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Pathophysiology and probable etiology 
of cerebral small vessel disease in vascular 
dementia and Alzheimer’s disease
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Abstract 

Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large 
and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, 
subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged 
as the second most common form of dementia after Alzheimer’s disease (AD) accounting for 20% of dementia 
cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, 
and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter 
hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, 
microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment 
is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal thera-
peutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we 
summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfu-
sion/hypoxia, blood–brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation 
to define potential diagnostic and therapeutic targets for cSVD.

Keywords Vascular cognitive impairment and dementia (VCID), Cerebral small vessel disease (cSVD), Blood–brain 
barriers (BBB), Glymphatic drainage, Intramural periarterial drainage (IPAD), Arteriolosclerosis, Cerebral amyloid 
angiopathy (CAA), Hypoperfusion/Hypoxia, Vascular inflammation

Background
Vascular cognitive impairment and dementia (VCID) is 
caused by various types of cerebrovascular damage such 
as microvascular dysfunction and large vessel stroke, 
impacting a large percentage of the world’s population 
as society ages [1]. Epidemiological studies have demon-
strated that VCID is the second most common form of 

dementia after Alzheimer’s disease (AD), accounting for 
approximately 20% of dementia cases [2]. Although the 
clinical diagnostic criteria are somewhat vague, VCID is 
characterized by cognitive decline through neuropsycho-
logical testing and detection of cerebrovascular lesions 
through neuroimaging or clinical stroke history [3].

The Vascular Impairment of Cognition Classifica-
tion Consensus Study (VICCCS) identifies four major 
subtypes of vascular lesions that cause dementia: 1) 
Post-stroke dementia, 2) Subcortical ischemic vascu-
lar dementia, 3) Multi-infarct dementia, and 4) Mixed 
dementia [4] (Fig.  1). Post-stroke dementia is a major 
consequence after large vessel strokes. Approximately 
10% of patients develop dementia after their first stroke 
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[5]. Atherothrombotic brain infarcts [6] and hemorrhagic 
stroke [5, 7] are associated with the higher dementia risk. 
Subcortical ischemic vascular dementia is caused by ste-
nosis and occlusion of small vessels that culminate into 
lacunar infarct and ischemic white matter lesions. Cor-
tical-subcortical circuit disruption often leads to impair-
ments in information processing, complex attention, and 
frontal-executive function [8]. Multi-infarct dementia 
refers to cognitive impairment due to multiple infarcts 
in various cortical arteries and arterioles. Cortical symp-
toms such as apraxia and aphasia are often diagnosed 
through cognitive function tests [2]. Mixed dementia is 
a type of dementia with concurrent vascular and neu-
rodegenerative pathological changes [9]. AD pathology 
and cerebrovascular lesions frequently coexist in autopsy 
cases with dementia [10]. VCID preferentially impairs 
attention, executive function, and sparing memory [1]. 
However, cognitive impairments observed in both VCID 
and AD cases show similar age-associated comorbidities.

VCID is associated with heterogeneous pathologi-
cal conditions in the cerebrovascular system, where 
cerebral small vessel disease (cSVD) is the most com-
mon pathology underlying VCID [11]. CSVD includes 

a heterogenous spectrum of pathological, clinical, and 
radiological cerebrovascular changes. In particular, ves-
sel wall structure from leptomeningeal arteries and 
intraparenchymal arterioles (perforating arterioles and 
precapillary arterioles), capillaries, and venules often 
pathologically deteriorate [12, 13]. In this review, we 
summarize the current knowledge of cerebrovascular 
anatomy and cellular compositions, cSVD classification, 
neuroimaging characteristics, and risk factors. We also 
discuss probable etiology of cSVD as well as therapeutic 
strategies.

Basic anatomy of cerebrovascular system
Two pairs of large arteries, the internal carotid arteries 
and the vertebral arteries, mediate arterial blood entry 
into the brain. Two vertebral arteries integrate into a 
basilar artery, which branches out to two posterior cer-
ebral arteries (PCA), distributing blood supply to the 
brainstem, cerebellum, and occipital cortex. The circle 
of Willis is composed of pre-communicating segments 
of the right and left anterior cerebral arteries (ACA), 
connected via the anterior communicating artery. Pre-
communicating segments of the right and left PCA are 

Fig. 1 Cerebral vascular lesions and vascular cognitive impairment and dementia. Vascular cognitive impairment and dementia (VCID) is a major 
cause of age-related cognitive decline related to cerebrovascular damages in cerebral large and small vessels. The internal carotid arteries 
and the vertebral arteries mediate the arterial blood entry into the brain. The blood supply to the cerebrum is mediated by anterior cerebral 
arteries (ACA) and middle cerebral arteries (MCA) branched from internal carotid arteries. Posterior cerebral arteries (PCA) arising from vertebral 
arteries are responsible for the blood supply to the brainstem, cerebellum, and occipital cortex. Leptomeningeal arteries from the cerebral arteries 
form a network of vessels on the pial surface, which branch into the parenchyma. Based on vascular lesions, severe VCID is generally subtyped 
as post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. Alzheimer’s disease often coexists 
with cerebrovascular lesions resulting in mixed dementia
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connected to their corresponding internal carotid arter-
ies via the posterior communicating arteries. An ACA 
and a middle cerebral artery (MCA) arise from each 
internal carotid artery and are responsible for blood sup-
ply to the cerebrum (Fig. 1) [14]. Second-order branches 
from the cerebral arteries establish a network of vessels 
on the pia mater in the subarachnoid space [15]. On the 
pial surface, leptomeningeal arteries penetrate the pia 
mater and glia limitans from the subarachnoid space into 
the brain parenchyma, ramifying into arterioles and cap-
illaries, which end as venules that flow back into the veins 
[16–18]. Since most arterioles do not form collateral net-
works, arteriole damage results in hypoperfusion and 
hypoxia of downstream vessels and their corresponding 
brain regions [19]. In addition, there are cortical water-
shed areas in border zones between ACA, MCA, and 
PCA territories [20]. While perforating arterioles from 
MCA and ACA ascend into deep brain territories includ-
ing the basal ganglia and thalamic gray matter [21], bor-
der zones between penetrating arterioles and perforating 
arterioles in deep subcortical white matter regions near 
the lateral ventricle are known as the internal watershed 

area [20, 22]. Low perfusion pressure in watershed areas 
result in hemodynamic vulnerability [18].

