tissue 
DNA data, the CNV inference is chromosome-arm level 
[239]. CaSpER [242], which adopted a strategy very simi-
lar to HoneyBADGER, integrates allele frequency shift 
information and normalized expression profiles to pre-
dict CNV regions using hierarchical HMM and Bayes-
ian algorithms. It does not need prior variant calling. To 

speed up the whole CNV calling process, CaSpER takes 
aligned bam files as input to generate allele and expres-
sion profiles.

Here, we present the pros and cons of all methods, 
with consideration for budget and experiment design 
(Table 3). While methods utilizing both allelic-imbalance 
and gene expressions could improve the accuracy and 
sensitivity of CNV calls, the additional DNA-sequencing 
data required to generate allelic-imbalance profiles need 
additional budgets and sample materials. For example, 
some tools such as HoneyBADGER bypass such issues by 
leveraging common SNPs from public population data-
sets instead of the matched WES data in exchange for 
reduced sensitivity. On the other hand, the performance 
of expression-based methods is dependent on reference 
cells of choice [236]. Ideally, matched normal cells from 
the same individual could be used as references, or ger-
mline cell populations may serve as the alternative [9].

An independent normalization procedure of diverse 
cell types should be done based on the correspond-
ing references [236]. All scRNA-seq CNV methods are 
highly coverage-dependent [236]. The true positive rate 
(TPR) of scRNA-seq CNV calling methods is not high 
in the current stage. For example, the TPR of CaSpER 
is around 60 to 80% based on in-silico simulation [242]. 
Additional experiment methods should be used as cross-
validation [9], such as fluorescence in  situ hybridization 
(FISH), cytogenetics and bulk WES or WGS. Matched 
scDNA-seq and scRNA-seq data [196, 243] can be used 
as ground truth to measure the performances of current 
scRNA-seq CNV tools, and be valuable for future soft-
ware development.

All the above scRNA-seq CNV calling tools provide 
some downstream analysis, such as cell clustering [241], 
inter-clone differential expression analysis [239], phy-
logeny analysis [239], intra-clone co-expression network 
analysis [239], infer clonal evolution [242], and identify 
gene expression signature of clones [242].

Recommended workflow and applications to AD: copy 
number variation detection
A recommended workflow for identifying CNVs in single 
cell RNA-seq data based on the InferCNV tool is illus-
trated in Fig.  5A. Note that the data preprocessing step 
will follow prior discussions in Quality control and nor-
malization, Feature selection and dimension reduction, 
Unsupervised cell clustering analysis and Cell type infer-
ence and annotation sections. There can be two kinds of 
reference cells in AD. First, for each cell cluster, cells from 
normal controls can be used as the reference cells and 
can be compared with cells from AD cases in the same 
cell cluster. Second, brain tissue-based cells can be com-
pared with matched non-brain tissue cells from the same 
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individual, for example, blood, to detect brain-specific 
somatic CNVs. Further omics data, such as genomic data, 
are needed to validate the inferred CNVs in both cases.

We applied this workflow to the sn-RNAseq data 
from  the ROSMAP AD cohort [8]. Figure  5B shows 
the CNV calling result from the AD cells in one excita-
tory neuron cluster when using the cells from normal 
controls in the same cluster as the reference cells. The 
only predicted CNV region is located at chr19: 571,277-
55,403,250 with an extra copy in late AD (Supplementary 
Table  S1). This amplification region contains 66 genes 
(Supplementary Table S2), including PPP2R1A. PPP2R1A 
is known AD risk factor [244] and dephosphorylates 
tau protein [245, 246].  The script for this CNV analysis 
can be found in the companion GitHub repository (see 
the section "Availability of data and software code" for 
details).

Expression associated quantitative trait locus (eQTL) 
analysis
Expression quantitative trait loci (eQTLs) analysis links 
single nucleotide polymorphisms (SNPs) with their 
potential transcriptional effects on downstream genes 
[247] and has been utilized to pinpoint disease-risk SNPs 
[248]. Previous studies have shown that disease-risk 
SNPs are enriched for cis-eQTLs with modest effects 
[249, 250]. Many large-scale eQTL consortiums have 
emerged in recent years, such as ImmVar [251], BLUE-
PRINT [252], GTEx [253], CAGE [254], PsychENCODE 
[255], and eQTLGen [256]. Although bulk-tissue-based 
eQTL analysis is still valuable to understand the func-
tional consequences of genetic variations, it has limited 
power to decipher the context-specific eQTLs, such as 
the tissue-specificity [247, 253, 257], cell type-specificity 
[247, 248, 258–260], and developmental stage-specificity 
[251, 261]. These are further complicated by transient 

Fig. 5 CNV identification from AD single cell data. A Recommended workflow of CNV detection. B Inference of CNVs in excitatory neurons of the 
ROSMAP cohort. The red box highlights an amplification region on chromosome 19
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eQTLs and those conditional on cell status [247, 261]. 
Single-cell eQTLs (sc-eQTLs) analysis can shed light on 
these issues.

Detection of eQTLs from scRNA‑seq data
In sc-eQTL analysis, the number of cells should be large 
enough for sufficient statistical power [247]. At least 
three parameters need to be considered in the experi-
mental design stage: the sequencing depth per cell, the 
number of cells per individual, and the number of indi-
viduals. The sequencing depth per cell affects the accu-
racy of gene expression measurement, the total number 
of cells affects the cell type number, and the number 
of individuals affects the effective SNP number [247]. 
Under a fixed budget, sequencing more cells rather than 
sequencing more reads per cell in fewer cells can increase 
the power to detect more sc-eQTLs [247].

The sparsity of scRNA-seq makes it less powerful 
to detect sc-eQTLs than bulk-tissue data [247, 262]. 
Although the analytic procedure is straightforward, 
scRNA-seq data may not meet the underlying assump-
tions for bulk tissue-eQTL methods [247]. For instance, 
bulk-based methods assume that log-transformed gene 
expressions follow a particular probability distribu-
tion (normal distribution, Poisson distribution, or nega-
tive binomial distribution), which may not be valid in 
scRNA-seq [247]. Further, drop-out events introduce a 
bias towards highly expressed transcripts [262], and the 
sparse transcriptome decreases the number of genes 
with detectable eQTLs [247, 261–264]. Previous studies 
show a 6.9-fold difference in the eQTL detection power 
between single-cell data and bulk RNA-seq data [247, 
249, 260].

Several softwares have been developed to address the 
above challenges in sc-eQTL detection, such as SCeQTL 
[262] and scReQTL [265]. While dropout reads can be 
imputed to mitigate the sparsity [81–83, 260], SCeQTL 
(Single Cell expression Quantitative Trait Locus) [262] 
incorporates the excess of zero expressed genes into the 
statistic inference framework. SCeQTL separates genes 
with zero and non-zero expression, and uses zero-inflated 
negative binomial regression [266].

In addition to sparsity in scRNA-seq, other factors 
like cell lineages and variant allele frequency can also 
be incorporated into the inference framework [262]. 
Inferred single-cell pseudo-time can be utilized to cap-
ture eQTLs related to cell differentiation [261]. scReQTL 
[265] calculates the correlation between variant allele 
fraction at biallelic polymorphism loci  (VAFRNA) and 
gene expression level in single cells, using a linear regres-
sion model.  VAFRNA is derived from allele mapping of 
scRNA-seq data and is sensitive to allele mapping bias. 
SNP-aware alignment is preferred in the preprocessing 

step [265]. Prevalent monoallelic expression and sin-
gle-cell sequencing technique bias towards 3′-end (for 
example, 10X Genome platform [37]) limit the detection 
power of scReQTL. scReQTL can only detect a subset of 
expressed SNPs from the genome-wide SNP profiles. This 
approach is suitable for single-cell data without matched 
DNA sequencing information.

Single-cell-based eQTL analysis is still in its infancy. 
Even though the proof of concept started in 2013 [267], 
the real application of sc-eQTL analysis started just 
recently [110, 260, 261, 268]. As one major type of molec-
ular marker like CNV, sc-eQTLs can be used to infer cell 
type [247, 260], study cell-to-cell expression variabil-
ity [261], cell type heterogeneity [269], and cell lineage 
development [247, 260]. It has been shown that the her-
itability of diseases and complex traits can be explained 
partially by cell type-specific eQTLs [248]. Other unique 
advantages of sc-eQTLs are inferring the cell activation 
states [247, 260] and studying the dynamic process of 
genetic variations regulating gene expression [260, 261, 
268]. Integration of sc-eQTLs and other omics data, for 
example, scATAC-seq data, can help better understand 
the genetic mechanism of gene expression regulation 
at cell type level [247, 261]. Matched scDNA-seq and 
scRNA-seq datasets can provide higher resolution in sc-
eQTL analysis. Unfortunately, current public datasets 
with paralleled scDNA-seq and scRNA-seq are still rare 
[262]. Single-cell eQTLGen consortium (sc-eQTLGen) 
spearheaded the efforts to link disease-related genetic 
variations with downstream transcriptional conse-
quences in immune cells [147].

