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Abstract 

Background Parkinson’s disease (PD) is a progressive neurodegenerative disorder associated with a loss of dopa‑
minergic (DA) neurons. Despite symptomatic therapies, there is currently no disease‑modifying treatment to halt 
neuronal loss in PD. A major hurdle for developing and testing such curative therapies results from the fact that most 
DA neurons are already lost at the time of the clinical diagnosis, rendering them inaccessible to therapy. Understand‑
ing the early pathological changes that precede Lewy body pathology (LBP) and cell loss in PD will likely support the 
identification of novel diagnostic and therapeutic strategies and help to differentiate LBP‑dependent and ‑independ‑
ent alterations. Several previous studies identified such specific molecular and cellular changes that occur prior to the 
appearance of Lewy bodies (LBs) in DA neurons, but a concise map of such early disease events is currently missing.

Methods Here, we conducted a literature review to identify and discuss the results of previous studies that investi‑
gated cases with incidental Lewy body disease (iLBD), a presumed pathological precursor of PD.

Results Collectively, our review demonstrates numerous cellular and molecular neuropathological changes occur‑
ring prior to the appearance of LBs in DA neurons.

Conclusions Our review provides the reader with a summary of early pathological events in PD that may support the 
identification of novel therapeutic and diagnostic targets and aid to the development of disease‑modifying strategies 
in PD.
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Pathology progression and staging in PD
The traditional concept of pathology progression in PD
Parkinson’s disease (PD) is the most common neurode-
generative movement disorder and is characterised by 
the progressive development of bradykinesia, muscular 
rigidity, rest tremor, and postural instability [1]. The 
cardinal motor features result from the progressive loss 
of dopaminergic (DA) neurons in the substantia nigra 
pars compacta (SNc) [2]. A neuropathological hallmark 
of PD are neuronal protein aggregates termed Lewy 
bodies (LBs) (Fig. 1a) [3]. LBs are composed of vesicu-
lar membrane structures and dysmorphic organelles in 
conjunction with protein aggregates containing alpha-
Synuclein as the main component (αSyn) [4, 5]. Gene 
multiplications and missense mutations in SNCA, the 
gene coding for αSyn, are causative for familial forms 
of PD, which account for 10–15% of cases [6–9]. In 

addition, genome-wide association studies linked com-
mon variants at the SNCA locus to sporadic PD, thus 
further supporting an important pathogenic role of 
α-Syn in PD [10]. Postmortem studies suggested that 
the gradual appearance of LBs correlates with disease 
progression in PD [11]. Based on the gradual appear-
ance of LBs, Braak et al. developed a neuropathological 
staging scheme for PD. The authors proposed that PD 
primarily starts in the olfactory bulb and the autonomic 
enteric nervous system (ENS), with a caudo-rostral 
(retrograde) spread of Lewy body pathology (LBP) over 
time, ultimately reaching the SNc where it is suspected 
to initiate the demise of DA neurons (Fig.  2) [12–14]. 
LBs are therefore considered to be a marker for dis-
ease progression, while neuronal loss represents a well-
established neuropathological correlate of clinical PD 
(cPD) symptoms [3, 15, 16].

Fig. 1 Neuropathological hallmarks of Parkinson’s disease and associated co‑pathologies. a The neuropathological hallmarks of PD are shown in 
the three sub‑panels. From left to right: a normal substantia nigra without any PD features; substantia nigra tissue from a PD patient with Lewy 
bodies (arrows) and pigmented/dopaminergic neuron loss; an immunohistochemical stain against αSyn (clone 42) from the same PD patient 
demonstrating intraneuronal Lewy bodies and Lewy neurites. Note that melanin pigment and DAB stain are not easy to distinguish. Scale 
bar = 50 μm. b Immunohistochemically stained sections of the amygdala from a patient suffering from mixed‑type dementia that presented 
clinically as PD. The amygdala is a region commonly affected by co‑pathologies. From left to right: An antibody against phosphorylated tau protein 
(clone AT8) demonstrates neurofibrillary tangles; immunohistochemistry against amyloid beta (clone 4G8) highlights diffuse and cored amyloid 
beta plaques; the clone 42 against αSyn marks Lewy bodies, Lewy neurites and a few axonal spheroids. Scale bar = 100 μm
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Braak’s staging is divided into six different stages that 
reflect the progression of LBP from the dorsal motor 
nucleus of the vagus nerve (DMV) (Braak stage 1) to the 
locus coeruleus (LC) (Braak stage 2), SNc and amygdala 
(Braak stage 3) and ultimately reaching cortical areas 
(Braak stage 4–6) [17, 18]. The Braak stages correspond 
to the type and degree of clinical symptoms associated 
with disease progression. Early stages are characterised 
by non-motor symptoms, while typical PD motor signs 
are thought to appear once the SNc is affected at Braak 
stages ≥ 3, and cognitive symptoms arise only as LBP 
reaches the cortex in Braak stages 5 and 6 (Fig. 2). Braak’s 
model proposes that LBP gradually appears in defined 
anatomical structures during disease progression [3, 19]. 

In line with the idea of a prion-like LBP ‘spreading’ mech-
anism, fetal DA neurons transplanted into the PD SNc 
exhibited proteinaceous inclusions that resembled LBs 
[20, 21]. This result was interpreted as a ‘spread’ of LBP 
from the host to the graft. In mice, synthetic pre-formed 
αSyn fibrils propagate from the site of stereotaxic injec-
tion to synaptically connected, neighboring structures, 
thereby creating a Lewy-like pathology [22–25]. Simi-
larly, proteins extracted from human brains with LBP and 
injected into the striatum of monkeys can also propagate 
to neighboring structures, illustrating LBP’s propensity 
to spread from its origin [26, 27]. In summary, previous 
results support a model where LBP gradually builds up in 
clearly defined brain regions, leading to neuronal death. 

Fig. 2 Schematic illustrating disease progression from the pre‑clinical phase of PD to the late clinical phase, including the associated clinical 
symptoms, Substantia nigra pathology and spread of Lewy body pathology according to Braak’s staging model. Note the presence of neuronal 
dysfunction in the SNc prior to the appearance of Lewy bodies in this area. Created with Biorender.com 
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This process occurs according to a well-defined pattern, 
resulting in some brain areas remaining unaffected until 
the final stages of PD, whereas others are devastated by 
degeneration early on.