Cerebral small vessels including penetrating arteri-
oles, precapillary arterioles, postcapillary venules and 
venules are surrounded by perivascular or paravascular 
space filled with cerebrospinal fluid (CSF) and/or inter-
stitial fluid (ISF) [23]. While pia mater coats the vascu-
lar walls and brain surface, they combine into a singular 
layer of pia that penetrates into the brain [24]. The vascu-
lar pial sheath internally borders the perivascular space. 
In contrast, the glia limitans (basement membrane of 
astrocyte end-feet) externally borders paravascular space 
[25]. While perivascular space is sometimes narrowly 
defined as the space in basement membranes between 
smooth muscle cell layers, the paravascular and perivas-
cular spaces integrate in the capillaries due to the lack of 
smooth muscle layers and pial sheath [23, 26] (Fig. 2). ISF 
is predicted to enter the periarterial space through cap-
illaries [27, 28], flow along the vessels to leptomeningeal 
arteries [29], and drain into cervical lymph nodes via the 
wall of the internal carotid artery, referred to as the intra-
mural periarterial drainage (IPAD) pathway [29]. On the 

Fig. 2 Structural and cellular compositions of the cerebral small vessels. Leptomeningeal arteries penetrate the pia mater and glia limitans 
from the subarachnoid space into the parenchyma, ramifying into arterioles and capillaries. In leptomeningeal arteries, endothelial cells make 
up a single luminal layer which are covered by multiple smooth muscle cell layers. In penetrating arterioles, endothelial cells and smooth muscle 
cells are single layers. In capillaries, endothelial cells form the blood–brain barrier (BBB) with pericytes and basement membrane, surrounded 
by astrocytic end-feet. The capillaries connect to venules flowing back into veins. In contrast to arterial smooth muscle cells, venous smooth muscle 
cells have flattened cell bodies and multiple processes, not fully sheathing the venules and veins. Perivascular fibroblasts and macrophages are 
mainly localized on arterioles and venules. Subarachnoid cerebrospinal fluid (CSF) distributes into the brain parenchyma through para-arterial 
spaces referred as glymphatic periarterial CSF influx. Interstitial fluid (ISF) as well as CSF diffuse into the perivenous space by bulk flow, and finally 
efflux into the CSF-dural sinus or cervical lymph nodes. In addition, the ISF and CSF in brain parenchyma can also enter the periarterial space 
from the capillary level and flow countercurrent to blood flow along arterial vessels, referred as intramural periarterial drainage (IPAD) pathway
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other hand, CSF influxes from the subarachnoid space 
into the brain parenchyma through paravascular spaces 
along arterial vessels, mixed with ISF and solutes in the 
brain parenchyma, drained into the perivenous tracts 
towards the subarachnoid space, dural venous sinuses, 
and dural lymphatic vessels for clearance. This pathway is 
known as glymphatic drainage (Fig. 2). However, further 
studies are needed to define the specific contributions 
of IPAD and glymphatic drainage to ISF/CSF clearance 
[30–33].

Cellular components in cerebrovascular system
The endothelial cell layer (endothelium) is continuous 
along cerebral vessels. Although endothelial cell is the 
key cell type separating blood from brain tissue, other 
vascular cells make up cerebral vasculature: vascular 
mural cells (smooth muscle cells and pericytes), astro-
cytes, perivascular macrophages, and perivascular fibro-
blasts (Fig. 2) [34, 35]. Recent single cell or single nucleus 
RNA-sequencing studies show cell-specific gene expres-
sion heterogeneity at each cerebrovascular segment [36], 
albeit some discrepancies between methodologies and 
species [37, 38]. These vascular and perivascular cells 
interactively function in maintaining cerebrovascular 
homeostasis.

Endothelial cells at the blood–brain barrier (BBB)
Brain capillary formation through endothelial progeni-
tor cell angiogenesis is mediated by vascular endothelial 
growth factor (VEGF) and Wnt signaling [39]. By inter-
acting with pericytes and astrocytes, the brain capillary 
endothelial cells mature and create the tightly sealed 
monolayer with high barrier integrity, referred to as 
the BBB [40]. During BBB maturation, the brain capil-
lary endothelial cells exhibit distinct properties from 
endothelial cells in other organs: specific tight junction 
protein expression, selective transporter expression, sup-
pressed transcytosis, and leukocyte adhesion molecule 
downregulation [39, 41]. These unique endothelial prop-
erties allow the BBB to strictly control fluid and solute 
exchange between blood and the parenchyma. These 
endothelial cells are connected by specialized tight junc-
tion proteins such as occludins and claudins, forming a 
high resistance paracellular barrier [42–44]. Both occlu-
din and claudin are tetraspan transmembrane proteins 
intracellularly linked to the actin cytoskeleton through 
zonula occludens-1 (ZO-1) [45, 46]. In addition to tight 
junctions, there are adherens junctions with vascular 
endothelial (VE)-cadherin, platelet endothelial cell adhe-
sion molecule-1 (PECAM-1) and neural (N)-cadherin, 
and connexin 43 gap junctions between endothelial cells 
[47]. The basement membrane is composed of extracel-
lular matrix proteins such as collagen type IV, heparan 

sulfate proteoglycans, and fibronectin that surround 
endothelial cells and pericytes. The basement membrane 
is also critically involved in BBB stability [48]. BBB tight 
junctions, adherens junctions, gap junctions, and the 
basement membrane prevent passive diffusion and pas-
sive paracellular transport from blood. Selective essen-
tial nutrients and metabolites exchange such as glucose, 
amino acids, fatty acids, organic anions, and nucleosides 
across the BBB are mediated via carrier-mediated trans-
porters [48, 49]. ATP binding cassette (ABC) transporters 
are also expressed at the BBB as active efflux transport-
ers to eliminate lipids and exogenous drug from the brain 
[50].

Vascular mural cells in the arteries and arterioles
In cerebral arteries and arterioles, endothelial cells and 
the internal elastic lamina layer structure (tunica intima) 
are surrounded by vascular smooth muscle cell layers 
(tunica media) and additional layers mainly composed 
of collagen fibers and fibroblasts (tunica adventitia) [51]. 
Leptomeningeal arteries contain several smooth muscle 
layers, which thin into a single layer in penetrating arteri-
oles [36]. In precapillary arterioles, pericytes are the main 
vascular mural cell, sharing commonalities with smooth 
muscle cells [52]. Vascular smooth muscle cells are con-
tractile cells responsible for controlling cerebral blood 
flow. Pericyte contribution to vascular contraction and 
blood flow regulation is controversial [52]; however, peri-
cytes on first-order branches from penetrating arterioles 
appear to predominantly regulate capillary blood flow 
[53]. Since systemic blood pressure substantially influ-
ences brain circulation, vascular mural cells play a criti-
cal role in cerebral autoregulation through vascular tone 
modulation that maintains a relatively constant base-
line cerebral blood flow [54]. Vascular tone is controlled 
by vascular mural cell membrane polarization through 
 K+ channels and voltage-dependent  Ca2+ channels.  K+ 
channel depolarization (suppressed  K+ efflux) and volt-
age-dependent  Ca2+ channel opening (enhanced  Ca2+ 
influx) induce vasoconstriction, while vascular mural 
cell membrane hyperpolarization causes vasodilation 
[55]. In addition, inositol 1, 4, 5-trisphosphate receptor 
(IP3R)–mediated  Ca2+ release [56] and RhoA/Rho-kinase 
activation [57] contribute to vascular smooth muscle cell 
contraction.