Recommended workflow and applications to AD: eQTL 
detection
We recommend inferring sc-eQTL by summarizing gene 
expressions by distinct cell populations [247, 260, 261]. 
The normalized gene expression matrix is averaged per 
gene, cell type, and individual to derive robust expres-
sion values per group to overcome cell-wise sparsity. The 
summarized gene expression is further integrated with 
the genotype matrix to identify sc-eQTLs via Spearman 
rank correlation [270, 271] or linear regression [260, 261, 
272, 273]. As an example, we applied this workflow in 
the ROSMAP AD snRNA-seq cohort and identified cis- 
and trans-eQTLs in the excitatory neurons of AD cases 
(Fig. 6). The script for this eQTL analysis can be found in 
the companion GitHub repository (see the section "Avail-
ability of data and software code" for details).

Single‑cell ATAC‑seq data analysis
Although scRNA-seq improves our ability to study gene 
expression variations and interactions among differ-
ent cell types in the brain, the fundamental mechanisms 
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that regulate the variability with chromatin structure 
variations remain unclear. The scATAC-seq (Fig.  7A) 
technology has been developed to study these regula-
tory elements [20, 21]. Compared to scRNA-seq data, 
the scATAC-seq feature matrix data is sparser and hence 
more challenging to analyze [21, 274]. Many computa-
tional tools (Table  4) have been developed to analyze 
scATAC-seq data alone [275–277] or integrate scATAC-
seq with other single-cell omics data, including scRNA-
seq [278, 279], protein profiling [280] and genome 
variants [281].

The preprocessing steps of scATAC-seq data analy-
sis include data demultiplexing if multiple samples are 
sequenced simultaneously. This is followed by adap-
tor trimming, alignment to the reference genome [21, 
296], peak calling and merging, read counting, QC, data 
normalization and transformation, dimension reduc-
tion, clustering, and cell identity annotation (Fig. 7B-K). 
Generally, peaks are called using the MACS2 [297] and 
then merged to generate a list of potential regulatory ele-
ments, termed features herein for simplicity. Reads of 
each cell are then counted for those features to obtain 
a feature-by-cell matrix (Fig.  7C). Next, QC is per-
formed on the cells and features to remove low-quality 
cells and features [282] (Fig.  7D). The filtered feature-
by-cell matrix (Fig.  7E) is usually normalized using the 
term-frequency inverse-document-frequency (TF-IDF) 
method to normalize the matrix across cells to correct 

for differences in sequencing depth and give more weight 
to rare and more variable peaks [277, 293, 294] (Fig. 7F). 
To reduce redundant information, potential noise and 
computational time for downstream analysis, dimen-
sion reduction is performed after selecting the features 
(Fig.  7G). Typically, Latent Semantic Indexing (LSI) is 
applied on the TF-IDF normalized matrix, followed by 
singular value decomposition (SVD) [282, 293]. Alter-
native dimension reduction methods include Multi-
dimensional scaling (MDS) [289], Diffusion map (DM) 
[284], and Latent Dirichlet allocation (LDA) [277]. After 
feature selection and dimension reduction, samples 
from multiple conditions are integrated, and adjusted 
for batch effect [282, 293]. Then, non-linear dimension 
reduction approaches like t-SNE [298] and UMAP [103] 
are performed to visualize cells in a 2-D or 3-D space. 
Cell clustering is then performed in the reduced dimen-
sions (Fig. 7H).

After clustering analysis, annotating cell identity for 
each cluster is a critical step. As lack of cell-type-specific 
chromatin accessibility features, peaks at promoters and 
transcription start sites (TSSs) are used in cell cluster 
annotation by taking advantage of the extensive cell-
type-specific genes. For this purpose, peaks associated 
with regulatory regions and genic regions are annotated 
(Fig.  7I). Then, a gene activity matrix is created from 
the scATAC-seq data by summing the reads intersect-
ing peaks associated with regulatory regions and genic 

Interaction between Cis−eQTLs and target genes of excitatory neurons Interaction between Trans−eQTLs and target genes of excitatory neurons
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Fig. 6 Single cell based eQTL detected in the excitatory neurons in the AD cases of the ROSMAP cohort. The outer track shows eQTL locations. Red 
bars indicate eQTL locations. The middle track shows chromosome ideogram. The inner track shows correlated genes. The colorful lines in the inner 
circle link the eQTLs to the target genes. A, cis‑eQTLs. B, trans‑eQTLs
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regions for each annotated gene (Fig.  7J). Based on the 
gene activity matrix, two strategies are used to annotate 
the cell identity of the clusters (Fig. 7K). In the first strat-
egy, gene activity markers are identified and compared to 
cell-type-specific marker genes [293]. In the second strat-
egy, scATAC-seq gene activity matrix can be projected 
to the matched scRNA-seq gene expression matrix for 
the same cell types. Cell type labels can be transferred 
from the scRNA-seq data to the scATAC-seq data using 
mutual nearest neighbors (MNN) algorithm [92, 282, 
293].

Then, chromatin accessibility can be investigated for 
individual cell types with or without integrating other 
omics data [21, 92, 278]. For example, brain regional 
and cell-type-specific chromatin accessibility dynam-
ics in AD can elucidate the chromatin regulation 
mechanisms of gene expression changes underlying 
AD etiology (Fig.  7L). Specifically, such analyses can 
identify cell-type-specific peaks, differentially acces-
sible regions [282, 299], enriched motifs (Fig.  7M) 
and co-accessibility [276, 299] (Fig. 7N), and infer cell 
trajectory [276, 300] (Fig.  7P). In addition, changes 

A. scATAC-seq C. Peak Calling & 
read Counting

B. Trimming and 
Alignment

D. Quality Control E. Filtering

F. Normalization G. Dimension Reduction H. Clustering

K. Cell Type Identification L. Differential Accessible 
Region

J. Gene Activity Matrix

M. Motif Enrichment N. Co-accessibility Analysis

O. Variant Regulate 
Accessibility 

P. Trajectory Inference Q. Integration with scRNA-seq

I. Peak Annotation

UMAP

Fig. 7 Overview of the procedures for analyzing scATAC‑seq data. scATAC‑seq raw data are collected from sequencing machines (A). Sequencing 
adaptors are trimmed and reads are then aligned to the reference genome (B). Peaks are called for each cell and merged into a set of unique 
features (peaks); reads are then counted for each feature in each cell to obtain a feature‑by‑cell matrix (C). Features and cells go through quality 
control (D) to remove low‑quality features and cells (E). Filtered data are then normalized (F). Top variable features are extracted to perform linear 
and non‑linear dimension reduction (G) that are further utilized for clustering analysis to identify cell clusters (H). Features (peaks) are annotated to 
gene (I) and reads are counted for each annotated gene in each cell to obtain a gene activity matrix (J). Cell‑cluster‑specific accessible chromatin 
regions and cell‑cluster‑specific activated genes are identified for each cell cluster to identify cell type (K). Genes with differential activity and 
differentially accessible chromatin regions are identified between conditions in each cell type (L). Transcription factor motifs are identified in each 
cell type (M). Co‑accessibility analysis can be performed to infer cell‑type‑specific interactions between different genomic elements (N). Function 
of disease‑associated genetic variant can be inferred by integrating them with scATAC‑seq data (O). Trajectory analysis can be performed to infer 
cellular dynamics during developmental or disease progression (P). When available, scRNA‑seq can be integrated with scATAC‑seq data (Q) to infer 
cis‑regulatory network
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in transcription factor (TF) activity can be inferred 
through calculating the correlations between TF 
motif-related chromatin accessibility [275] and gene 
expression levels of AD-associated genes. Further-
more, the function of disease-associated genetic vari-
ants identified in the genome-wide association studies 
(GWAS) studies can be inferred by predicting genetic 
variants in chromatin accessible peaks that affect regu-
latory interactions and TF binding (Fig. 7O). For exam-
ple, Corces et  al. identified the SNPs that drive the 
association of AD with BIN1, PICALM, SLC24A4, and 
MS4A6A in specific brain cell types using the scATAC-
seq data and AD-associated SNPs [281]. Finally, cis-
regulatory network can be inferred by integrating 
scATAC-seq and sc-RNA-seq data (Fig. 7Q).