Controversies and limitations of the braak staging scheme
The co-incidence of DA neuron loss and LBs initially 
primed the conclusion that these intraneuronal inclu-
sions—in combination with cell death—were responsible 
for the disease. However, a considerable body of research 
appears to give rise to concerns regarding the overall 
significance of LBP. For instance, Gibb et al. reported an 
age-dependent increase in the prevalence of LBs from 
3.8% to 12.8% between the sixth and ninth decades of 
age. This amount exceeds the prevalence of PD by about 
three- to six-fold [28, 29]. In line, previous reports found 
that a significant proportion of neuropathologically con-
firmed LBD cases never exhibited clinical symptoms [30]. 
In addition, more recent research demonstrated that cell 
death and LBP do not entirely correlate in the affected 
brain regions. For instance, even in the absence of LBP, 
there is considerable neuronal death in the supraoptic 
nucleus in PD. By contrast, there is no discernible neu-
ron loss in the neighboring, LB-rich tuberomammil-
lary nucleus of the hypothalamus [31]. Furthermore, 
in patients who do not exhibit dementia during disease 
progression, the only cortical region that shows substan-
tial neuronal loss is the pre-supplementary motor cor-
tex, where small intra-telencephalic pyramidal neurons 
degenerate in the absence of LBP [32, 33]. These results 
cast doubt on the concept that cell death is a conse-
quence of LBP in PD.

Conflicting with other reports, which claim that neu-
rons are primarily lost in brain regions with LBP [34–36], 
a study from Iacono et  al. found no significant correla-
tion between neuronal loss and LBs in the PD brain [37]. 
Another line of evidence for an LBP-independent patho-
logical process comes from PD cases carrying genetic 
mutations where LBP distribution is distinct from that 
of idiopathic PD [38]. For instance, only a part of PD 
patients with a G2019S mutation in the LRRK2 gene 
exhibit LBP and most patients with other LRRK2 muta-
tions do not even show LBP at all [39] despite substan-
tial SNc DA neuronal degeneration. Likewise, PD cases 
with PARK2 mutations have only sparsely distributed 
LBP with a pattern distinct from that found in idiopathic 
PD cases [40], although these cases may be phenotypic 
variations. Finally, conflicting evidence comes from 
neuropathological and histological studies. Because the 
number of LBs in patients with mild to moderate SNc 
neuron loss was higher than in patients with severe neu-
ronal depletion, LB-containing neurons have been ini-
tially assumed to be the dying neurons [41]. However, 

Tompkins and Hill demonstrated that the presence of 
LBs does not predict a higher degree of cell death com-
pared to the general population of SNc neurons and that 
most neurons that undergo cell death do not even con-
tain LBs [42].

Moreover, whether SNc neurons contain LBs or not, 
they are similarly affected by morphological dendritic 
abnormalities or biochemical changes, indicating that 
DA neurons, in general, are involved in a yet-to-be-
defined disease process [43–46]. These results imply that 
region-specific environmental changes may prime these 
DA neurons to preferentially degenerate in PD. Conse-
quently, attempts to correlate the density of either corti-
cal or brain stem LBs with the progression and severity of 
clinical PD symptoms were unsuccessful [47–50]. Along 
these lines, in a certain percentage of PD patients who 
developed dementia, no LBs could be detected in corti-
cal areas or other areas outside the brain stem [51, 52], 
and these cases may suffer from concomitant amyloid 
beta (Aβ) pathology. Conversely, the simultaneous pres-
ence of Lewy body pathology and Alzheimer’s Disease 
(AD)-related changes, such as hyperphosphorylated tau 
protein or Aβ, can also be observed (Fig. 1b). Conversely, 
LBP, which is typically found in the amygdala, is fre-
quently detected in AD cases [53].

Collectively, these findings indicate that the pathophys-
iology of neurodegeneration and cell death can hardly 
be explained by LBs or LBP-related cell death alone. 
Alternative views are that LB formation is a process for 
detoxification of pathological αSyn aggregates located at 
a harmful site in the neuron, such as the presynapse [54]. 
Studies investigating the ultrastructure of LBs indicated 
that they are formed in an aggresome-related process 
and support the notion that LBs are a way of contain-
ment of protein aggregates and degraded organelles [5, 
55]. By using correlative light and electron microscopy 
and tomography on postmortem human brain tissue 
from PD brains, the study done by Shahmoradian et  al. 
found a crowded environment of membranes in LBs, 
including vesicular structures and dysmorphic organelles 
[5]. Crowding of organellar components was confirmed 
by stimulated emission depletion (STED)-based super-
resolution microscopy, and a high lipid content within 
LBs was corroborated by confocal imaging, Fourier-
transform coherent anti-Stokes Raman scattering infra-
red imaging and lipidomics. The latter report suggests 
that lipid membrane fragments and distorted organelles, 
together with a non-fibrillar form of αSyn, are the main 
structural components of LBs and that they do not con-
tain fibrillar αSyn aggregates. Although a matter of cur-
rent debate [56], these results thus challenge the pivotal 
role of αSyn and point towards cellular and molecular 
changes that may occur independent from the formation 
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of LBP. This view is supported by studies implicating 
mutations in PINK1 [57] and lysosomal genes in PD, such 
as GBA [58–61]. Conversely, out of 2000 PD cases, only 
0.05% had mutations in the SNCA gene, creating uncer-
tainty about how αSyn accumulates in the other 99.95% 
of cases and whether the protein has a causative role in 
PD [62]. In summary these results thus cast doubt on the 
significance of LBP as the sole disease-causing factor in 
PD and alternative models are required to explain such 
apparent discrepancies.