Neurovascular coupling
Vascular mural cells relax in response to nitric oxide 
(NO), prostaglandins, epoxyeicosatrienoic acids (EET), 
adenosine triphosphate (ATP), and  K+ released from 
neurons, astrocytes, and endothelia cells depending on 
neuronal activity, referred to as neurovascular coupling 
[58]. Neurovascular coupling increases blood supply 
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to capillaries by 84% [59]. Neuronal glutamate activates 
phospholipase A2 (PLA2) through metabotropic glu-
tamate receptors (mGluRs) and promotes astrocytic 
prostaglandin E2  (PGE2) and EET synthesis that result 
in vasodilation [60]. Glutamate also triggers intracellu-
lar  Ca2+ influx through N-methyl-D-aspartate (NMDA) 
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptors on the postsynaptic membrane. 
Cytosolic  Ca2+ increases in astrocytic end-feet stimulate 
 K+ efflux, inducing smooth muscle cell vasodilation [61]. 
However, excess astrocytic  Ca2+ likely promotes vaso-
constriction instead. NMDA and/or AMPA activation 
leads to neuronal NO synthase (nNOS) and cyclooxy-
genase 2 (COX-2) upregulation [62]. NO promotes 
smooth muscle cell vasodilation through cyclic guano-
sine monophosphate (cGMP)-dependent protein kinase 
(PKG) [63]. NO also inhibits vasoconstriction by imped-
ing 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis 
[59]. Inhibiting nNOS has been shown to reduce neuro-
vascular response by 64% [64]. Neuronal COX facilities 
phospholipase  I2  (PGI2) synthesis which in turn induces 
smooth muscle vasodilation through the cyclic adeno-
sine monophosphate (cAMP)-protein kinase A (PKA) 
pathway [62, 65]. Controversially, Neuropeptide Y (NPY) 
released after inhibitory neuron activation likely induces 
vasoconstriction [66]. In the hypothalamic supraoptic 
nucleus (SON), vasopressin (VP) neuronal activation also 
causes responsive vasoconstriction upon acute salt load-
ing challenge [67].

Angiotensin II has been shown to disrupt neurovascu-
lar coupling by increasing  Ca2+ through angiotensin II 
type 1 (AT1) receptor in the nearby astrocytic end-feet 
[68]. In addition, endothelial cells are involved in NO-
mediated vasodilation through endothelial NO synthase 
(eNOS) regulation via NMDA receptor signaling [69] or 
upon mechanical shear stress [70]. Hypoxia, thrombin, 
and inflammatory cytokines promote the production of 

endothelin (ET), a strong vasoconstrictor, in endothe-
lial cells [71]. Angiotensin II also promotes peroxynitrite 
 (ONOO−) generation through the AT1-NADPH oxidase 
(NOX) pathway in endothelial cells, resulting in neuro-
vascular coupling impairment (Table 1) [72].

Pericytes on the capillaries
Pericytes are localized at the abluminal side of the cap-
illary endothelial cells and form direct synaptic-like 
peg-socket focal contacts with endothelium through 
N-cadherin and connexins [73]. Pericytes cover capillary 
endothelial cells with a 1:3 pericyte-to-endothelium ratio 
[74]. Pericytes contribute to various aspects of cerebro-
vascular functions including angiogenesis, BBB integ-
rity [47, 75], and immune cell filtration [76] through the 
crosstalk with endothelial cells, astrocytes, neurons, and 
microglia [77]. Pericytes secrete VEGF to promote angio-
genic sprouting and stabilization of endothelial cells [78]. 
Platelet-derived growth factor-BB (PDGF-BB) secreted 
from endothelial cells also critically mediates peri-
cyte angiogenesis through PDGF receptor-β (PDGFRβ) 
[79–81]. Pericyte–endothelial signals, including PDGF-
BB–PDGFRβ, VEGF–VEGF receptor-2 (VEGFR2), trans-
forming growth factor-β (TGF-β)–TGF-β receptor 2 
(TGFβR2), Angiopoietin (Ang)-Tie2, Notch, and major 
facilitator superfamily domain-containing 2a (MFSD2A), 
play an important roles in BBB development, mainte-
nance of integrity, and transport [82]. Pericytes also 
modulate brain immune responses [76]. In  vivo studies 
in animals have demonstrated that loss of pericytes lead 
to upregulation of leukocyte adhesion molecules (LAMs) 
on endothelial cells, exacerbating parenchymal immune 
cell infiltration [79, 80].

Astrocytes in the glial limitans and BBB
The glia limitans is composed of astrocytic end-feet and 
the basement membrane. The glia limitans constitute a 

Table 1 Cell type-specific regulation of vasodilation and vasoconstriction

Vascular cell types Vasodilation Vasoconstriction

Vascular mural cells • Hyperpolarization:  K+ channels ↑,  Ca2+ channels ↓[55]
• Activation of NO-cGMP-PKG pathway [63]
• Activation of cAMP-PKA pathway [65]

• Depolarization:  K+ channels ↓,  Ca2+ channels ↑[55]
• Cytosolic  Ca2+ increase mediated by IP3 receptor [56]
• Activation of RhoA/Rho-kinase pathway [57]

Neurons • NMDA and AMPA glutamate receptor-dependent:
◦ NO release through nNOS [62]
◦  PGI2 synthesis [62]

• NPY release from activated inhibitory neurons [66]
• VP release from VP neurons in the SON [67]

Astrocytes • mGluR-dependent  PGE2 and EET synthesis [60]
• Astrocytic end feet  K+ release in response to increased cyto-
solic  Ca2+ [61]

• Excess increase of cytosolic  Ca2+ induced by Angio-
tensin II through AT1 receptor [68]

Endothelial cells • NO release through eNOS induced by:
◦ Glutamate signaling via NMDAR [69]
◦ Shear stress [70]

• ET release induced by hypoxia, thrombin, and inflam-
matory cytokines [71]
•  ONOO− production by Angiotensin II through AT1-
NOX pathway [72]
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continuous layer covering a large area of cerebral small 
vessels as external limitans of perivascular/paravascular 
space and mediates the ISF and CSF transport between 
the brain parenchyma and drainage pathways [83]. Lep-
tomeningeal arteries and penetrating arterioles are 
covered by pia mater and glia limitans superficialis. In 
capillaries, glia limitans perivascularis surround endothe-
lial cells and pericytes [84]. Astrocytes secrete vasculo-
trophic factors such as astrocyte-derived angiopoietin-1 
(ANG-1), sonic hedgehog (SHH), glial-derived neuro-
trophic factor (GDNF), retinoic acid (RA), insulin-like 
growth factor-1 (IGF-1) and apolipoprotein E (APOE) 
involved in maintaining BBB integrity [85]. Supporting 
this, experiments co-culturing astrocytes and endothelial 
cells show upregulated expression of tight junction pro-
teins and strengthened barrier integrity [86]. Astrocytic 
end-feet also express α-dystroglycan to anchor basement 
membrane and maintain BBB function [87]. Further-
more, water channel aquaporin 4 (AQP4) expressed on 
astrocytic end-feet plays an essential role in regulating 
cerebral water homeostasis and glymphatic drainage [88, 
89].

Perivascular cells on cerebral vessels
Perivascular macrophages are yolk sac-derived immune 
cells detected on brain arterioles and venules [90]. 
Perivascular macrophages localize in perivascular or 
paravascular space under the glial limitans, mediating 
brain immune responses through phagocytosis and anti-
gen presentation [34]. Perivascular macrophages are also 
involved CSF flow and glymphatic drainage regulation. 
A study in mice has shown that depletion of perivascu-
lar macrophages causes excess accumulation of extracel-
lular matrix proteins in perivascular/paravascular space, 
thereby disturbing CSF perfusion [91].

Perivascular fibroblasts are identified as cells with flat-
tened somata and sheet-like ruffled processes on pen-
etrating arterioles, precapillary arterioles, and ascending 
venules in the brain [92]. Although physiological roles 
of perivascular fibroblasts remain unclear, perivascular 
fibroblasts appear to serve as tissue-resident mesenchy-
mal cells [93]. It is predicted that these cells maintain the 
vascular basement membrane, glymphatic drainage sys-
tem, and mechanosensation for neurovascular coupling 
[35]. Upon tissue damage, the perivascular cells are the 
likely major source for scar formation and fibrosis by 
producing extracellular matrix proteins and mediating 
inflammation [93].