We applied the Signac pipeline to snATAC-Seq 
samples (an AD and a control) from the Swarup lab 
[PMID: 34239132]. The two samples were normalized 
and integrated into a dataset (Fig. 8A). Gene activities 
were extracted from fragments and then 11 cell types 
were identified from the gene activity markers (Fig. 8B 
and C). The normalized accessibility, peaks, and co-
accessible links of the gene SNAP25 are shown in 
Fig. 8D. The script for this analysis can be found in the 
companion GitHub repository (see the section "Avail-
ability of data and software code" for details)

Single cell gene network analysis
Gene regulatory network (GRN) inference hypothesizes 
that the etiology of a complex genetic disease is driven by 
complex signaling cascades [301] and aims to disentan-
gle such signaling maps from molecular data and identify 
dysregulated subnetworks putative regulators underlying 
the diseased tissues [302]. GRN inference has been suc-
cessfully applied to understand complex diseases, includ-
ing asthma, cancer, flu infection, and neurodegenerative 
diseases [303–308]. However, GRNs from widely popu-
lated bulk sequencing data are limited in resolving inter-
wined signaling across and within mixed cell populations, 
although diseased tissues are composed of heterogeneous 
cell populations with different morphology and functions 
[8, 302, 309, 310].

To this end, scRNA-seq has recently emerged to 
uncover cell-level signaling pathways associated with 
neurodegenerative diseases and their markers [7, 8, 26, 
42, 106, 168, 187, 194], and identify key signaling path-
ways encompassing distinct cell types [7, 8, 130]. How-
ever, data-driven network models of the AD cell types 
and their regulatory mechanisms have been relatively 
under-explored. To mitigate this gap, we review the cur-
rent GRN inference methods in scRNA-seq to evaluate 
their applicability in different contexts, and recommend 
workflows to construct robust and accurate network 
models in AD. While we acknowledge several excellent 

Table 4 Summary of scATAC‑seq analysis tools

QC Quality Control, DAR Differentially accessible region

Tool [Ref] Feature Matrix QC Clustering Gene activity DAR Motif scRNA‑seq 
integration

Platform

Signac [282] Peak YES YES YES YES NO Seurat R

ArchR [283] Peak/Bin YES YES YES YES NO Seurat R

chromVAR [275] TF motifs YES YES NO NO YES NO R

SnapATAC [284] Peak/Bin YES YES YES YES YES Seurat R/Python

cisTopic [277] Peak YES YES YES NO NO NO R

SHARE‑seq [278] Peak YES YES YES NO YES Seurat R

BROCKMAN [285] Peak YES YES NO NO YES NO R

AtacWorks [286] Peak YES NO YES YES NO NO Python

Destin [287] Peak YES YES NO YES NO NO R

EpiScanpy [288] Peak YES YES NO NO NO NO Python

Cicero [276] TSS YES YES YES YES NO NO R

Scasat [289] Peak YES YES NO YES NO NO R/Python

SCRAT [290] Any YES YES NO YES NO NO R

SCALE [291] Peak YES YES NO YES YES NO Python

ChromSCape [292] Peak/Bin/TSS YES YES NO YES NO NO R

Cusanovich2018 [293] Peak YES YES YES YES YES Seurat R

scABC [294] Peak YES YES NO NO YES NO R

scATAC‑pro [295] Peak YES YES YES YES YES NO R/Python
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reviews in the literature [302, 311–313], we notice that 
the repertoire of reported methods and categories, 
including existing bulk-based methods, are still evolv-
ing to address arising challenges in the field. Thus, we 
have structured this review section to list the challenges 
in scRNA-seq GRN inference, the applicability of estab-
lished bulk-based methods to infer single-cell GRNs, 
and currently available scRNA-seq-based GRN inference 
methods adopting different statistical frameworks. We 
will further address GRN evaluations and recommend 

workflows to ensure the discovery of robust network 
models.

Challenges in scRNA‑seq GRN inference
GRN inference in scRNA-seq is presented with chal-
lenges to construct robust and reproducible network 
models. Drop-out reads present false zero-expressions 
in addition to the sparse cell-wise transcriptome. These 
noises in scRNA-seq underscored near-random per-
formances of gene-gene similarity measures to uncover 

Fig. 8 snATAC‑Seq analysis for AD and control. A Sample 47 (AD) and sample 101 (Control) from the Swarup study are integrated and projected 
onto UMAP. B Cells are clustered into 11 cell clusters. Gene activity matrix is extracted from fragment file. Marker genes are then identified for each 
cluster and cell types are identified according to the marker genes of each cluster. C Gene activity of SLC1A2, SNAP25 and MBP are shown in AD (left) 
and control (right), respectively. D Accessibility and co‑accessibility of SNAP25. The top panel shows normalized accessibility of 11 cell types. The 
two panels in the middle show the peaks around SNAP25. The bottom panel shows the co‑accessibility scores among the peaks
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meaningful gene interactions in benchmark scRNA-seq 
data [314]. Model-based dropout imputation methods 
such as SAVER [81] have shown outstanding imputation 
performances with the least false-positives [315], and 
improved the GRN performances [316]. The high-dimen-
sionality of scRNA-seq with thousands to hundreds of 
thousands of cells can incur ‘curse-of-dimensionality’ 
and increase the computational complexity to evaluate 
gene-gene interactions. Careful feature selection by gene 
dispersion [74] and low dropout rate [317], and cell selec-
tion by low mitochondrial rate, read depth, and number 
of expressed genes [74, 92] can improve network per-
formances. Further, adjustments for technical variations 
such as batch effects by the mutual nearest neighbor 
(MNN) [91] and canonical correlation analysis (CCA) 
[92] are beneficial for GRN inference [316].

scRNA‑seq application of bulk‑based gene network 
construction methods
Established bulk-based GRN inference tools have been 
applied in scRNA-seq as these tools constructed robust 
network models in complex diseases and are immedi-
ately accessible. While there are several excellent reviews 
on bulk-based GRN inference methods [318–320], 
we review several established methods applied in the 
scRNA-seq domain.

Co-expression networks identify gene interactions by 
gene pairwise association measures such as correlations 
or information-theoretic measures [321]. Weighted gene 
co-expression network analysis (WGCNA) is the most 
popular correlation-based method to construct a scale-
free gene interaction network model, and identify co-
expressed gene modules as putative interactomes [322]. 
Multiscale Embedded Gene Co-expression Network 
Analysis (MEGENA) embeds most correlated gene pairs 
on a topological sphere to construct a sparse co-expres-
sion network and detect multi-scale gene modules [323]. 
While these correlation-based methods capture linear 
patterns, information-theoretic measures can capture 
non-linear patterns. Algorithm for the Reconstruction 
of Accurate Cellular Networks (ARACNE) is an infor-
mation entropy-based network inference method and 
prune false-positive interactions by testing all trios with 
data processing inequality [324]. CLR is based on mutual 
information to handle gene-gene interactions and con-
trols false-positives by using the global network as the 
background [325]. MRNet combines both criteria in CLR 
and ARACNE to screen the false-positives to improve 
the prediction acuracy [326].

Several statistical frameworks infer directed interac-
tions between causal and effector genes in contrast to 
undirected interactions. Bayesian Network (BN) infer-
ence provides a flexible framework for identifying 

directed interactions in causal cascades and integrating 
upstream regulations such as genetic variants as prior 
network [327, 328]. Well-established BN tools include 
RIMBANet [328] and bnlearn [329]. GENIE3 is a random 
forest (RF) regression method to infer directed causal 
relationships and has won the DREAM4 challenge as the 
best performing network inference method [330, 331].

Applications in scRNA-seq have discovered key path-
ways and markers of heterogeneous cell populations 
underlying human disease tissues. WGCNA has been 
applied to identify pathways to activate dormant neural 
stem cells [332], regulators of chemotherapy resistance in 
esophageal squamous cell carcinoma [333], and prognos-
tic markers for prostate cancer [334]. MEGENA has been 
applied to identify enriched pathways in different astro-
cytic subpopulations in Huntington disease [335], viral 
infection-regulated pathways in lung epithelium [336].

On the other hand, naïve applications of bulk-based 
GRN methods involve several shortcomings. They show 
lower retrieval of known functional links than those 
inferred from bulk RNA-seq data [316] and primarily 
associate the modules to cell types that the intricate path-
ways within the cells [337]. GENIE3, BN, ARACNE, and 
CLR in in silico simulated and experimental scRNA-seq 
data showed poor performance in retrieving true inter-
actions from reference sets (e.g., known protein-protein 
interactions) with little overlaps across them [338]. Rig-
orous QC to remove unintended co-variations such as 
batch effects and lowly expressed genes have improved 
the bulk-based co-expression networks [316].

Single‑cell‑based network analysis tools

Boolean The Boolean network model simplifies the 
complex biological pathways into a switch-like pro-
cess that transits the network change from one state to 
another [339]. In Boolean networks, a node (i.e., gene) is 
denoted by two possible states, ON (1) or OFF (0), and 
the interacting relationship between nodes is character-
ized by a target-node-specific function f, which formu-
lates the state of a target gene based on the states of some 
other genes through clauses consisting of only Boolean 
operators AND (∧), OR (∨) and NOT (¬) [340]. Several 
Boolean network methods have been proposed for ana-
lyzing scRNA-seq data. Single Cell Network Synthesis 
(SCNS) [341, 342] is a web-graphic-based tool and uses 
discretized time series snRNA-seq expression data to 
infer logical rules driving from early phase to late phase 
transitions, with single gene change at each transition. 
The resulting logical model predicts the effects of gene 
perturbations (e.g., knockout or overexpression) on 
specific lineages by design. A similar Boolean network 
method that uses cell trajectory lineage tree information 
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was developed by Chen et  al. [343]. Unlike SCNS, 
BTR (BoolTraineR) [344] does not assume trajectories 
through cell states. Instead, BTR learns the network 
structure through iteratively modifying existing Boolean 
models to explore predictions with an improved match 
to the observed expression data state via a novel Boolean 
state space scoring function [344].