Investigating pathological precursors to determine 
the significance of LBP in PD
A small number of conceptual approaches attempted to 
dissect LBP-dependent from LBP-independent events in 
the PD brain. Besides comparing LBP-affected and unaf-
fected neurons, one strategy has been the examination of 
pathological precursors of LBP. In addition to cPD, there 
are a few cases that exhibit brain stem-restricted LBP in 
the absence of the characteristic clinical PD symptoms 
and these cases are referred to as incidental Lewy body 
disease (iLBD) [14, 63, 64]. iLBD occurs in 10–15% of 
people over 60 years of age [65] and is assumed to rep-
resent a pathological precursor in PD [66–69]. Whether 
these cases constitute a neuropathological PD precur-
sor has been a matter of controversy for some years, as 
there is no proof that these cases would have progressed 
to PD if they had survived longer or instead simply reca-
pitulated features of normal brain ageing [70]. However, 
the study of consecutive cases in large case series and the 
recognition of several intermediate degrees of involve-
ment of the brain stem, limbic structures and, eventually, 
the cerebral cortex supports the argument for iLBD as a 
pathological precursor stage of PD. Since SNc neurons 
are, by definition, still spared from LBs in iLBD, investi-
gating SNc neurons in these cases may provide insight 
into the cellular and molecular changes occurring at 
this critical site in the absence of LBP [71], thus allow-
ing to distinguish LBP-dependent from LBP-independent 
changes. Moreover, investigating SNc neurons in iLBD 
may support the understanding of early pathological 
events occurring prior to the appearance of LBP. Because 
therapeutic approaches that delay or slow down disease 
progression in PD are likely to be more effective prior 
to neuronal cell death, the examination of SNc neuronal 
changes in iLBD cases may aid to the identification of 
novel therapeutic targets and, ultimately, to the develop-
ment of early-acting, potentially disease-modifying inter-
ventions. Based on these two reasons, we believe that 
investigating SNc neuronal changes in iLBD warrants 
further research. Here, we will review the evidence avail-
able from earlier studies that examined the molecular 
and cellular changes in the iLBD SNc to create a concise 

map of early neuropathological events during PD disease 
progression and to nurture prospective research in this 
direction.

Neuropathology of incidental LBD (iLBD)
Structural changes in iLBD
Neuropathological studies suggest that by the time a 
patient is diagnosed with PD based on clinical motor 
symptoms, a significant proportion of DA neurons is 
already lost (Fig. 2) [72] and within four years of diagno-
sis, DA terminals in the dorsal putamen almost entirely 
disappeared [73]. Therefore, estimates propose that at 
least cell loss in the brain commences 5 to 10 years prior 
to the clinical diagnosis [74, 75]. Indeed, several previ-
ous studies investigating neuropathological changes in 
iLBD demonstrated structural changes in SNc DA neu-
rons in the absence of LBs (Table 1, Fig. 2). In accord with 
an early neuronal malfunction, previous studies demon-
strated a substantial (10–20%) loss of SNc DA neurons 
and impaired nigrostriatal integrity at Braak stages 1 and 
2 [76–78]. Likewise, Dijkstra et al. found a 20% decrease 
in SNc neuronal cell density in iLBD compared with con-
trols [3]. More recently, Iakono et  al. demonstrated a 
marked nigral neuronal loss in PD and iLBD compared to 
control cases [37]. Milber et al. have shown that neuronal 
dysfunction and cell loss may precede LBP in the SNc 
because prior to the appearance of LBs, these processes 
were observed in the SNc in iLBD at comparable levels to 
those of higher Braak stages [79]. In accord with a func-
tionally relevant disease process occurring prior to LBP, 
PD motor symptoms have even been reported at stage 2 
of Braak [80]. All these results are also further supported 
by case reports [81]. These findings illustrate the need for 
further investigation at these early stages to account for 
the neuronal loss before the onset of LBP in this area.

General neurochemical changes in iLBD
In addition to these structural changes (i.e., cell loss), 
investigating iLBD brains revealed certain neurochemical 
alterations. For instance, Dickson et al. found that tyros-
ine hydroxylase (TH) immunoreactivity in the striatum 
was decreased in iLBD compared to normal controls, but 
not to the same extent as in PD [71]. TH is an enzyme 
critical for DA production, and its decrease in iLBD indi-
cates a nigrostriatal system that is already impaired at this 
early stage. Using quantitative ELISA, Beach et al. dem-
onstrated that striatal TH showed a 49.8% reduction in 
iLBD cases compared to control cases [82]. Together with 
the morphological studies described above, these reports 
suggest an early neurochemical alteration of SNc DA 
neurons prior to the appearance of LBs. Other research 
groups have provided additional findings on the early 
pathological changes in PD, including neurochemical or 
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metabolic changes. For instance, early oxidative damage 
was found in the SNc in iLBD, where nitrated αSyn is 
already present in small granules in DA neurons before 
the appearance of LBs [83]. The authors thus concluded 
that oxidative damage is an early event in PD and may 
precede the formation of LBs.

In the context of the Renin-angiotensin system (RAS), 
it is intriguing to note that although this hormonal sys-
tem is traditionally associated with regulating blood pres-
sure, there is significant interplay with the DA system 
[112, 113]. Studies have demonstrated that angioten-
sin blockers can exert a neuroprotective effect on mid-
brain DA neurons both in vivo and in vitro by reducing 
oxidative stress, thereby indicating their potential as a 
therapeutic option. For instance, a retrospective study 
focusing on patients receiving angiotensin blockers as 
treatment for hypertension showed a reduced risk of 
developing PD [114]. Similarly, an analysis of data from 
ischemic heart disease patients revealed that those pre-
scribed with angiotensin II inhibitors—which have the 
capacity to cross the blood–brain barrier—had a lower 
risk of developing PD [115]. These findings underscore 
the potential of these compounds to counteract the early 
oxidative damage that primes DA neurons for degenera-
tion, thereby presenting a promising strategy for reduc-
ing PD risk.

Further biochemical studies have shown increased lev-
els of neuroketals in the SNc in post mortem tissue from 
Braak stages 1 and 2, supporting the notion that oxida-
tive damage to specific lipids in the SNc occurs at very 
early stages of PD and prior to the appearance of LBP [83, 
84]. In line, recent observations have shown the concen-
tration of L-ferritin in the SNc to be lower in iLBD (and 
PD) compared with controls, whereas H-ferritin in PD 
was found to be higher than in iLBD and controls. This 
illustrates the subtle abnormalities in iron metabolism in 
the SNc at the early stages of PD [85]. Summarising these 
results, neurochemical changes occurring prior to LBP 
may contribute to the increased propensity of SNc DA 
neurons to degenerate.