Classifications of cSVD
Clinically cSVD shows progressive symptoms in cogni-
tive impairment, depression, urinary disturbance, gait 
difficulty, dysphagia, and dysarthria [13]. While cSVD 

has relatively homogenous clinical features, six types 
of cSVD have been proposed based on etiopathogenic 
features: 1) Arteriolosclerosis, 2) Sporadic and heredi-
tary cerebral amyloid angiopathy (CAA), 3) Inherited or 
genetic cSVD distinct from CAA, 4) Inflammatory and 
immunologically mediated cSVD, 5) Venous collageno-
sis, and 6) Other cSVD [13].

Arteriolosclerosis
Arteriolosclerosis is the most common form of cSVD, 
neuropathologically defined by hyaline thickening of 
vessel walls (< 150  μm in diameter) without association 
with lipid-containing cells, intramural inflammation, and 
amyloid or fibrinoid necrosis [94]. Smooth muscle cell 
loss from the tunica media and deposits of fibro-hyaline 
material and collagens in vessel walls are also detected 
in arteriolosclerosis lesions [13]. The Vascular Cognitive 
Impairment Neuropathology Guidelines (VCING) sys-
tem has been widely used to evaluate the severity of arte-
riolosclerosis in a semiquantitative manner; 0 = Normal, 
1 = Mid thickening of the vessel media with mid fibro-
sis, 2 = Partial loss of smooth muscle cells in the media 
with moderate hyaline fibrosis, and 3 = Complete loss 
of smooth muscle cells in the media with severe hyaline 
fibrosis and lumen stenosis [94]. Arteriolosclerosis is also 
exacerbated by diabetes and hypertension during aging 
[95]. Fibrinoid necrosis commonly accompanies arterio-
losclerosis in hypertensive arteriopathy [96–98]. Other 
pathological microangiopathies include microatheroma 
(distal manifestations of atherosclerosis) and microa-
neurysms (elongated and dilated vessels) [13]. Of note, 
cerebral arteriolosclerosis has been reported as a pre-
dominant factor contributing to global cognitive impair-
ments, episodic memory, working memory, perceptual 
speed, autonomic dysfunction, and motor symptoms 
[99].

Cerebral amyloid angiopathy
CAA is characterized by the progressive accumulation 
of amyloid-β (Aβ) in leptomeningeal arteries, penetrat-
ing arterioles, and capillaries. Aβ deposits begin at the 
basement membrane between smooth muscle cell lay-
ers and develop into circumferential transmural depos-
its [100]. Vessel integrity loss caused by Aβ deposits 
can lead to spontaneous lobar intracerebral hemorrhage 
[101]. Aβ also disrupts the vascular extracellular matrix 
layers, causing luminal obstruction, leading to paren-
chymal ischemia [102]. Population-based postmortem 
studies demonstrated that CAA is detected in 20–40% 
of elderly people without dementia and 50–60% of those 
with dementia [103–106]. CAA is associated with cSVD 
neuroimaging markers on magnetic resonance imag-
ing (MRI), including microbleeds [107], white mater 
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hyperintensities (WMHs) [108], and microinfarcts [109]. 
Of these, lobar cerebral microbleeds is strongly predic-
tive of CAA [110]. CAA-related microbleeds are fre-
quently identified at the gray-white matter junction of 
the parietal and occipital lobes [102]. CAA categoriza-
tion heavily relies on intracerebral hemorrhage status to 
define individual cases as “definite CAA”, “probable CAA 
with supporting pathological evidence”, “probable CAA”, 
or “possible CAA” under the modified Boston criteria 
[111, 112] and Boston criteria version 2.0 [113]. Another 
non-hemorrhagic neuroimaging marker, perivascular 
spaces at the centrum semiovale, reflects perivascular 
interstitial fluid drainage impairments [114]. Subcortical 
WMHs [115] and posterior predominant WMHs are also 
observed in CAA [116]. CAA-related WMHs are likely 
caused by hypoperfusion associated with Aβ deposits 
in cortical small vessels, BBB disruption, and follow-
ing increases in vascular permeability [101, 117]. WMH 
severity is associated with a higher risk of recurrent lobar 
hemorrhage, larger hematoma volume, and hematoma 
expansion [118, 119]. Cerebral microinfarcts are acute or 
subacute ischemic infarctions observed in patients with 
advanced CAA [109]. They appear as round or oval white 
colored areas that indicate high intensity regions in the 
subcortex and cortex on diffusion-weighted MRI [109]. 
CAA also causes convexity subarachnoid hemorrhage 
and transient focal neurological episodes (TFNEs) [120]. 
TFNEs are short, stereotyped episodes of somatosensory 
or motor disturbance, dysphasia, and visual loss, often 
accompanied with cortical spreading, depression, or 
depolarization due to the superficial hemorrhage [121].

Inherited or genetic cSVD
The Cerebral Autosomal Dominant Arteriopathy 
with Subcortical Infarcts and Leukoencephalopathy 
(CADASIL), caused by a mutation in NOTCH3, has 
been known as one type of hereditary cSVD [122]. Clini-
cal features of the mutation carriers include migraines 
with aura, recurrent ischemic strokes, transient ischemic 
attacks with cognitive impairment, and subcortical 
dementia [123]. Brain MRIs show hyperintense perive-
ntricular lesions and centrum semioval on T2-weighted 
or fluid attenuation inversion recovery (FLAIR) images 
[123]. This progresses to confluent leukoaraiosis with 
anterior temporal lobe involvement [124]. Pathologi-
cal analyses show granular osmiophilic material (GOM) 
in the tunica media and vessel wall thickening [125]. 
Another form of hereditary cSVD is Cerebral Autoso-
mal Recessive Arteriopathy with Subcortical Infarcts and 
Leukoencephalopathy (CARASIL). CARASIL is caused 
by mutations in the HTRA1 gene that encodes HtrA ser-
ine peptidase/protease 1 (HTRA1) [126]. Clinical features 
include early-onset lacunar stroke, cognitive impairment, 

alopecia, and lumbar spondylosis [127]. Lacunar stroke 
in the basal ganglia or brainstem is the most common 
manifestation of CARASIL, observed in approximately 
50% of cases. Extensive vascular smooth muscle cells 
degeneration, vessel wall thickening, and lumen narrow-
ing are histologically observed in CARASIL [125, 128]. 
Missense or null variants in COL4A1 and COL4A2 result 
in autosomal dominant cSVD [129]. These mutations 
are accompanied with cerebral microbleeds in the basal 
ganglia, centrum semiovale, and pons, and/or small deep 
lacunar infarcts and dilated perivascular spaces in the 
basal ganglia [130]. COL4A1 and COL4A2 mutations also 
induce other clinical manifestations in the brain (poren-
cephaly, and intracerebral aneurysms), eyes (cataracts, 
retinal vascular tortuosity, and retinal hemorrhage), and 
kidneys (proteinuria, renal insufficiency, renal cysts, and 
tortuosities of retinal arteries) [131, 132]. Hereditary dif-
fuse leukoencephalopathy with spheroids (HDLS) caused 
by CSF1R mutations is an early-onset dementia with 
brain atrophy and white matter changes [133]. HDLS is 
characterized by WMHs with frontal or frontoparietal 
predilection and asymmetric distribution, brain atrophy, 
and corpus callosal involvement [134]. Clinically, HDLS 
show symptoms related to frontal lobe syndrome such as 
loss of judgment, lack of social inhibition, lack of insight, 
and personality changes [135]. Mitochondrial encepha-
lomyopathy, lactic acidosis, and stroke-like episodes 
(MELAS) syndrome is a maternally inherited mitochon-
drial disorder with the m.3243A > G variant that results 
in multi-organ dysfunction [136]. The clinical MELAS 
manifestations are varied including stroke-like episodes, 
dementia, epilepsy, lactic acidosis, myopathy, hear-
ing impairment, diabetes, headache, and short stature. 
Stroke-like episodes are frequently observed in occipito-
temporal regions, presenting as vasogenic edema in the 
acute phase [137]. Fabry’s disease is an X-linked, reces-
sive lysosomal storage disease affecting glycosphingolipid 
metabolism, caused by a mutation in GLA which encodes 
alpha-galactosidase A (α-Gal-A). The clinical symptoms 
include peripheral polyneuropathy, autonomic dysfunc-
tion, and posterior circulation strokes [138].