Differential equation GRN inference from time-
stamped scRNA-seq data can also be facilitated by ordi-
nary differential equation (ODE) models. In these mod-
els, a set of ODEs from potential regulators describe 
temporal changes in the target genes. This model can 
be expressed in the form of dx

dt
= Ax , where x is a time-

labeled vector of C single-cell transcriptomic profiles, 
x1, x2, …, xC ∈ RG in which xi represents the expression, 
for the ith cell, of G genes, and A is a square matrix that 
characterizes the regulatory network among the genes 
[345, 346]. One such method, SCODE [346], infers the 
TF-regulated network by estimating the coefficients of 
linear ODEs via linear regression in transformed vari-
ables. With dimension reduction, this approach leads to 
a considerable reduction in the time complexity of the 
algorithm. A similar approach, GRISLI (Gene Regulation 
Inference for Single-cell with LInear differential equa-
tions and velocity inference), was developed [345]. It first 
estimates each cell’s velocity (i.e., how each gene’s expres-
sion value changes as each cell undergoes a dynami-
cal process), then constructs a GRN by solving a sparse 
regression problem that relates the gene expression and 
velocity profiles of each cell.

Bayesian A BN inference approach, AR1MA1-VBEM 
(Variational Bayesian Expectation-Maximization) 
[347], uses a first-order autoregressive moving-average 
(AR1MA1) model to fit the fold change of a gene at a 
specific time with a linear model that combines the 
data at the previous timepoint and a noise term. Under 
a Bayesian framework, the likelihood function for the 
AR1MA1 model is a multivariate Gaussian with mean 
expressed as a function of the network structure. For 
ease of computation, conjugate priors are used, and 
the unknown network structure is modeled as a hid-
den latent Gaussian variable while a Normal scaled 
Inverse-Gamma distribution models the parameters of 
the AR1MA1 model. For actual network inference, it 
uses a VBEM framework using variational calculus to 
optimize the network models’ marginal likelihood and 
posterior distributions. In a different method, HBFM 
(Hierarchical Bayesian Factor Model) uses a sparse 
hierarchical Bayesian factor model to formulate the 
impact of gene expression by various factors associated 
with each cell, and a gene regulatory network structure 

is constructed by examining the shared factors between 
pairs of genes [348].

Pseudo‑temporal dynamics‑based regressions scRNA-
seq data provides an opportunity to estimate the cell-
level temporal dynamics by assuming gradual changes 
in the cellwise transcriptome occurs over time and con-
stitute a trajectory. While cell trajectory inference is an 
active research area in the scRNA-seq domain [106, 163, 
194], the inferred ‘pseudo-time’ on individual cells opens 
the doors to identify causal expressions in cells from pre-
ceding time points to explain downstream changes in the 
later time points, thus enables inference of causal net-
works. Granger’s causality is a regression-based frame-
work to explain variations at a lagged time point with 
several precedent time point data [349] and has been 
adopted in several scRNA-seq GRN inference methods. 
SINCERITIES (SINgle CEll Regularized Inference using 
TIme-stamped Expression profiles) assumes such time-
stamped cell transcriptome. Sufficient temporal changes 
between two ‘snapshots’ of single-cell transcriptome 
are evaluated by Kolmogorov–Smirnov (KS) statistic, 
and Granger’s causality infers the causal TF activities to 
the target genes’ expression changes [350]. To address 
irregularities in inferred pseudo-time that the underly-
ing dynamical process is not uniform and hence hinders 
correct causal inference, SCINGE uses kernel-based 
Granger Causality regression to alleviate irregularities in 
pseudotime values [351].

Different statistical frameworks have also been adopted 
to evaluate gene-gene relationships across different time 
windows. LEAP (Lag-based Expression Association for 
Pseudotime-series) utilizes Pearson’s correlation of nor-
malized expressions at a time window with those expres-
sions from lagged time windows to establish time-lagged 
associations between the genes [206]. SCENIC (Single-
cell regulatory network inference and clustering) couples 
co-expressed target genes with TFs by GENIE3 [330] and 
overlaps them with cis-regulatory binding motifs enrich-
ments within each cell trajectory [352]. SCRIBE uses an 
information-theoretic measure, restricted directed infor-
mation (RDI), to quantify the information transferred 
from the potential regulator to the target in a lagged time 
point. Qiu et al. showed RNA-velocity, a pseudo-dynamic 
measure based on transcription kinetics [168], best esti-
mates the real time-series and improves GRN perfor-
mance over pseudotime [165].

Association‑based approaches
In contrast to other model-based methods, association-
based networks objectively evaluate the likelihood of 
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gene-gene interactions by ‘guilt-by-association’ [320]. 
Several gene association measures have recently been 
devised to handle noises and systematic errors specific to 
scRNA-seq, and optimized algorithms to efficiently dis-
sect robust interactions.

A popular strategy involves a series of data transforma-
tion or modeling steps to handle sparsity and dropout 
expressions and evaluate significant association by cor-
relations or information-theoretic measures. In bigSCale, 
gene-expressions are grouped into cell clusters [353], 
and differential expressions between a pair of clusters 
are transformed into z-scores to calculate Pearson’s cor-
relations between the clusters [354]. With top 0.1% cor-
relations, the global GRN often yields dense networks 
[311]. CSN (Cell-specific network) [355], on the other 
hand, aims to infer co-expression networks for individ-
ual cells. CSN develops a statistic for each gene pair to 
evaluate significant patterns in a cell scatter plot, where 
the statistic is normally distributed if no pattern is pre-
sent. The significant gene pairs are then collected to con-
struct a cell-specific co-expression network (CSN), and 
the summarized gene-wise connectivity across cells can 
serve as denoised and normalized gene expressions for 
further analyses [355]. Based on multivariate information 
theory, PIDC utilizes Partial information decomposition 
(PID) to quantify gene interaction as the proportion of 
unique information shared explicitly between two genes, 
compared to the shared information with the rest [338]. 
When dropout reads were present, PIDC performed 
favorably over other mutual-information-based methods 
and yielded sparse GRNs. But, PIDC suffers from data 
discretization problem, an inherent problem in informa-
tion-theoretic measures, and is computationally expen-
sive as it sweeps through gene triplets [338]. scLink aims 
to infer robust and sparse gene-gene covariance struc-
ture by modeling the dropout rates per gene to quantify 
robust expressions. By fitting a Gamma-Normal mixture 
model for each gene’s expressions, robustly expressed 
genes are filtered with a low non-detection rate, and the 
sparse covariance matrix is inferred with a graphical 
Gaussian model with penalized likelihood method [317].

Cell‑cell communication network
Cell-cell communication is vital for multicellular organ-
isms to coordinate functionally unique cell populations 
in response to internal and external stimuli. Such com-
munication is primarily mediated by ligand (L)-receptor 
(R) interactions and can be visualized by networks where 
each node is a cell type and the edges are L-R interactions 
[311]. Several algorithms and databases have been estab-
lished to leverage cell-level resolution in scRNA-seq to 
infer cell-cell communication networks, for instance, in 

cancer research to dissect L-R signaling in tumor micro-
environment [356].

iTalk relies on a built-in curated database of 2648 non-
redundant and known L-R pairs to infer communications 
across or within distinct cell types [357]. It models the 
gain or loss of interactions by differential gene expres-
sion of each L-R pair across all cell types independently, 
given that different cells may have distinct receptors for 
the same ligand and vice versa [357]. Instead of relying 
on differential expressions, Zhou et  al. focus on highly 
expressed L and R genes in sender and receiver cells and 
evaluate their communications by pairwise Spearman 
correlation [356]. As a single L-R pair can function in 
multiple cell type pairs, scTensor models cell-cell com-
munication as a hypergraph where each node is a cell 
type, but the edges represent different related L-R pair 
sets. This “many-to-many” model of communications 
across multiple cell types is detangled by non-negative 
Tucker decomposition to estimate contributions from 
the expression patterns of receptors and ligands as well as 
L-R interacting pairs [358]. Different from other methods 
discussed, SoptSC considers the signaling-pathway-wise 
gene expressions downstream of each L-R interaction to 
infer the L-R activity. The signaling probability is defined 
based on weighted co-expression of pathway activity in 
the sender-receiver cell pairs. Together with pseudotem-
poral information inferred from scRNAseq, SoptSC 
allows inference of higher-level communication networks 
with more complex structures such as feedback/feedfor-
ward interactions [359].