Changes in autophagy
In line with these neurochemical changes, a report dem-
onstrated p62 immunoreactivity in association with 
abnormal αSyn inclusions at the early stages of LBP, 
thus suggesting premature alterations to autophagic 
pathways in these cases [87]. Tang et  al. recently inves-
tigated autophagy-associated SNARE molecules in post 
mortem brain tissue from LBD cases and found a stage-
dependent decline of the v-SNARE SNAP29 – a member 
of the SNARE complex mediating autophagolysosome 
fusion – as early as in Braak stage 1 (Table 1) [86]. Addi-
tional experiments in cultured dopaminergic neurons 

Table 1 Table summarizing structural and functional changes in 
the iLBD midbrain

Early changes in the iLBD midbrain Ref

Structural
 ↓ TH neurons in SNc [3, 76, 77, 77, 78, 78, 79]

 ↓ TH‑positive terminals in the striatum [73]

Neurochemical
 ↓ Striatal TH [71, 82]

 ↑ Oxidative damage in the SNc [83]

 ↑ Neuroketals [83, 84]

 Changes to iron metabolism [85]

Autophagy
 ↓ Autophagy‑associated SNARE molecules 
(SNAP29)

[86]

 Association of p62 with αSyn inclusions [87]

Immunological
 ↑ TLR‑2‑positive microglia in the SNc [88]

 ↑ CD68‑positive microglia/macrophages in 
the SNc

[89]

 ↑ PAR‑2‑positive microglia in the anterior 
cingulate cortex (ACC)

[90]

 ↑ MCM2‑positiv cells in the hippocampus 
(HC)

[88]

 Changes to expression of inflammatory and 
trophic molecules in the SNc and striatum

[91]

 ↑ CD8‑positive T‑cells in the SNc [92]

 ↑ Angiogenesis marker  avβ3 [89]

Synaptic
 ↓ DA synaptic terminals [82, 93, 94]

 ↑ αSyn aggregates at presynaptic terminals [95]

Gene Expression
 Deregulation of genetic networks associated 
with axon de‑/regeneration, immune response, 
and endocytosis pathways in the SNc

[96]

 ↑ mtDNA mutation in the SNc [97]

 Alteration of oligodendrocytes and their 
precursors

[98, 99]

 Transcriptomic alterations in the cortex [100]

Proteomic
 Aberrant ApoE and low‑density lipoprotein 
receptor‑related protein 1 in SNc DA neurons

[101]

 Changes in neuropeptides and glutathione 
levels

[102, 103]

 ↑ Sialylation [104]

 ↓ Sulfation [105, 106]

Neuronal function and excitability
 ↓ FMRP [107]

Peripheral changes
 ↑ p‑αSyn in the vagus nerve [108]

 ↓ Frequency bowel movements [109]

 LBs in the submandibular glands, cervical 
superior ganglia, cervical sympathetic trunk 
and vagal nerves

[110]

 ↓ TH in epi‑ and myocardial sympathetic 
nerve fibers

[111]
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demonstrated αSyn overexpression to reduce autophagy 
turnover by compromising the fusion of autophago-
somes with lysosomes, thus leading to a decrease in the 
formation of autophagolysosomes. Mechanistically, αSyn 
interacted with and decreased the abundance of SNAP29 
in vitro. Furthermore, SNAP29 knockdown mimicked the 
effect of αSyn on autophagy, whereas SNAP29 co-expres-
sion reversed the αSyn-induced changes on autophagy 
turnover and ameliorated DA neuronal cell death. These 
results thus demonstrated a previously unknown capac-
ity of αSyn to affect intracellular autophagy-associated 
SNARE proteins and, consequently, reduce autophago-
lysosome fusion. Most notably, this effect may be evident 
before the presence of LBs in the SNc. Whereas SNAP29 
loss has been identified in SNc neurons in iLBD, the cell 
culture work is derived from αSyn over-expression, thus 
making it difficult to compare the two results. One pos-
sible explanation is that oligomeric αSyn, not yet aggre-
gated into LBs, may cause such cellular changes during 
early pathology, although specific αSyn-species remain to 
be identified.

Oligomers, which are small aggregates of misfolded 
proteins, are believed by some to be a key contribu-
tor to the neurodegenerative processes that occur in 
PD [116]. These oligomers are thought to be more toxic 
than other forms of αSyn, such as monomers or fibrils, 
and have been shown to impair the function of neurons 
in cell culture and animal models of PD. Furthermore, 
recent research has indicated that αSyn oligomers can 
spread from cell to cell in a prion-like manner, propagat-
ing the disease throughout the brain [117]. This has led 
to the hypothesis that targeting αSyn oligomers could 
be a promising therapeutic strategy for PD. Whereas 
LBP is visible with histologic methods αSyn oligomers 
remain undetectable with routine approaches but may be 
an important contributor of early pathological changes. 
Detecting αSyn oligomers requires special techniques, 
and their distribution and association with clinical fea-
tures are important research objectives. Recent advances 
in detecting αSyn oligomers, such as using proximity 
ligation assay (PLA) [118] or oligomer-specific antibodies 
[119] may support investigating such early pathological 
changes in PD.

Immunological changes in iLBD
Following clinical reports [120], a recent immuno-
histochemical study assessing the abundance of the 
inflammation-associated Toll-like-Receptor 2 (TLR-2) 
showed increased numbers of TLR-2-positive micro-
glia in the iLBD SNc compared to PD [88], suggesting 
inflammatory changes occur at early stages and prior 
to the development of PD symptoms. By contrast, there 
was a progressive increase from control to PD in the 