Inflammatory and immunologically mediated cSVD
This group of cSVD is characterized by excess immune 
cell infiltration into the vessel walls (vasculitis) due to 
systemic and vascular inflammation during infection, 
autoimmune diseases, and rare immunological diseases 
[13]. A community-based population study showed that 
high neutrophil count is associated with increased risk 
for enlarged perivascular spaces in the basal ganglia and 
lacune [139]. Plasma C-reactive protein (CRP) or inter-
leukin 6 (IL-6) levels were also positively correlated with 
the presence of WMHs [140, 141].
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Venous collagenosis
Venous collagenosis is noninflammatory collagenous 
thickening of venous walls mainly composed of collagen 
I and III in white matter regions along lateral ventricles. 
A histological study found venous collagenosis in 65% of 
cases in an over 60-year-old cohort [142]. Venous col-
lagenosis is associated with leukoaraiosis severity or 
periventricular white matter ischemia [142]. Interest-
ingly, increased venous collagen, but not arterial colla-
gen, is reported as a significant predictor of higher WMH 
burden [143]. Since venous collagenosis also causes lumi-
nal stenosis or occlusion, venous lesions are predicted to 
associate with cerebral hypoperfusion, glymphatic drain-
age disruption, and BBB damage [144].

Other cSVD
Although radiotherapy is effective in treating cancers, 
cranial radiation sometimes causes irreversible cerebro-
vascular damage in delayed phases. It includes arteritis, 
intracranial aneurysm, cavernous malformation, min-
eralizing microangiopathy [145]. Endothelial cells and 
neurons are vulnerable to radiation, and cSVD is also a 
complication after radiation therapy. CSVD including 
microbleeds, microinfarcts, or white matter lesions are 
often observed in long term follow-up after cranial irra-
diation [146].

Neuroimaging hallmarks of cSVD
The STandards for Reporting and Imaging of Small Ves-
sel Disease (STRIVE) guideline defines WMHs, recent 
small subcortical infarcts, lacunes, cerebral micro-
bleeds, enlarged perivascular spaces, and brain atrophy 
which are common features of cSVD detected through 
neuroimaging [147]. These MRI hallmarks can become 
apparent long before symptom onset as clinically silent 
manifestations [13]. Such lesion accumulations subse-
quently lead to an increased risk of stroke [1, 21, 148], 
depression, and mobility disorders as well as VCID [149]. 
Here, we summarize MRI features of cSVD.

White matter hyperintensities (WMHs)
WMHs are frequently detected in VCID patients. A pop-
ulation-based study reported that WMHs are 95% per-
vasive in the elderly population over 60 years old [150]. 
WMH progression is associated with executive func-
tion, attention, and immediate/delayed memory [151]. 
WMHs are lesions detected as hyperintense areas on 
T2 or FLAIR [152]. Deep WMHs are often smaller and 
asymmetrically distributed in juxtacortical white matter. 
This distribution is suggestive of local perfusion impair-
ments due to hypertensive arteriopathy and CAA [153]. 
Periventricular WMHs are located symmetrically around 
ventricles, suggesting occlusive periventricular venous 

collagenosis-related diffuse perfusion disturbances [142, 
152, 154]. Pathological examination of WMHs shows var-
ied degrees of demyelination, diffuse axonal injury, glio-
sis, and oligodendrocyte loss [94, 155]. In deep WMHs, 
hypoxia-inducible factor (HIF) levels are upregulated in 
cerebral capillary endothelial cells, supporting ischemic 
associations [156]. Furthermore, BBB disruption char-
acterized by activated astrocytes and fibrinogen positiv-
ity is also associated with both deep and periventricular 
WMHs [157].

Recent small subcortical infarcts
Recent small subcortical infarcts, commonly called lacu-
nar infarction, account for about 25% of all ischemic 
strokes [158]. Lacunar infarcts are defined by neuroim-
aging evidence of recent infarction around a single per-
forating arteriole with a diameter of less than 20  mm 
in axial section. “Recent” refers to symptoms or imaging 
features formed during the hyperacute phase and the first 
few weeks before diagnostic imaging [147].

Lacunes of presumed vascular origin
Lacune is used to describe round or ovoid, subcortical, 
fluid-filled cavities with a diameter of 3–15 mm, formed 
during healing from lacunar infarcts or small hemor-
rhages. Lacune prevalence range from 8–28% (mean age: 
50–75  years) [159]. Increased lacune counts are asso-
ciated with a higher risk of cognitive impairment and 
stroke [159, 160].

Enlarged perivascular space
In axial MRI imaging, enlarged perivascular spaces are 
observed as hyperintense round lesions surrounding per-
forating arteries and arterioles in the basal ganglia and 
linear in the centrum semiovale on T2-weighted images. 
Mechanisms underlying enlarged perivascular spaces 
is not well understood. However, it is hypothesized to 
represent perivascular fluid stagnation due to lymphatic 
drainage blockage [161]. Larger numbers of enlarged 
perivascular spaces are associated with worsened cogni-
tive function or dementia [162].

Microbleeds
The prevalence of cerebral microbleeds is between 11.1–
15.3%, increasing in an age-dependent manner [163, 
164]. Cerebral microbleeds are MRI-visible small hypoin-
tense oval or round lesions with a diameter of 2–10 mm 
detected through T2* weighted gradient imaging [165] 
or magnetic susceptibility weighted images [165]. Cer-
ebral microbleeds are perivascular hemosiderin depos-
its that reflect previous subtle hemorrhages from small 
vessels involved in arteriolosclerosis or CAA [147, 166]. 
Lobar cerebral microbleeds in cortico-subcortical areas 
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are associated with cognitive impairment [167–169] and 
lobar intracranial hemorrhage [170]. Deep/infratentorial 
cerebral microbleeds are detected as hypertensive vascu-
lopathy in deep gray or white matter of the cerebral hem-
ispheres, brainstem, and cerebellum [171].

Brain atrophy
Brain atrophy manifests as general or focal, and symmet-
rical or asymmetrical decrease of gray or white matter 
volumes. Brain atrophy frequently occurs with increased 
ventricular volumes, enlarged superficial sulci, and 
WMHs. Some studies show that increased WMHs fur-
ther aggravate brain atrophy [172, 173].