Context‑based network inference
ACTION attributes functional similarity to genes with 
relatively weak but preferential expression in specific cell 
types. It identifies cell clusters, termed archetypes, by 
low-dimensional geometric constructs in the functional 
space. Further, it infers cell-type-specific TF regulatory 
networks (TRNs) by assessing significant TFs with their 
targeted top-ranked cell type markers. Thus, ACTION 
provides functional annotation and subsequently the 
phenotype associated with each cell type [360]. SCINET 
extends the concept of ACTION to project single-cell 
transcriptomic data onto a reference interactome and 
identifies cell-type-specific and disease-associated inter-
actions. By using regression-based imputation and rank-
based inverse normal transformation, SCINET infers 
the likelihood of co-expressed gene-gene interactions, 
assuming the standard normal distribution of the trans-
formed expression data [361].

Network evaluation
The confidence of the inferred interactions is often crucial 
in identifying key mechanisms and putative regulators, 
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and ultimately, formulating robust and testable biological 
hypotheses. One approach is to examine the congruence 
between the established regulatory pathways or relation-
ships and the inferred networks. Gene perturbation data-
bases in established disease models such as Library of 
Integrated Network-based Cellular Signatures (LINCS) 
[362] or CREED [363] curate differentially expressed 
gene signatures by genetic or chemical perturbations in 
cell lines, animal models, or disease tissues. These signa-
tures represent the downstream pathways of the exerted 
perturbation on a network regulator, and the topology of 
the context-matched, inferred networks should capture 
these pathways within the perturbed regulator’s proxim-
ity. Key Driver Analysis (KDA) examines the enrichments 
of the perturbation signatures in the network neighbor-
hood of the perturbed regulator by Fisher’s Exact Test 
[307]. The reproducibility of curated reference networks 
such as protein-protein interactions (PPI) [364], signal-
ing pathways, and text-mining from published studies 
provide other measures to evaluate inferred networks’ 
biological relevance. Although incomplete and high in 
false positives [318], enrichment for the references is a 
useful metric for evaluating network performance [314]. 
Perturb-seq provides a single-cell sequencing platform 
leveraging Cas9/CRISPR to capture the effects of gene 
perturbations in a high-throughput manner at a cell-level 
resolution [365].

On the other hand, simulation studies provide the full 
controls over the model and noise parameters to gener-
ate tailored data, whose underlying reference network 
is known for objective comparison with inferred net-
works [331]. GeneNetWeaver is a stochastic differen-
tial equation-based simulation tool and has been used 
to evaluate bulk-based GRNs such as DREAM4 chal-
lenge [366]. Chen and Mar generated simulated data 
to resemble scRNA-seq with a combined approach of 
GeneNetWeaver and added artificial dropout events 
to evaluate bulk-based, and single-cell-based GRN 
approaches [367]. Pratapa et  al. introduced BEELINE 
as a single-cell transcriptome simulation framework 
leveraging Boolean network models [207]. Unlike 
GeneNetWeaver, BEELINE can simulate stochastic data 
with underlying cell trajectory, a hallmark feature in sin-
gle-cell transcriptomes [207].

Recommended workflow & applications to AD
Inference of robust and accurate network models in 
single-cell transcriptome requires appropriate mod-
eling of data noises specific to scRNA-seq. These 
involve low per-cell coverage, doublets, dropout reads 
as the main sources of noises and should be handled 
as illustrated in QC guidelines and impute the dropout 
reads with model-based methods. The model-based 

imputations infer cellwise dropout rates to facilitate 
the selection of cells robustly expressing each gene to 
improve the performance of inferred gene-gene inter-
actions [317]. In addition, unwanted sources of varia-
tions such as batch effects should be adjusted before 
gene-gene similarity calculation for improved predic-
tion accuracy [316].

Depending on the type of an inferred GRN, the expres-
sion data should be adequately normalized to optimize 
the accuracy of inferred gene interactions. The denoised 
counts should be log-transformed to closely follow 
Gaussian distributions for constructing regression-based 
or association-based GRNs. On the contrary, kinetic-
based methods such as Boolean or ODE-based networks 
may perform better in the gene count space.

However, GRN inference with scRNA-seq data is still in 
its infancy and requires an objective performance evalu-
ation. BEELINE [207] and GeneNetWeaver with artificial 
dropout events provide accessible platforms to generate 
simulated data mimicking scRNA-seq characteristics and 
to build up respective reference networks. The simulated 
data should closely follow noise models from the real-
world scRNA-seq data, including branching trajecto-
ries and match the dropout rates, and an inferred GRN 
should be compared to the respective reference network 
for reproducing network connectivity. In addition, the 
inferred GRNs can be evaluated in biological contexts 
as enrichment for protein-protein interactions (PPI) or 
known pathways.

To illustrate the application of network analysis in AD 
single-cell data, we constructed gene co-expression and 
Bayesian networks for an excitatory neuron cluster iden-
tified in the ROSMAP snRNA-seq data using two well-
established bulk-tissue gene network inference tools. 
Figure 9 visualizes the two networks. The scripts for the 
network analyses are provided in the companion GitHub 
repository (see the section "Availability of data and soft-
ware code" for details).

Prioritization of cell clusters
scRNA-seq enables accurate classification of individual 
cells by gene expression profiles, and cluster-based dif-
ferential gene expression analysis of scRNA-seq data can 
help resolve brain-region specific changes in heterogene-
ous cell populations in AD brains. As loss of neurons and 
increased microglia activation are characteristic of typi-
cal AD brains [368, 369], and many genes show differen-
tial expression between AD and control [307, 308, 369, 
370], cell clusters from scRNA-seq can be prioritized 
for their relevance to AD or other diseases by consider-
ing the following criteria: 1) the change in the proportion 
of the cells in a cluster between control and disease (e.g., 
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AD) and 2) the number of DEGs in a cluster between 
control and disease.

For example, Olah et  al. used scRNA-seq to char-
acterize differences in the distribution of dis-
tinct microglia subpopulations in human cerebral 
cortex specimens [7]. The study identified nine distinct 
sequence profile clusters indicative of 9 distinct micro-
glia subpopulations. Among these, they found reduced 
frequency of the cluster 7 microglia sub-population in 
AD brain tissues [7]. Moreover, they found cluster 7 is 
particularly enriched for genes depleted in the AD cor-
tex [7]. As such, these observations would justify pri-
oritizing microglia cluster 7 as a target for follow-up 
investigations.

In another single-nucleus transcriptomic study of 
human prefrontal cortex specimens, Mathys et  al. iden-
tified transcriptionally distinct sub-populations across 
six major brain cell types, with many of the top DEGs 
recurring across multiple cell types [8]. Interestingly, the 
expression changes of myelination-related genes across 
major cell types, including oligodendrocytes and oli-
godendrocyte progenitor cells, are indicative of major 
perturbations in myelin integrity in AD brains. Thus, 
combined analysis of specific cell subpopulations and 
DEGs could help illuminate functional and dynamic 
changes at the single-cell level between AD and control 

and provide the basis for prioritizing specific clusters 
for follow-up functional, mechanistic investigations and 
therapeutic development.

Integration of snRNA‑seq and bulk RNA‑seq datasets
In the past decade, bulk RNA-seq datasets have been 
massively accumulated. However, cell type compositions 
in the bulk tissues represent a significant confounding 
factor influencing sample comparisons. scRNA-seq can 
be utilized to estimate cell fractions of the bulk RNA-seq 
datasets, thus ‘deconvolving’ the cell compositions. Early 
deconvolution approaches rely on cell markers and gene 
expressions from cell sorting experiments. For example, 
CIBERSORT applies support vector regression to charac-
terize the cell composition of complex tissues from their 
gene expression profiles [371], and CellMix is an R pack-
age that incorporates multiple deconvolution methods 
(e.g., the Digital Sorting Algorithm and semisupervised 
non-negative matrix factorization methods (ssKL and 
ssFrobenius)) to analyze heterogeneous samples [372]. 
More recently, deconvolution methods have been devel-
oped to utilize single-cell transcriptome as the reference 
directly.