numbers of CD68-positive microglia/macrophages, 
a marker associated with phagocytosis, although an 
increase in the number of microglia was not identified 
[89]. Walker et  al. examined the differential expres-
sion of inflammatory and trophic molecules in the 
SNc and striatum of control, iLBD and PD cases and 
found distinct patterns of inflammation and growth 
factor changes [91], which was also reinforced by ani-
mal studies [121]. Another piece of evidence suggesting 
early immunological changes came from the work of 
Galioano-Landeira et  al. The authors found that CD8-
positive T-lymphocytes were increased in the SNc of 
PD cases compared to the control group, whereas CD4-
positive T cells remained unchanged [92]. Most nota-
bly, a robust infiltration of CD8-positive T-cells has 
been observed prior to the appearance of LBP (Braak 
Stage 1) and in the absence of DA cell death. CD8-pos-
itive T-cells were found to be equipped with cytolytic 
enzymes (granzymes A, B and K) and proinflammatory 
cytokines (interferon gamma) with phenotypic differ-
ences between early and late stages. A high proportion 
of nigral CD8 T cells were identified as tissue-resident 
memory T cells. These results identified a substantial 
nigral cytotoxic CD8-T-cell infiltration as an early path-
ogenic event preceding LBP and DA cell death in PD. 
This further highlights microenvironmental changes 
which may impact later nigral cell survival. In another 
study by Hurley et  al., iLBD cases had an increased 
number of IBA1-positive microglia. In the anterior 
cingulate cortex (ACC), PAR2-positive microglia were 
increased in iLBD, while in the primary motor cortex, 
tyrosin-1 was increased in microglia. However, TH-
positive neurons in the SNc only showed a decreasing 
trend [90]. Doorn et  al. investigated microglia activity 
by quantifying the minichromosome maintenance pro-
tein 2 (MCM2), a cell proliferation marker. The authors 
found MCM2-positive cells to be increased in the hip-
pocampus (HC) of iLBD cases but not in established 
PD patients. This study thus suggests an early micro-
glial response in the HC, indicating that neuroinflam-
matory processes play an essential role in developing 
PD pathology [88]. Finally, in another study, the tissue 
from different Braak stages was examined for the pres-
ence of integrin αvβ3, a marker for angiogenesis, along 
with vessel number and activated microglia. In this 
study, all PD cases had greater levels of αvβ3 in the SNc 
compared to controls. PD subjects also had increases 
in microglia number and activation in the SNc, sug-
gesting a link between inflammation and clinical dis-
ease, whereas microglia activation in iLBD subjects 
was limited to the LC, an area involved in early-stage 
PD [89]. In summary, immune-associated changes 
appear to occur early during disease progression, and, 
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consequently, anti-inflammatory strategies may be 
potentially disease-modifying for PD. Indeed, sev-
eral anti-inflammatory drugs have been tested for 
their therapeutic potential in PD. For instance, statins 
have been proposed to exert neuroprotective effects 
in PD models through an anti-inflammatory response, 
improving motor function and attenuating the increase 
in inflammatory cytokines. Simvastatin, for exam-
ple, effectively crosses the blood–brain barrier and is 
currently being studied in a phase 2 randomized, pla-
cebo-controlled futility trial [122]. Although recently 
announced results indicated futility for slowing the 
progression of PD, an anti-inflammatory approach may 
require early treatment before LBP-related cell death 
to yield successful therapeutic effects [123–125]. Other 
clinical trials investigating anti-inflammatory agents 
are also still ongoing [126, 127].

Early synaptic pathology in LBD
Mounting evidence indicates that SNc DA neuron degen-
eration is likely to start from synaptic pathology [128] and 
that the loss of synaptic connectivity may precede nerve 
cell loss. As early as 1989, by analysing vesicular mono-
amine transporter 2 (VMAT2) binding during ageing 
in PD and healthy subjects, Sherman et al. provided the 
first evidence indicating that PD symptoms appear when 
the striatal denervation state is over a critical threshold 
of about 50% [82, 93, 94]. This illustrated the relevance 
of synaptic terminal degeneration in the onset of disease 
and its clinical phenotype [129]. Schulz-Schaeffer et  al. 
reported that αSyn pathology mainly involves synaptic 
compartments and proposed that the first neuronal com-
partment affected by its deposition might be the synaptic 
terminal [95]. In accord with an early synaptic pathology 
in PD, most αSyn aggregates accumulated at presynaptic 
terminals in paraffin-embedded tissue blots from LBP 
cases [130]. Thus, at the onset of clinical motor symp-
toms, the loss of DA synaptic terminals exceeds the loss 
of DA cell bodies, pointing towards an early alteration of 
synaptic projections that precede neuronal death.

Moreover, neuroanatomical studies of post mortem 
brain samples from familial PD cases support the idea 
that synaptic decay precedes neuronal death [131, 132]. 
These observations support a ‘dying back’ hypothesis 
where synaptic demise, including presynaptic dysfunc-
tion, occurs prior to neuronal death [133, 134]. This 
view is supported by a series of preclinical studies indi-
cating that αSyn aggregation at synaptic sites impairs 
neuronal function and axonal transport by affecting 
synaptic vesicle release [135]. Numerous studies found 
pre- and postsynaptic structural integrity alterations 
in PD and Dementia with Lewy bodies (DLB) [46, 130, 
136–139]. Furthermore, apart from αSyn, several other 

PD-associated proteins such as leucine-rich repeat kinase 
2 (LRRK2), parkin, DJ-1, PINK1, Rab38B and synaptoja-
nin have been found to be involved in the control of DA 
synaptic function [140–145]. In accord with an early syn-
aptic dysfunction in PD, various in vivo imaging studies 
demonstrated presynaptic neurotransmitter deficien-
cies in PD [136]. These findings seem to indicate that the 
degenerative process in PD is – at least in part – located 
at the presynapse, ultimately resulting in a neurotrans-
mitter deficiency syndrome [146, 147]. This degeneration 
of synapses appears to emerge before motor symptom 
onset; however, the exact timeline of this progression 
and its clinical correlates are yet to be fully elucidated. 
Another critical aspect of these studies is that none of 
such results were derived directly from iLBD cases, and, 
although it is conceivable that, for instance, oligomeric 
non-aggregated αSyn species affect synaptic function 
prior to the appearance of typical LBs, the specific signifi-
cance of such αSyn species remains uncertain.

Changes in gene expression & cell types
A relevant study on early transcriptomic changes in PD 
was conducted by Wilma van den Berg’s group using 
RNA microarrays [96]. The authors aimed to elucidate 
molecular mechanisms underlying neuronal dysfunction 
and LBP in the pre-motor phase of PD and investigated 
the transcriptome of the SNc of well-characterised iLBD, 
PD and age-matched controls. Before SNc-LBP, at Braak 
stages 1-2, they observed deregulation of pathways linked 
to axonal degeneration, immune response, and endocy-
tosis, including axonal guidance signalling, mTOR signal-
ling, eIF2 signalling and clathrin-mediated endocytosis 
in the SNc. The results indicate molecular mechanisms 
related to axonal dysfunction, endocytosis and immune 
response are already affected before LBP reaches the 
SNc, while mTOR and eIF2 signalling is also impaired 
during later stages.