Risk factors for cSVD
Collective evidence suggests that age, hypertension, 
diabetes, hyperlipidemia, smoking, and obstructive 
sleep apnea substantially impact cSVD pathogenesis 
[174–176]. Among them, aging and hypertension are the 
predominant factors associated with cSVD risk [177]. 
Epidemiological studies show that cSVD prevalence is 
higher in cases with longstanding hypertension in middle 
age [178, 179]. In addition, recent reports indicate that 
a subset of COVID-19 patients have neuroimaging fea-
tures of cSVD [180, 181]. In this section, we summarize 
the pathogenic conditions that influence cSVD risk and 
genetic risk factors.

Aging
Aging is involved in various pathogenic conditions, 
including hypertension, hyperlipidemia, diabetes, cardio-
vascular diseases, and dementia [182]. A meta-analysis 
study found that BBB permeability increases with age 
in both healthy and demented individuals [183]. A neu-
ropathological study also showed that age exacerbates 
cSVD score in AD brains [184]. While WMH burden 
increases with age, age-dependent effects are acceler-
ated in the presence of hypertension, abnormal body 
mass index (BMI), and diabetes mellitus after 50  years 
of age [185]. Overall prevalence of cerebral microbleeds 
was high and increased with age from 17.8% in persons 
aged 60–69 years to 38.3% in those over 80 years [171]. 
Thus, aging contributes to cSVD risk as a predominant 
factor. Although various pathogenic mechanisms such as 
oxidative stress, mitochondrial dysfunction, and chronic 
inflammation contribute to age-related vascular dysfunc-
tion [182], vascular senescence is also a critical cause 
compromising cerebrovascular function [186].

Hypertension
Hypertension is a leading risk factor for cSVD [13, 147] 
and VCID [187], which critically contributes to dis-
ease pathogenesis. WMH severity has a positive linear 

correlation with blood pressure [188]. A population-
based study found that premorbid systolic blood pressure 
preceding 20 years before neuroimaging is more predom-
inantly associated with cSVD burden than current sys-
tolic blood pressure [189]. Hypertension is also the most 
consistent predictor of cerebral microhemorrhage in 
healthy adult individuals and stroke patients [165]. While 
blood pressure variability has been shown to correlate 
with cardiovascular disease risk [190], it is also involved 
in cSVD development. Larger variation in systolic blood 
pressure in midlife is related to WMH development and 
ventricular atrophy later in life [191]. Hypertension dam-
ages cerebral vessels through multiple mechanisms: sup-
pression of NO production, induction of reactive oxygen 
species (ROS), and extracellular matrix remodeling [192, 
193].

Diabetes mellitus
Diabetes mellitus is a well-established risk factor for 
developing ischemic, hemorrhagic stroke, dementia, and 
cardiovascular diseases [194, 195]. Type 2 diabetes melli-
tus is associated with a higher risk of lacunar occurrence, 
although its impact on WMHs is controversial [196–
198]. Since increased cSVD burden is detected in type 2 
diabetes patients with retinopathy compared with those 
without retinopathy, small vessels are likely damaged in 
multiple organs during diabetes [199]. Hyperglycemia, 
insulin resistance, and altered fatty acid metabolism 
accompanied with diabetes mellitus have been known 
to induce oxidate stress and activation of the PKC path-
way and receptors for advanced glycation endproducts 
(RAGE). These factors lead to suppression of NO pro-
duction, inflammation, and thrombosis activation, result-
ing in substantial damages in endothelial and vascular 
mural cells [200].

Smoking
Smoking is known to cause deleterious effects on the 
vascular system, resulting in coronary heart disease, 
hypertension, arteriosclerosis, and stroke [201]. A meta-
analysis showed that stroke morbidity and mortality 
are significantly higher in ever smoker groups with OR 
1.45 and OR 1.44, and in current smoker groups with 
OR 1.90 and OR 1.70, compared to non-smoker groups 
[202]. A dose-dependent negative association between 
cigarette smoking and cortical thickness has also been 
reported [203]. Smoking is a strong factor associated 
with increased cSVD burden [204]. While smoking exac-
erbates WMHs [205] and white matter microstructural 
integrity [206], the effects on microbleeds, lacunes, and 
perivascular space enlargement are controversial [159, 
207]. Toxic effects of cigarette smoking on endothelial 
cells are mainly induced by oxidative stress initiated by 
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ROS, reactive nitrogen species, and other oxidant con-
stituents [208]. Smoking also activates immune cells and 
induces vascular inflammation including leukocyte infil-
tration, matrix metalloproteinase (MMP) upregulation, 
and platelet/coagulation activation [208].

Obstructive sleep apnea
Obstructive sleep apnea are recurrent breathing inter-
ruptions during sleep [209] and is a strong risk factor 
for vascular diseases including hypertension, atheroscle-
rosis, cardiovascular disease, and stroke [210–212]. As 
acute sleep deprivation decreases regional cerebral blood 
flow in healthy individuals [213], sleep fragmentation 
is related to the severity of cSVD neuroimaging mark-
ers [214]. Consistently, several studies show a significant 
association of obstructive sleep apnea with WMHs, but 
not microhemorrhage [215]. Obstructive sleep apnea 
causes ischemia/reperfusion injury [216, 217], where 
increased ROS and pro-inflammatory molecules cause 
brain damage [218]. Furthermore, accumulating evidence 
indicates that sleep disturbances compromise glymphatic 
drainage [219]. The severity of obstructive sleep apnea is 
associated with enlarged perivascular space in the basal 
ganglia and centrum semiovale [215].

Hyperlipidemia
Healthy individuals with dyslipidemia (total triglyc-
eride > 150  mg/dL and/or high-density lipoprotein 
[HDL] < 40  mg/dL) are associated with subcortical 
WMHs [220]. Another study also demonstrated that total 
triglyceride levels, but not low-density lipoprotein (LDL) 
or HDL, were associated with larger WMH volume and 
lacune [221]. Controversially, there is a report showing 
that ischemic stroke patients with a history of hyper-
lipidemia (total cholesterol > 220  mg/dL or total tri-
glyceride > 150  mg/dL, and prescription of statin) have 
less severe WMHs [222]. Higher total cholesterol (200–
225 mg/dL) is significantly associated with a lower cSVD 
risk such as lacunar infarctions and WMHs as detected 
by MRI in a middle-aged population who visited a hos-
pital for a brain checkup [223]. Although a meta-analysis 
showed the positive correlation between hyperlipidemia 
and cSVD risk [174], it remains controversial. Thus, 
hypertriglyceridemia but not hypercholesterolemia may 
be associated with increased cSVD risk as hypertriglyc-
eridemia compromises endothelial function by causing 
oxidative stress [224]. Higher blood LDL is also associ-
ated with exacerbated AD neuropathology [225].