In contrast to traditional methods that mainly use 
marker genes from cell sorting experiments, single-
cell-based deconvolution methods utilize sparse gene 

Fig. 9 Excitatory neuron cluster‑specific gene networks inferred from the ROSMAP AD snRNA‑seq data. A Coexpression network constructed by 
MEGENA, with node color denoting the module assignment. B Bayesian network constructed by RIMBANet. Node size is proportional to the degree 
of connectivity
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expression matrix from scRNA-seq and models gene/
sample specific variations unique to single-cell experi-
ments. For example, DeconvSeq utilizes a generalized 
linear model in feature quantification to construct a 
projection matrix and resolves cell type fractions by a 
sequential quadratic programming based solver [373]; 
MuSiC applies a weighting scheme to prioritize con-
sistent genes across subjects and proposes a weighted 
non-negative least squares (W-NNLS) regression 
framework to estimate cell fractions [374]; DWLS 
designs a weighted least squares approach to adjust the 
contribution of each gene and solves the constrained 
dampened weighted least squares problem by quad-
ratic programming [375]; Bisque performs a bulk gene 
expression transformation to explicitly account for the 
gene-specific variations and employ the non-negative 
least-squares (NNLS) regression for cell type fraction 
inference [376]; and SCDC leverages multiple scRNA-
seq reference sets for bulk gene expression deconvolu-
tion [377]. Extending from CIBERSORT, CIBERSORTx 
can also use single-cell expression references to infer 
cell type abundance and cell-type-specific gene expres-
sions. In AD studies, both traditional and scRNA-seq 
based methods have been applied to deconvolve the 
cell fractions of bulk RNA-seq datasets [376, 378]. 
However, the correlations of the inferred cell fractions 
with immunohistochemistry (IHC) as ground truth 
were not high [378]. A more recent study showed that 
Bisque could reliably estimate cell fractions in subcu-
taneous adipose and dorsolateral prefrontal cortex 

expression datasets [376]. When applied to the ROS-
MAP AD snRNA-seq dataset, Bisque outperformed 
other deconvolution methods [376].

Recommended workflow and applications to AD
Leveraging the ROSMAP AD cohort with both bulk 
RNA-seq data for over 600 subjects and snRNA-seq 
data for a subset of the samples, we performed a mini-
benchmarking of the performance of several deconvo-
lution methods. Here we aggregated the cells of each 
individual  in the snRNA-seq data by major cell types to 
calculate a cell type proportion estimate. As shown in 
Fig.  10, the single-cell-based methods including Bisque, 
MuSiC, and SCDC tend to have a higher correlation with 
the snRNA-seq cell type proportions and a lower error 
rate than the traditional marker gene-based method CIB-
ERSORT (Fig.  10). Among different single-cell-based 
methods, Bisque’s estimates of the cell type proportions 
best resemble the results derived from the snRNA-seq 
experiments. Therefore, single-cell-based methods, espe-
cially Bisque, are recommended for the general purpose 
of deconvolution studies.  The script for this integrative 
analysis is provided in the companion GitHub repository 
(see the section "Availability of data and software code" 
for details).

The cell-type proportions estimated from deconvolu-
tion methods can be used for a number of downstream 
analyses for AD. For example, in contrast to tradi-
tional DE analysis confounded by cell type proportions, 
deconvolution results can provide new insights into the 

Fig. 10 Cell‑type deconvolution of the bulk RNA‑seq data in the prefrontal cortex in the ROSMAP AD cohort. A The input of cell‑type 
deconvolution analysis. The cell‑type marker gene or scRNA‑seq expression matrix was used to infer cell type fractions of the bulk RNA‑seq datasets. 
B Cell‑type fractions from the deconvolution analysis of 15 individuals from the ROSMAP database. Four different deconvolution methods were 
applied, including bulk RNA‑seq based method (CIBERSORT) and single‑cell‑based methods (Bisque, MuSiC, and SCDC). The pink color indicates 
the cell type fractions estimated by the snRNA‑seq experiment. C Evaluation of different deconvolution methods by comparing with the cell‑type 
fractions from the snRNA‑seq experiment. Two matrices were used to benchmark the tool performance: the Pearson correlation (top panel) and the 
root‑mean‑square deviation (RMSE, bottom panel)
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cell-intrinsic DEGs by adjusting cell type proportions 
[379]. The fractions of neuron cells calculated by differ-
ent deconvolution methods negatively correlated with 
the cognitive diagnosis [376], consistent with our knowl-
edge of neuronal loss in AD brains. Aneal et al. developed 
a new deconvolution method CelMod to infer propor-
tions of 35 cell subclusters [380], which were identified by 
snRNA-seq of 24 prefrontal cortex samples with or with-
out AD pathologies. The deconvolution method revealed 
that highly correlated cell subclusters form distinct cel-
lular communities across 640 individuals. Although 
biological functions of the cellular communities need 
validation, the deconvolution analysis provides intriguing 
applications in AD studies to analyze interactions among 
different cell subtypes.

Prioritization of gene subnetworks and key drivers
Established strategies for prioritizing co-expressed 
modules and key causal drivers from bulk transcrip-
tomic data can be directly applied to cell cluster-based 
coexpression and causal networks [307, 328, 370, 381–
383]. Specifically, for each cell cluster from scRNA-seq, 
the modules in the respective coexpression network will 
be tested for and sorted by associations with trait phe-
notypes. The association between module eigengenes 
(the first principal component of the module gene 
expression data) and the biological covariates can be 
utilized to evaluate association [384]. Alternatively, 
the modules can be tested for enrichment of DEGs in 
the cluster (see Differential expression for disease gene 
identification section) between disease (e.g., AD) and 
control, and then all the modules will be rank-ordered 
by enrichment score (e.g., FET p-value or fold enrich-
ment) [385]. Similarly, the network neighborhood of a 
gene conforms to the model of the genes’ downstream 
pathways, and the enrichment of cluster-specific DEGs 
from diseased cells (e.g., AD) in the network neighbor-
hood can guide the prediction of key drivers of the dis-
ease etiology [386]. Such key driver prediction methods 
have been widely used in numerous network analyses 
of human diseases, such as AD, coronary artery dis-
ease, inflammatory bowel disease, and allograft rejec-
tion [307, 386–390]. Key drivers are thought to provide 
insights into gene regulatory control and serve as tar-
gets for therapeutic discovery. Key drivers then can be 
prioritized for experimental validation by considering 
a line of evidence whichever available and appropri-
ate, including but not limited to the degree of connec-
tivity, the status of expression change between disease 
and control, fold enrichment of disease associated genes 
in the downstream subnetwork, strength of expression 
correlation with disease trait variables, genetic associa-
tion signal, literature support, etc. [387].

Spatial transcriptomics
Cellular spatial location is not well retained in the single-
cell transcriptomics methods described above. Given 
that cellular gene expression patterns change in response 
to environmental cues maintaining the neighborhood 
environment allows for a deeper understanding of tissue-
wide dynamics and biological function of genes and cells. 
Many of the current spatial technologies were derived 
from RNA in  situ hybridization (ISH) and/or principles 
of laser capture microdissection. While ISH, a commonly 
used technique to histologically visualize mRNA locali-
zation in tissues on microscope slides, allows for main-
tained tissue integrity and entire tissue analyses, a major 
limitation of traditional ISH is the number of targets that 
can be analyzed concurrently. On the other hand, laser 
capture microdissection, developed in the 1990s, uses 
low-power infra-red laser beams to microdissect cells of 
interest to overcome this obstacle and allows the whole 
transcriptome profiling, but the laser capture microdis-
section is destructive for the cells.

Several advanced approaches have been developed to 
profile whole transcriptomes while preserving spatial 
information in the past few years. These include fluo-
rescence in  situ hybridization (FISH) [391–396], in  situ 
sequencing (ISS) [397–399], and spatially-barcoded 
RNA sequencing [23, 400–402]. The methods differ in 
sequencing depth, the number of transcripts analyzed 
(dozens to the whole transcriptome), tissue integrity (dis-
sociative versus non-destructive), cellular throughput 
(10s, 100 s, 1000s of cells), spatial information (image or 
spatial barcode), cellular resolution (multi, single or sub-
cellular) and starting material (fixed or frozen tissue).

These technologies open an unprecedented opportu-
nity to dissect the cellular complexity and characterize 
the tissue microenvironment for identifying inter-cellular 
interactions and signaling pathways in complex diseases 
such as cancer [201, 403], amyotrophic lateral sclerosis 
(ALS) [404], and AD [405]. Computational methods have 
been developed to identify spatial patterns [406–409] and 
detect spatial ligand-receptor interactions [406]. Appli-
cation of spatial transcriptomics (ST) analysis to mouse 
models of familial AD has identified two co-expression 
networks in small tissue domains, representing spatially 
coordinated transcriptomic changes induced by amyloid 
plaques [405].