Interesting work implicating additional cell types in 
iLBD came from a study that integrated genome-wide 
association study results with single-cell transcriptomic 
data from the entire mouse nervous system to system-
atically identify cell types underlying brain complex 
traits [98]. When applying expression-weighted cell-type 
enrichment (EWCE) to data from previous studies [148, 
149], the authors found that downregulated genes in PD 
were enriched explicitly in DA neurons (consistent with 
the loss of this particular cell type in the disease). In con-
trast, upregulated genes were significantly enriched in 
cells from the oligodendrocyte lineage. When analysing 
gene expression data from post mortem human brains, 
downregulated genes were not enriched in DA neurons 
at Braak stage 1–2. Conversely, upregulated genes were 
already strongly enriched in oligodendrocytes at this 
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stage, thus indicating that their involvement precedes the 
emergence of pathological changes in the SNc. In sum-
mary, this study thus supports an early alteration of oli-
godendrocytes preceding LBP in PD, although the data 
were in part based on investigating mice.

This finding was corroborated by a recent single-cell 
study where significant associations were found between 
reported PD risk genes and highly expressed genes in 
oligodendrocytes. Furthermore, the risk for PD age of 
onset was associated with genes highly expressed in oli-
godendrocyte precursor cells [99]. These studies thus 
support an early alteration of oligodendrocytes and 
their precursors, preceding LBP in PD. A study by Sant-
pere et  al. investigated global transcriptional changes in 
the frontal cortex (Area 8) in iLBD, PD and DLB. The 
authors identified different co-expressed gene sets asso-
ciated with disease stages. They conducted a functional 
annotation of iLBD-associated modules using the gene 
ontology framework categories enriched in gene modules 
and differentially expressed genes, including modules or 
gene clusters correlated to iLBD. These clusters revealed 
upregulated dynein genes and taste receptors and down-
regulated genes related to innate inflammation [100], 
thus demonstrating transcriptomic alterations in cortical 
brain areas in iLBD. In 2012, a study by Lin et al. investi-
gated the extent of mtDNA mutations in early-stage PD 
and iLBD cases and found that mtDNA mutation levels 
in SNc neurons are significantly elevated in these cases 
[97]. However, this study defined iLBD by the absence of 
clinical parkinsonism or dementia but with Lewy bodies 
present in the SN, which corresponds to Braak stage 3. 
These findings illustrate the widespread transcriptomic 
changes preceding LBP, affecting various cell types, and 
deregulating crucial molecular pathways.

Proteomic changes
Changes in the expression of various additional proteins 
have also been demonstrated, for instance, by Wilhelmus 
et  al., who reported an aberrant ApoE and low-density 
lipoprotein receptor-related protein 1 expression in SNc 
DA neurons in PD and iLBD cases. The authors con-
cluded that alterations in lipoprotein homeostasis/signal-
ling in DA neurons of the SNc constitute an early disease 
event during PD pathogenesis [101]. Likewise, changes in 
neuropeptides and glutathione levels were found in iLBD 
[102, 103]. Wilkinson identified changes in the glycosyla-
tion of proteins in iLBD: a total of 70 O-glycans were 
identified, with iLBD exhibiting significantly decreased 
levels of mannose-core and glucuronylated structures 
in the striatum and PD presenting an increase in sia-
lylation and a decrease in sulfation [104]. Early oxida-
tive damage in the frontal cortex of iLBD cases has been 
suggested by a study that investigated lipoxidation of 

the glycolysis-associated enzymes aldolase A, enolase 1, 
and glyceraldehyde dehydrogenase (GAPDH) [150] and 
likewise early work from Jenner et  al. suggested a loss 
of glutathione (GSH) to be associated with iLBD [103, 
105, 106]. These proteomic modifications furthermore 
exemplify the various changes in the SNc prior to LBP 
emergence.

Changes in neuronal function and excitability in iLBD
Changes in neuronal function and excitability may occur 
a long time before structural events can be appreciated 
and recent research began to elucidate the molecular 
factors governing such early neuronal malfunction. For 
instance, Tan et al. investigated the effect of αSyn on reg-
ulatory molecules in DA SNc neurons and found a loss of 
the Fragile X Mental Retardation Protein (FMRP) in most 
neuromelanin-positive neurons of the SNc in human 
post mortem brain tissue from PD and iLBD cases [107]. 
Because FMRP regulates the expression and function of 
numerous neuronal genes [151, 152], these results fur-
ther suggest that in PD, DA neuron dysfunction is likely 
to be present long before morphological and histopatho-
logical changes and that the loss of FMRP in the SNc may 
be a key molecular event in these stages (Fig. 2). Loss of 
FMRP may have beneficial or detrimental effects on neu-
ronal function in the SNc. Tan et  al. demonstrated that 
the absence of FMRP ameliorates αSyn-induced DA dys-
function, and suggest that the early loss of FMRP in PD 
may in fact protective effects in PD. However, as with 
the aforementioned studies on autophagy, results from 
investigating αSyn over-expression are difficult to com-
pare with human LBP and its sequential appearance 
as the specific αSyn species that are present at different 
time points are not yet known. The specific significance 
of FMRP for PD disease progression thus remains to be 
defined.

Peripheral changes in iLBD
In addition to these reported CNS changes, iLBD cases 
may exhibit both peripheral and autonomic pathological 
changes [153, 154]. For instance, a study by Beach et al. 
examined the presence of LBP in the gut of iLBD, PD and 
control cases. The authors found that in the vagus nerve, 
none of the healthy control subjects showed aggregates 
of phosphorylated αSyn (p-αSyn), while 46% of iLBD 
and 89% of PD cases were p-αSyn-positive. In the stom-
ach, none of the control subjects had p-αSyn while 17% 
of iLBD and 81% of PD subjects did [108]. Following 
these findings, iLBD cases were retrospectively found to 
exhibit a lower frequency of bowel movements [109]. In 
a retrospective autopsy-based study of the human sub-
mandibular gland, PD and iLBD cases had LBP in the 
submandibular glands, the cervical superior ganglia, the 
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cervical sympathetic trunk and vagal nerves [110]. Some 
previous work even suggested the presence of LBP in 
the spinal cord of iLBD cases [155] and another study, 
although limited by a small sample size, found a decrease 
of TH immunoreactivity within epi- and myocardial 
sympathetic nerve fibres in PD and iLBD [111]. These 
studies appear to confirm the cumulative results from 
studying prodromal PD (pPD), where αSyn is present in 
the peripheral and autonomic nervous system.