COVID‑19
COVID-19 due to SARS-CoV-2 infection has substan-
tially impacted the population health worldwide since 
December in 2019. In severe COVID-19 cases, there is 

respiratory failure and systemic inflammation. COVID-
19 patients frequently show neurological symptoms 
including encephalopathy, encephalitis, and ischemic 
stroke [226]. Of note, a prospective study enrolling 60 
recovered COVID-19 patients demonstrated that neu-
rological symptoms are present in 55% of cases. Neu-
roimaging found micro-structural and functional brain 
integrity disruption during COVID-19 recovery [227]. 
Several case reports also indicate an association between 
COVID-19 and cSVD [228, 229]. While ischemic stroke 
occurs during the acute phase of COVID-19, cSVD phe-
notypes such as microinfarctions and vessel wall con-
trast enhancement are detected in the later phase [230]. 
In addition, COVID-19 has been reported to cause cer-
ebrovascular endothelial loss, increasing the number of 
thin collagen IV-positive vessels lacking endothelial cells 
[231]. When SARS-CoV-2 infects endothelial cells, a viral 
protease  (Mpro) appears to reduce nuclear factor (NF)-κB 
essential modulator (NEMO) and suppress the recep-
tor-interacting protein kinase 3 (RIPK3) pathway, lead-
ing to endothelial apoptosis and BBB breakdown [231]. 
Although further studies in larger cohorts are required, 
COVID-19 is likely associated with a higher risk for 
cSVD compared to other infective diseases.

Socioeconomic disparities
Several studies demonstrate that socioeconomic dispari-
ties are associated with stroke incidence, outcomes, and 
recurrence [232–234]. Other factors associated with 
lower socioeconomic status such as substance depend-
ence, mental illness, and infectious diseases may contrib-
ute to pathogenesis. Consistently, socially marginalized 
individuals have shown higher prevalence (32%) for cSVD 
and often at a younger age (median 44.7 years old) [235]. 
Higher prevalence of WMHs is also associated with alco-
hol consumption [236], nonprescribed drug usage [237, 
238], and nutritional deficiencies [239].

Genetic factors
Recent genome-wide association studies (GWAS) identi-
fied 31 loci associated with cSVD-related imaging traits 
including WMHs, mean diffusivity, and fractional ani-
sotropy in 42,310 individuals. CSVD risk loci include 
gene coding proteins related to AD (APOE and MAPT), 
immune system (HLA-B and HLA-S), and extracellular 
matrix (COL4A2 and VCAN) [240]. Although APOE-ε2 
is protective against AD, both APOE-ε2 and ε4 have 
been known to increase CAA and CAA-related hemor-
rhagic risk [241, 242]. APOE-ε2/ε4 carriers are prone to 
developing CAA at an early age [243]. APOE-ε2 and ε4 
are associated with CAA in arteries/arterioles and cap-
illaries, respectively [244]. In addition to CAA, a meta-
analysis implies that APOE-ε2 and ε4 are associated with 
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increased WMH burden. While APOE-ε4 is correlated 
with lobar microbleeds, APOE-ε2 increases the risk of 
brain infarct [245].

Probable etiology of cSVD
The etiological mechanisms of cSVD can be summa-
rized in the following four pathways: 1) hypoperfusion/
hypoxia, 2) BBB dysregulation, 3) ISF/CSF drainage dis-
turbances, and 4) vascular inflammation (Fig.  3) [246]. 
Each of them is predicted to contribute independently 
and interactively to cSVD pathogenesis.

Hypoperfusion/hypoxia
The brain needs a constant supply of oxygen and nutri-
tion from blood to maintain the cellular and functional 
homeostasis. Arteriosclerosis, CAA, venous collagenosis, 
and other pathological changes detected in cSVD might 
cause not only luminal narrowing but also dysregulation 
of cerebral autoregulation, resulting in the reduction of 

cerebral blood supply. Capillary endothelial cells are vul-
nerable to elevated shear stress and hypoperfusion [247]. 
Chronic cerebral hypoperfusion and subsequent inter-
mittent hypoxia provoke oxidative stress, mitochondrial 
dysfunction, inflammation, and proteinopathy, leading 
to neurodegeneration [248]. Particularly, white matter is 
susceptible to hypoperfusion/hypoxia due to poor col-
lateral flow [249]. Cross-sectional studies demonstrated 
that lower cerebral blood flow is associated with higher 
WMH burden [250]. It is possible that brain atrophy due 
to white matter damage cause cerebral blood flow reduc-
tion [251]. However, a population-based study showed 
that lower cerebral perfusion at the baseline is associ-
ated with accelerated cognitive decline during follow-up. 
Animal studies also demonstrated that chronic hypoper-
fusion leads to white matter injury, lacunar infarcts, hem-
orrhages, and cognitive impairment, further exacerbated 
by APOE-ε4 [252]. Consistently, carotid revascularization 
has proved to improve cognitive function in patients with 

Fig. 3 Risk factors and pathogenic mechanisms of cerebral small vessel disease. The cerebral small vessel disease (cSVD) can be classified into six 
groups including arteriolosclerosis, sporadic and hereditary cerebral amyloid angiopathy (CAA), inherited or genetic cSVD distinct from CAA, 
inflammatory and immunologically mediated cSVD, venous collagenosis, and others. Neuroimaging hallmarks of cSVD include white matter 
hyperintensities (WMHs), microbleeds, subcortical infarcts, lacunes, and enlarged perivascular space. While various molecular mechanisms are 
involved in cSVD pathogenesis, hypoperfusion/hypoxia, blood–brain barrier (BBB) dysregulation, interstitial fluid (ISF)/cerebrospinal fluid (CSF) 
drainage disturbances, and vascular inflammation are likely the major etiological pathways. Hypertension, smoking, diabetes, and sleep apnea are 
strongly associated with the risk of cSVD, where aging, lifestyle, and genetic factors also contribute to the pathogenic pathways as modifiers
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severe carotid stenosis by ameliorating cerebral hypop-
erfusion [253]. While the cascade to cSVD might vary 
depending on subtype, cerebrovascular hypoperfusion is 
predicted to predominantly trigger the etiological path-
way [254, 255].

BBB dysregulation
Altered paracellular and transcellular transport, 
decreased tight junction proteins, basement membrane 
abnormality, and pericyte dysfunction characterize BBB 
dysregulation, which lead to aggravated plasma protein 
leakage and leukocyte infiltration into the brain paren-
chyma resulting in glial activation, demyelination, and 
neurodegeneration [50]. Neuroimaging studies have 
demonstrated greater BBB leakage in regions with WMH 
than normal-appearing white matter, which positively 
correlates with WMH severity, age, and hypertension 
[256, 257]. BBB leakage in WMH likely proceeds cogni-
tive decline. As such, BBB dysregulation is causatively 
involved in cSVD symptoms. Notably, chronic cerebral 
hypoperfusion or hypoxia is a major factor causing BBB 
damage. For example, HIF-1 upregulates VEGF in peri-
cytes and astrocytes during hypoxic conditions [258–
260]. Excessive VEGF exacerbates BBB leakage through 
altering the distribution of tight junction proteins [261], 
despite VEGF having beneficial effects including col-
lateral vessel formation, reparative angiogenesis, and 
neuroprotection after ischemic stroke [262]. Cerebral 
hypoperfusion also reduces capillary pericyte coverage, 
disrupting BBB integrity [78]. CSVD risk factors such 
as hypertension, diabetes, and smoking induce oxida-
tive stress. That oxidative stress subsequently dam-
ages the BBB through mitochondrial dysfunction and 
ROS production, followed by excitotoxicity, altered iron 
metabolism, inflammatory responses, pyroptosis, and 
necroptosis in the neurovascular unit [263]. Inflamma-
tion is also associated with BBB dysregulation through 
pathways mediated by inflammatory cytokines and lipid 
inflammatory mediators. In severe inflammation, paren-
chymal infiltration of peripheral immune cells and acti-
vation of MMPs lead to BBB structural damage [264]. 
Accumulating evidence demonstrates that APOE-ε4 
leads to BBB dysfunction [265] where the mechanism 
is likely mediated by excess activation of cyclophilin 
A-MMP9 pathway in pericytes [266].