Chen et  al. [405] applied ST (10X Visium protocol 
that profiles tissue domains up to ~ 10 cells each) and 
ISS technologies to study AD using  APPNL-G-F mice. 
They identified two co-expression networks, one of 
which (referred to as plaque-induced genes, or PIG 
for short) is particularly interesting since their activi-
ties are strongly associated with the Aβ plaque. We 
applied Giotto [406] to re-analyze a subset of the ST 
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data in their paper, corresponding to two wild-type 
(WT) and two AD  (APPNL-G-F) mice at the 18-month-
old age. By using Leiden clustering, we identified 8 dis-
tinct clusters (Fig.  11A). The spatial patterns of these 
clusters are robustly reproduced in the normal mice, 
but vary significantly in the AD mice, suggesting exten-
sive structural differences (Fig.  11B). To quantify the 
spatial patterns at the gene-level, we used the binSpect 
algorithm [406] to identify spatially variable genes. 
The top 300 genes selected by the algorithm were fur-
ther divided into 20 distinct modules based on co-
expression analysis (Fig.  11C). Module 6 is notable as 
it strongly overlaps with the PIG network previously 

identified by Chen et al. but a different analysis proce-
dure that requires the knowledge of plaque locations 
is not used here. Among the 43 genes contained in 
Module 6, 20 are from the PIG network. These genes 
are highly expressed in the AD mice but significantly 
down-regulated in the WT mice (Fig. 11D). We further 
investigated the cell-type distributions in the normal 
and AD mice. Since the spatial resolution of the ST 
technology is limited to 100um, we applied cell-type 
enrichment analysis to computationally estimate the 
spatial distribution of different cell types, using publicly 
available single-cell RNAseq data [410] as guidance. 
We found that the spatial distributions of neurons are 

Fig. 11 Spatial transcriptomics analysis of an AD mouse model. Data from four 18‑month‑old mice, including 2 AD (AD.1 and AD.2) and 2 WT (WT.1 
and WT.2), were analyzed. A Visualization of the Leiden clustering of the tissue domains in the UMAP space; B Spatial distribution of the tissue 
domains colored by the cluster id in A; C Clustering of spatially correlated genes; D Spatial pattern of a spatially correlated gene cluster #6 which is 
upregulated in the AD mice
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similar, but the proportion of microglia increased sig-
nificantly in the AD mice. This is consistent with the 
original study since microglia have been well-known 
to be associated with AD. Thus, ST analysis provides a 
valuable tool to identify distinct structural alterations 
associated with AD and may lead to new hypotheses for 
future studies. The script for analyzing the spatial tran-
scriptomics data is provided in the companion GitHub 
repository (see the section "Availability of data and soft-
ware code" for details).

Integrative analysis of human and mouse AD scRNA‑seq 
data
As eventually mouse models will be used to validate 
key findings from human AD single cell sequencing 
data, integration of mouse and human single cell data is 
critical for informing the correspondence between AD 
mouse models and human AD. There are nine papers 
about single-cell sequencing analysis of AD mouse mod-
els [57, 139, 411–417]. As summarized in Table  5, 14 
mouse models have been analyzed, including the most 
widely used 5XFAD, 3XTg-AD, and APP/PS1 transgenic 
mice. The mouse ages range from 3 to 24 months, and 
the brain regions profiled include the prefrontal cortex, 
cerebral cortex, hippocampus, subventricular zone, and 
cerebellum.

So far, few studies have conducted an integrative analy-
sis of human and mouse single-cell transcriptomic data 
in AD. In a recent single-cell study of TRME2 R62H 
mutation in AD, Zhou et al. [57] analyzed the human AD 
snRNA-seq data and mouse scRNA-seq data separately 
and then compared the cell type-specific disease signa-
tures between the two species by overlapping analysis. 
However, they fell short of joint learning of single-cell 
datasets between humans and mice. There are a number 
of challenges in cross-species single-cell data integration, 

including but not limited to the partially overlapping 
gene background, distinct cell populations, and poorly 
conserved cell type transcriptome or markers that may 
arise from different species. Nonetheless, some tools 
have been developed to formally reconcile heterogene-
ous scRNA-seq data from multiple species to gain robust 
and insightful comparisons between different species 
[418, 419]. Assuming that at least a subset of gene-gene 
correlations should be conserved, thus align cells across 
species, Butler et al. [49] proposed to first use canonical 
correlation analysis (CCA) to identify conserved gene-
gene correlation structure between datasets and then 
apply nonlinear warping algorithms to align different 
datasets for a single integrated clustering analysis. When 
applying this alignment procedure to single cell datasets 
from human and mouse pancreatic islets, the integra-
tive analysis was able to identify conserved cell states 
and cell-type markers, with cluster calls agreed very well 
(> 94%) with the analyses from the independent data sets 
[49]. In theory, other batch correction pipelines based on 
similar assumptions, such as MNN [91] and Harmony 
[98], can also be used for cross-species joint learning. 
Different from the joint clustering in CCA, Crow et  al. 
developed a supervised framework to align cell clusters 
across datasets in their method MetaNeighbor [420]. In 
this method, each dataset is first analyzed separately to 
label the cell types. Then a cross-dataset cell correlation 
network is constructed based on the expression of a given 
set of genes. Next, the cell-type labels (“identity”) in one 
dataset are held-out and predicted using a neighbor-vot-
ing classification model trained from the remaining cell 
correlation network in other dataset(s). This training and 
prediction process iterates for every dataset. This method 
can rapidly evaluate how well cell types are conserved/
replicated in different conditions by comparing the pre-
dicted labels with original labels from individual analyses. 

Table 5 Summary of mouse models used in single cell sequencing studies of AD

Reference (PMID) Mouse Model Brain Region Age (Month)

32341542 5XFAD Prefrontal cortex 7, 10

32320664 APP/PS1 IL33 mice, APP/PS1 transgenic mice Cerebral cortex 10–12

31932797 Trem2_KO mice, Trem2_KO_5XFAD, WT_5XFAD mice Cortex, Hippocampus 7, 15

31928331 APP23 transgenic mice (B6. Cg‑Tg (Thy1‑APP)3Somm/J) Hippocampus 6, 24

29020624 CK, CK‑p25 Hippocampus 0wk,1wk, 2wk and 6wk after 
p25 induction into 3 m‑old 
mouse

28602351 5XFAD Cortex, Cerebellum 6

32503894 3XTg‑AD mice Subventricular zone and hippocampus 8

32503894 anti‑Nk1.1 treated 3XTg‑AD Subventricular zone and hippocampus 7

32579671 5XFAD‑CV, 5XFAD‑R47H Cortex and hippocampus 5.5

31902528 Trem2 +/+ mice, Trem2 +/− mice, Trem2 −/− mice Hippocampus 12–14
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MetaNeighbor has been successfully applied to compare 
cell atlases across 7 species [418].

To perform a comprehensive comparison of single cell-
based gene signatures between human AD studies and 
AD mouse models, we collected cell-type-specific disease 
signatures from six single-cell AD mouse model studies 
[57, 139, 414–417] and seven single-cell human AD stud-
ies [7, 8, 41, 42, 45, 57, 421]. Mouse genes were converted 
to human homologs by using BioMart before enrichment 
analysis by FET. We compared the DEG signature for 
each cell type. In microglia, the DEGs from 5XFAD, APP/

PS1, and the CK-p25 mice show the most significant 
enrichment with human microglia DEGs (Fig.  12). Yet, 
no single mouse model can capture all molecular altera-
tions in human AD, and the selection of mouse models 
for signature validation may be cell type-dependent.

Challenges in using human postmortem and mouse tissues
There are multiple challenges in using human post-
mortem and mouse tissues to study AD due to the 
heterogeneity of human samples and human–mouse 
discrepancies. First, the existing bulk- or single cell/

Fig. 12 Heatmap showing the overlap of microglia specific DEG signatures between human and mouse AD single cell datasets. Each row 
represents a mouse study. Each column represents a human study
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nucleus-based RNA-seq data from human postmortem 
brain tissues in AD are from terminal-stage patients 
with extensive neuronal cell death, a prolonged process 
starting already at preclinical stages before any clini-
cal symptom emerges [368, 422, 423]. However, ter-
minal-stage tissues may not inform the progression of 
pathogenic mechanisms of earlier disease stages [424, 
425]. Mouse tissues, on the other hand, often encap-
sulate earlier stages of the disease characterized by 
accelerated amyloid or tau proteinopathy [424]. Sec-
ond, molecular changes like stress-induced inflamma-
tory response may occur postmortem should cellular 
energy stores and temperature permit [425], leading to 
augmented transcriptomic changes that confound the 
real biological signal. A recent transcriptomic study of 
brain tissues found rapid loss of neuronal genes and 
reciprocal expression of glial genes during a postmor-
tem interval (PMI) period of 24 h [426]. Such postmor-
tem changes may lead to loss of cell identity, which in 
turn biases the subsequent cell clustering. Cautions 
need be taken when examining cell clusters, espe-
cially, neuronal clusters with weak markers expression. 
Genome-wide modeling of RNA fidelity as a function 
of PMI is necessary to alleviate such impact and help 
determine and correct the gene expression pattern for 
more robust cell clustering and downstream analyses. 
Therefore, compared to mouse brain samples, human 
brain samples likely present more variable and poorer 
RNA quality due to PMI effects [424, 427]. Finally, dif-
ferences in tissue collection and processing may also 
confound sequencing data. For example, there are 
differences in gene and cell type coverages between 
scRNA-seq and snRNA-seq data as reviewed above. 
Given current technological and ethical constraints, 
snRNA-seq analysis is more practical than scRNA-
seq for human postmortem brain tissues. However, 
we must note that snRNA-seq is limited for detecting 
cellular activation in microglia in human diseases [31], 
a potential explanation for inconsistent observation 
of microglia signatures between human studies and 
between human and mouse studies.