Prodromal PD as a clinical surrogate for early 
pathological changes
In addition to investigating iLBD, some previous stud-
ies investigated cases that exhibit so-called prodromal 
symptoms: prior to the appearance of the classic motor 
symptoms during cPD, most PD patients experience 
several typical non-motor signs that are collectively 
referred to as pPD (Fig.  3). These signs include REM 
sleep behaviour disorder (RBD), olfactory loss, consti-
pation, autonomic dysfunction, psychiatric symptoms, 
and pathological imaging markers of the presynaptic 
dopaminergic and autonomic nervous system [156, 
157]. These prodromal signs and symptoms often pre-
cede cPD by 10-20  years [158, 159]. As such, investi-
gating pPD would contribute to understanding early 
pathological events in PD and indeed, studies that 
examined pPD have contributed some indirect evi-
dence for early pathological changes, although these 
results were primarily derived from imaging results. 
For instance, MRI data from isolated RBD (iRBD) 
cases showed structural alterations in the SNc and 
grey matter changes in the motor cortico-subcortical 
loop correlated with motor abnormalities [160, 161]. 
iRBD is considered to be an early clinical sign during 
disease progression with a > 80% risk of conversion to 
cPD [162–164] within 15 years. Patients typically pre-
sent with vivid, often frightening dreams that lead to 
vocalisation and sudden body movements (Fig.  3). In 

addition to these characteristic sleep disturbances, 
some iRBD cases may exhibit mild motor deficits 
[165–168] (Table  2). Such clinical data are consist-
ent with an early affection of extrapyramidal motor 
areas during disease progression, although the specific 
molecular correlate remains uncertain. Furthermore, 
iRBD cases exhibit a reduced striatal dopamine trans-
porter (DaT) binding [169, 170] on  [123I] Ioflupan scin-
tigraphy and an altered  [18F]AV133 VMAT2 positron 
emission tomography (PET) signal [171], further indi-
cating impaired integrity of the nigrostriatal pathway 
in these cases. Reduced DaT binding also seems to be 
correlated with changes in brain glucose metabolism as 
assessed by  [18F] fluorodeoxyglucose  ([18F]FDG) PET 
[172]. Likewise, iRBD cases exhibit impaired nigros-
triatal connectivity as assessed by fMRI and ultra-
sound [161, 173–183] (rev. in [184]). In accord with the 
aforementioned pathological studies in iLBD, a study 
examining inflammatory changes in the SNc by  [11C]
PK11195 18  kDa translocator protein (TSPO) PET 
found increased microglial activation in iRBD, sug-
gesting early immunological changes in the midbrain 
[120]. Furthermore, Imidazoline 2 imaging with  [11C]
BU99008 PET indicated activated astrocytes in early 
PD but even decreased tracer signal at late stages com-
pared to healthy controls [185]. These imaging results 
thus collectively confirm an early and possibly inflam-
matory pathology in the PD midbrain. Overall, these 
observations thus indicate that in iRBD, the disease 
process extends beyond the sleep-related structures 
in the brainstem to other structures, including the 
nigrostriatal system [186, 187]. As a limitation of con-
sidering iRBD as pre-LBD cases, it is noteworthy that 
iRBD cases may exhibit LBP at different Braak stages, 
including those > 3, as substantiated by clinical find-
ings [188] and that in some cases, iRBD may develop 
into Multiple System Atrophy (MSA) or Dementia with 
Lewy bodies (DLB) instead of cPD [164, 189].

Fig. 3 Schematic summarizing clinical signs and symptoms of pPD and the approximate timescale for conversion to Clinical PD. Created with 
Biorender.com 
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In addition to these imaging results, several labora-
tory results have been derived from iRBD cases. For 
instance, serum neurofilament light chain (sNfL), a neu-
ronal cytoskeletal protein released upon neuronal dam-
age, might mark the conversion of iRBD to cPD [190]. 
Techniques such as proteomics analysis of serum samples 
have identified numerous proteins at significantly altered 
expression levels, providing further insight into the pro-
tein signature profile and molecular pathways involved 
in the pathogenesis of iRBD [51, 52]. In addition, altera-
tions in circulating microRNAs (miRNAs) have been 
shown in iRBD. For instance, one study found miR-19b 
to be significantly down-regulated in iRBD cases that 
later converted to cPD but not in those who remained 
disease-free for several years, possibly indicating a role 
of miR-19b during early disease progression [194]. Still, 
the diagnostic value of serum miRNA detection remains 
controversial, as miRNAs show strong pleiotropy. For 
example, miR-19b has also been implicated in lung can-
cer progression [195] and schizophrenia [196]. One study 
revealed decreased antioxidant superoxide dismutase 
and increased glycolysis in iRBD cases using peripheral 
blood mononuclear cells [197]. The diagnostic value of 
other biospecimens, such as those from saliva, tears, or 
the microbiome, is yet to be explored in patients with 
iRBD, and longitudinal studies are required to establish 
whether such biosamples will support the understand-
ing of disease onset and progression in LBP [198]. Finally, 
novel methods have been developed to investigate αSyn 
in iRBD cases by using Real-Time Quaking-Induced Con-
version assays (RT-QuIC) [199–201]. These assays can 
detect αSyn seeding activity in different LB-associated 
conditions with a high sensitivity and specificity [202]. 
For instance, in a recent study that examined patients 

with iRBD, RT-QuIC detected misfolded α-Syn in the 
CSF with both sensitivity and specificity of 90%, and 
αSyn-positivity was associated with an increased risk of 
subsequent conversion to cPD or DLB [162]. Along these 
lines, another report aimed to detect of αSyn aggregates 
in the olfactory mucosa of a large cohort of subjects with 
iRBD by RT-QuIC [203]. The authors found the olfactory 
mucosa to be α-Syn-positive in 44.4% of iRBD cases, in 
46.3% of cPD cases, but only in 10.2% of the control sub-
jects. While the sensitivity for iRBD and cPD vs. controls 
was comparably low (45.2%), the specificity was found to 
be sufficiently high (89.8%). Compared to immunofluo-
rescent techniques (IF) RT-QuIC was found to exhibit a 
high diagnostic accuracy [204].