While high quality mouse biospecimens are more 
readily available, it remains a challenge to choose 
appropriate AD mouse models (familial AD versus 
sporadic AD [428]), with a proper experimental design 
taking into consideration of critical factors includ-
ing age, sex, brain regions, sample sizes, etc. AD-like 
pathology occurs in different brain regions of vary-
ing mouse models at different developmental stages 
[429–431]. For example, rTg4510 mice show tauopa-
thies in the cortex at 4 months, while the hippocampus 
at 5.5 months [430]. The PS19 mice show neuron loss 
in the hippocampus at 8 months old, which spreads 

to other regions by 12 months. Existing mouse-based 
single-cell studies of AD have used the prefrontal cor-
tex, cerebral cortex, hippocampus, subventricular 
zone, and cerebellum for scRNA-seq analysis (Table 5). 
Some of the brain regions used in human single-cell 
sequencing studies have not yet been profiled in mice 
(e.g., the entorhinal cortex and superior frontal gyrus). 
Lastly, as the existing AD mice mimic some, but not 
all the key pathologies of human AD, better preclinical 
models of AD are urgently required.

Future development for bioinformatics of single‑cell 
sequencing data
Outlook of cell clustering analysis in AD scRNA‑seq
Cell clustering in scRNA-seq is mostly performed 
within widely adopted scRNA-seq workflows such as 
Scater [74], Seurat [92], SCANPY [50] and monocle 
[432]. However, cell clustering is typically dependent 
on dimension reduction in these workflows and offers 
a limited range of clustering algorithms (e.g., kNN-
based Louvain’s algorithm). On the other hand, much 
of the recent developments in cell clustering remained 
untapped in scRNA-seq study of AD. For instance, the 
application of genotype-based clustering approaches to 
dissect cell populations expressing pathogenic variants 
exemplifies such untapped potentials. Deep learning-
based approaches are also attractive, scalable alternatives 
to extract non-linear patterns in massive AD single-cell 
transcriptome while seamlessly handling batch effects 
and scRNA-seq specific noises. In addition, we antici-
pate single-cell-based spatial transcriptomics to become 
available in the near future. Then novel clustering meth-
ods are needed to leverage the spatial information loss 
in the current single cell data to bring in the potentially 
important topological context in cell clustering analysis. 
Overall, the advances in cell clustering will expand the 
repertoire of AD-associated cell populations, thereby 
enhancing our understanding of underlying cell type-
specific mechanisms.

Suggestions for future trajectory inference approaches
While several dimension reduction methods such as 
PCA, t-SNE [101], DiffusionMap [102] and UMAP [103] 
have been widely adopted in the scRNA-seq analysis 
[34], some methods are not optimized for dissecting 
cell trajectories. Non-linear projection methods such as 
t-SNE and UMAP are known to distort the underlying 
data structure while mapping cells to low-dimensional 
manifolds discards long-range structures, and their sto-
chasticity yields slightly different results if the seed is not 
properly initialized. On the other hand, Diffusion Map 
reflects local and long-range structures and is optimized 
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to trace gradual changes in the transcriptome, making it 
an attractive tool for trajectory inference [102]. However, 
diffusion maps are computationally expensive, and PCA 
can serve as an efficient alternative to capturing long-
range structures to identify the spanning trajectories in 
large-scale scRNA-seq data.

The surge in trajectory inference method development 
urgently needs appropriate scenario-specific methods. 
A growing effort has been put into this direction [433, 
434]. A recent comparative study benchmarks 45 trajec-
tory inference methods over hundreds of simulated and 
real-world data and offers a set of guidelines to walk 
users through method selection [313]. Notably, users 
should be aware of whether the trajectory structures can 
be pre-defined and fit the current experimental settings. 
Determination of the starting point often requires man-
ual selection based on prior knowledge or marker gene 
expression. An unsupervised method using the quantile 
polarization of a cell’s principal component values has 
been recently proposed and subsequently validated in 
several independent studies [435]. The scalability and 
usability should be considered for the efficient characteri-
zation of large-scale single-cell data. Most importantly, 
trajectory inference results should be seen as hypotheses 
that need validation regarding their applicable scenarios, 
robustness, and noise tolerance.

Future directions of sc‑CNV and sc‑eQTL analysis for AD
Even though single-cell based CNV and sc-eQTL analy-
ses have been primarily performed in cancer researches 
[9, 211, 212] and human-induced pluripotent stem 
cell studies [261, 268], single-cell based genetic vari-
ation analysis hasn’t been applied to AD. So far, there 
are about 50 eQTL studies [244, 436–482] and about 
30 CNV studies [483–515] in AD, based on bulk tis-
sues only. Cell-type specific and brain region-specific 
genetic mutations have been shown more relevant to 
the pathology process of AD [244, 308, 450, 452, 457, 
470, 516]. For example, some sc-eQTLs are cell-status 
dependent [247, 260]. Additional future study subjects 
include the functional differences of eQTLs between the 
normal aging process and pathologic process in AD, and 
the relevance of cell type-specific eQTL with respect to 
ApoE or Tau status. Single-cell-based genetic variation 
analysis can pinpoint key genetic mutations driving the 
pathological progress of specific cell populations such 
as microglia cells and neurons in AD. As AD is hetero-
geneous at both pathological and transcriptomic levels 
[6], it would be interesting to understand how genetic 
variations drive AD heterogeneity. Single-cell genetic 
variation analysis may offer a novel avenue to under-
stand the genetic heterogeneity of AD using single-cell 
genetic variation analysis.

Drug development for AD using single‑cell sequencing data
Single-cell sequencing can identify key molecular path-
ways targets from distinct cell types in AD and resolve 
the mixed signals from bulk tissues. Particularly, cell-
type-specific signatures from scRNA-seq can be useful 
for repositioning FDA-approved drugs for treating AD. 
Through reversal of the cell-type-specific signatures, 
Connectivity map (CMap) and LINCS have been used to 
predict candidate FDA-approved drugs for several dis-
eases, including pulmonary arterial hypertension (PAH) 
[517], COVID-19 [518] and lymphangioleiomyomatosis 
[519]. For instance, Hong et al. identified NF-κB signal-
ing upregulation and IFN signaling downregulation in 
several cell types of PAH using scRNA-seq and applied 
the signatures to the CMap predicting candidate drugs to 
reverse the changes. Our group developed a more accu-
rate algorithm [520] to identify the CMap and LINCS 
compounds that reverse the cell-type-specific signatures 
precisely.

Experimental validation of novel cell subpopulations 
associated with AD
As high-throughput sequencing techniques produce 
numerous data and hypotheses, additional experimental 
validation is often required to confirm the findings. Sev-
eral scRNA-seq studies have revealed and experimentally 
validated AD-associated gene regulation and cell subpop-
ulations with a primary emphasis on the glial cells [7, 57]. 
Co-immunostaining of a cluster-specific signature gene 
with a known general cell type marker provides the most 
straightforward visualization and quantification of each 
cell subpopulation. However, it often depends on the 
antibody specificity and availability of the marker genes 
of interest and is generally low throughput. Alternatively, 
RNAscope, an in-situ hybridization (ISH)-based multi-
plexing method with high target-detection specificity, can 
be applied if no working antibody is available or multiple 
signature genes are required to define a subset of cells 
[405]. Other validation strategies include the NanoString 
nCounter system to verify cluster-specific signature gene 
expression and cross-validation in independent cohorts 
with cell cluster alignment [49]. In summary, experimen-
tal validations from various angles would greatly enhance 
our confidence in identifying novel cell subpopulations 
associated with AD and serve as the basis for targeted 
therapeutic development.

Conclusions
In conclusion, we comprehensively reviewed the state-
of-the-art bioinformatics approaches to analyze single-
cell sequencing data and their applications to AD in 14 
major directions. The basic analyses include data qual-
ity control and normalization, cell cluster identification 
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and cell subpopulation characterization and differen-
tial expression while more advanced analyses involve 
trajectory inference, copy number variation, eQTL 
identification, and integrative gene network infer-
ence. We also reviewed the recent progress on analyz-
ing scATAC-seq and spatial transcriptomics data and 
integrating single-cell multi-Omics data. We summa-
rized their advantages and disadvantages for multiple 
methods in each direction to help users select the most 
appropriate approach for specific applications. More 
importantly, we have implemented the recommended 
workflow for each major analytic direction and applied 
it to an snRNA-seq dataset in AD while the scripts 
and the data are shared with the research community. 
We further discussed the potential future develop-
ment of bioinformatics of single-cell sequencing data. 
We expect both less experienced and advanced  sin-
gle cell data analysts would be greatly benefited from 
the review and the accompanied software tools. As 
such, this review not only provides insights into vari-
ous methods to analyze scRNA-seq data and guidelines 
for analyzing AD scRNA-seq data but also serves as an 
invaluable resource for the AD research community 
and the single cell sequencing community in general.
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