In addition to iRBD, hyposmia is common in cPD 
(90%) and iRBD (67%) and sometimes precedes motor 
symptoms by > 20  years (Figs.  2  and  3) [158, 205–207]. 
The Prospective Validation of Risk Factors for the Devel-
opment of Parkinson Syndromes (PRIPS) study found 
that cases of hyposmia had a fourfold risk of converting 
to cPD compared to normosmic cases [208]. An impaired 
sense of smell can thus be regarded as an early clinical 
event during disease progression [209, 210]. However, 
hyposmia alone is likely a suboptimal predictor for devel-
oping cPD since smell loss is relatively common in older 
adults, and only a minority will develop PD [211]. Con-
cerning pathological changes in midbrain motor circuits, 
Sommer et al. identified 30 patients with idiopathic olfac-
tory loss and found that 11 had increased echogenicity 
of the SNc on transcranial sonography and 5 cases had 
impaired DaT binding. This further supports early struc-
tural changes during the disease course [191]. Moreover, 
studies have shown a correlation between olfactory per-
formance and DaT binding in early PD [192]. In another 
study, 11% of random hyposmic subjects had a DaT defi-
cit at baseline compared to 1% of normosmic subjects 
[193]. Congruently with clinical studies on olfactory 
function, a study by Silveira-Moriyama et  al. examin-
ing the post-mortem tissue from iLBD, PD and control 
patients found LBP in all samples from the olfactory bulb 
and the primary olfactory cortex in iLBD and PD cases 
[212]. Another study found that in both iLBD and PD tis-
sue, the olfactory bulb was the region most frequently 
affected by LBP [19]. However, the immediate correlation 
between hyposmia and LBP in the olfactory bulb has yet 
to be substantiated since records regarding hyposmia in 
these patients studied were unavailable.

Collectively, results from investigating pPD further 
confirm an early structural and functional defect in 
motor-associated extrapyramidal circuits during PD 
disease progression that appears to be present prior to 
the evident appearance of motor signs and symptoms. 
On the downside, these results provide little conceptual 

Table 2 Table summarizing changes in the midbrain of pPD 
cases

Early changes in the pPD midbrain Ref

iRBD
 Mild motor deficits [165]

 ↓ Striatal dopamine transporter (DAT) and VMAT2 binding [169, 170]

 Changes in brain glucose metabolism [172]

 ↓ Nigrostriatal connectivity [173–183]

 ↑ Microglial activation [120]

 ↑ Activated astrocytes [185]

 ↑ Serum neurofilament light chain (sNfL) [190]

Hyposmia
 ↑ Echogenicity of the SNc [191]

 ↓ DAT binding [191]

 Correlation between olfactory performance and DAT 
binding

[192, 193]
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insight into the mechanism of early midbrain neuron 
dysfunction in PD and no direct correlation with LBP.

Critical appraisal & future research directions
In the previous sections, we reviewed studies that collec-
tively examined early pathological changes that precede 
the onset of LBP in the SNc. Investigating these changes 
has the potential to expose the significance of LBP, reveal 
early diagnostic and therapeutic targets and ultimately 
support the development of novel disease-modifying 
therapies for PD. However, all these approaches have 
conceptual shortcomings. Although investigating pPD 
cases by clinical and pathological methods supported the 
understanding of disease progression on a systemic level 
and generated valuable predictive data, it provided insuf-
ficient insight into the specific molecular and cellular 
changes occurring prior to LBP and cell death. This limi-
tation applies particularly to areas in the brain stem and 
midbrain that are difficult to access in detail by routine 
diagnostics or tissue biopsies, including SNc DA neurons. 
Similar limitations apply to the neuropathological inves-
tigation of genetic PD cases [213], where genetic altera-
tions (LRRK2, GBA, SNCA) predict the development of 
cPD prior to motor symptoms. Second, it is noteworthy 
that pPD cases may or may not exhibit LBP in SNc neu-
rons, thus confounding the distinction between LBP-
dependent and -independent changes. Although some 
iRBD cases may exhibit mild motor deficits [165–168], 
indicating SNc dysfunction, it is unclear if this is a con-
sequence of LBP-associated cell degeneration or LBP-
independent neuronal malfunction. Thus, investigating 
pPD does not truly help to clarify LBP’s causative role in 
SNc DA neuron degeneration. Therefore, more research 
should focus on elucidating the relationship between 
these individual aspects of early disease events in PD and 
how they might correlate to one another.

A shortcoming of investigating iLBD relates to the 
uncertain progression pattern of LBP. Previous work sug-
gested that only about 50% of all PD patients have a distri-
bution of LBP in the brain that is entirely consistent with 
the Braak staging model, a prerequisite for the assump-
tion that iLBD is a precursor for SNc pathology in PD 
[29, 214, 215], and about half of PD cases do not seem to 
show a caudo-rostral spread of LBP throughout the brain 
[216]. Furthermore, experimental evidence suggested that 
the spreading of αSyn via autonomic nerve fibres may 
occur in a caudo-rostral but also rostro-caudal direction 
[217–219]. In order to explain these distinct spreading 
patterns in PD, alternative ‘body-first’ and ‘brain-first’ 
models have been developed [157, 220–222]. As such, a 
brain-stem LBP would be the most common precursor of 
cPD, whereas a second route would commence in limbic 
areas, including the amygdala and progress to the SNc in 

a rostro-caudal spread. Although these theoretical mod-
els may partially explain the experimental inconsistencies, 
conclusions drawn from iLBD cases may be impeded by 
the uncertain correlation between clinical and neuro-
pathological progression. Another concern regarding 
the Braak staging has finally been raised by earlier work 
form Schulz-Schaeffer et. al. These authors suggested that 
instead in the form somatic LBs, > 90% of αSyn aggregates 
are located at the presynapses in the form of very small 
deposits in PD, while postsynaptic dendritic spines were 
found to be retracted. Based on these results, the authors 
hypothesized that instead of LB-associated cell death 
αSyn aggregate-related synaptic dysfunction may cause 
neurodegeneration. Although this concept has not been 
examined in iLBD, it suggests that the traditional neuro-
pathological staging (assessing somatic LBs) may not cap-
ture the true onset or progression of LBP, thus limiting its 
validity [95, 130, 223].

Conclusion
Here, we summarized cellular and molecular changes 
occurring in the SNc of iLBD (and pPD) cases. The body 
of previous work collectively demonstrates numerous 
pathological changes that appear to precede LBP in PD. 
These results challenge the current understanding of 
PD disease progression and the impact of LBP and, in a 
broader sense, the development of therapeutic strategies 
that focus on targeting αSyn [224–226]. Therefore, our 
review may provide a starting point for future studies, 
which will have to further examin and connect these ini-
tial molecular changes occurring in early PD. Our work 
will support the investigation of novel molecular targets 
that could halt disease progression before the known 
neuropathological signs begin to show.
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