ISF/CSF drainage disturbances
Diffusion tensor imaging-based analysis along the 
perivascular space (DTI-ALPS) index has been used to 
evaluate the glymphatic clearance function [267]. The 
ALPS index is associated with cSVD neuroimaging mark-
ers including WMHs, lacunas, microbleeds, and enlarged 
perivascular spaces [268]. However, the ALPS index is 

correlated with cognitive function independent of other 
factors [269]. Furthermore, lower ALPS index is associ-
ated with lower Aβ42 levels in CSF [270]. Glymphatic 
impairment is predicted to stagnate ISF/CSF drainage 
and exacerbate brain accumulations of deleterious pro-
tein/cell debris, which eventually leads to cSVD-related 
cognitive impairment. IPAD disturbance also contrib-
utes to perivascular space enlargement in the white mat-
ter and CAA formation [271]. Thus, ISF/CSF drainage 
dysregulation through the glymphatic system and IPAD 
pathways should also be a key etiological mechanism 
of cSVD. Although CAA is mainly detected between 
smooth muscle cell layers of leptomeningeal arteries and 
penetrating arterioles in the IPAD pathway [272], Aβ 
deposition is sometimes detected in capillaries, venules, 
and veins [273]. While arterial CAA is fivefold more fre-
quent compared to venous CAA in AD cases [274], Aβ 
deposition in veins are observed in 78% of severe CAA 
cases with cerebral hemorrhage [275]. An animal study 
using a TgF344-AD rat model showed that arteriolar Aβ 
accumulation precedes venular Aβ accumulation [276]. 
These observations suggest that IPAD and glymphatic 
dysfunction are connected. Continuous IPAD dysfunc-
tion causes arterial CAA and subsequentially compro-
mises the glymphatic pathway resulting in Aβ deposition 
on venous vessels in severe cases. Cerebrovascular pul-
satility has been identified as the driving force of ISF/
CSF bulk flow along cerebral vessels. Thus, altered vas-
cular wall compliance and reactivity due to cerebrovas-
cular damages might disturb the homeostasis of IPAD 
and glymphatic system in cSVD [277]. Ultrafast magnetic 
resonance encephalography (MREG) shows that cardiac 
pulsations drive fluid drainage along periarterial spaces, 
whereas respiratory pulsations mediate perivenous fluid 
flow [278]. Hence, altered cardiovascular or respiratory 
systems also impact the IPAD and glymphatic drainage 
pathways. In addition, astrocytic AQP4 plays an essen-
tial role in regulating brain water homeostasis and glym-
phatic clearance system [88]; mislocalization or reduction 
of AQP4 is detected in white matter with cSVD [279].

Vascular inflammation
Vascular inflammation is often characterized by increases 
of homocysteine, ICAM-1 (intercellular adhesion mol-
ecule 1), VCAM-1 (vascular cell adhesion molecule 1), 
lipoprotein-associated phospholipase A2 (Lp-PLA2), 
VEGF, E-selectin, P-selectin, MMP9, neopterin, or CD40 
[280]. Vascular inflammation is causatively or conse-
quently involved in oxidative stress, vascular endothelial 
dysfunction [281], BBB damage [282], atherosclerotic 
plaque formation [283], narrowing of the lumen [284], 
and hemodynamic impairment [285], all of which even-
tually culminate in the development of cSVD (Fig. 3). A 
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meta-analysis indicated that vascular inflammation asso-
ciates with cSVD development in the brain regions sup-
plied by deep perforating arteries such as basal ganglia 
[280]. The increase of macrophage-derived proinflamma-
tory enzyme Lp-PLA2 has been shown as an risk factor 
for WMHs [285] as well as cardiovascular disease and 
stroke [286]. In addition, higher baseline levels of sys-
temic inflammatory markers likely predict cSVD severity 
and progression [280]. Neutrophil count is also sugges-
tively correlated with increased cSVD burden and preva-
lence [139]. Animal studies have demonstrated robust 
association between inflammation and cSVD, providing 
strong evidence that inflammation could be a major etio-
logical factor of cSVD [287, 288]. Indeed, cSVD risk fac-
tors such as aging [289, 290] and hypertension [291, 292] 
have been known to cause both systemic and vascular 
inflammation.

Preventative and therapeutic strategy for cSVD
Since cSVD is often a secondary phenotype of a meta-
bolic syndrome, pharmacological approaches to ame-
liorate hypertension and atherosclerosis are the current 
standard to treat cSVD [293]. A meta-analysis reported 
that patients treated with intensive anti-hypertensive 
drugs have significantly slower WMH progression com-
pared with non-treated groups [294]. While statins are 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 
reductase inhibitors used to treat hyperlipidemia, a 
randomized controlled trial showed that a low dose of 
rosuvastatin treatment over 5  years suppresses WMH 
progression and reduces the risk for microbleeds in aged 
hypertension patients [295]. Pre-stroke statin medica-
tion also slowed post-stroke WMH progression during 
2-year follow-up [296]. However, another study found 
that statins may exacerbate CAA-related lobar hem-
orrhage risk in APOE-ε4/ε4 and APOE-ε2/ε4 carriers 
[297]. Other reports failed to detect preventive effects of 
anti-hypertensive drugs and statins on WMH progres-
sion [298–301].

Antiplatelet therapies using aspirin, clopidogrel, dipy-
ridamole, cilostazol, and ticagrelor are a main strategy 
for secondary stroke prevention as platelet activation 
predominantly causes vessel occlusion [302]. Antiplate-
let therapy in secondary stroke prevention after lacunar 
stroke has been reported to reduce recurrence of any 
stroke and ischemic stroke with superior effects in dual-
antiplatelet therapy compared to single-antiplatelet ther-
apy [303]. However, long-term dual antiplatelet therapy 
with clopidogrel and aspirin resulted in increased rate 
of major bleeding and all-cause mortality than aspirin 
alone [304]. Prolonged antiplatelet therapy needs care-
ful consideration when used for cSVD patients espe-
cially with CAA. As cilostazol administration showed the 

lower incidence of hemorrhagic stroke in lacunar stroke 
patients than aspirin, cilostazol appears to be safer treat-
ment for cSVD [305]. Cilostazol has also been known to 
ameliorate cognitive decline and gliovascular damage 
through endothelial stabilization [306].

Although aducanumab and lecanemab have been 
approved by FDA to treat patients with early AD by 
reducing brain Aβ amyloids, it is not recommended for 
cases with diagnosed CAA [307]. Amyloid-related imag-
ing abnormalities (ARIA) were reported in significant 
number of patients receiving anti-amyloid immunother-
apy for AD, in particular in individuals carrying APOE4 
gene allele in a gene dose-dependent manner [308, 309]. 
CAA is likely involved in the pathogenic mechanism of 
ARIA as APOE4 also increases the prevalence of CAA 
[310]. ARIA-E is characterized by vasogenic parenchymal 
edema or leptomeninges/sulci sulcal effusions. ARIA-H 
exhibits microhemorrhages or superficial siderosis hemo-
siderin deposits. Antibodies used in Aβ immunotherapy 
may directly attack vascular amyloid deposition, causing 
ARIA. Aβ-targeted immunotherapy could also increase 
perivascular Aβ accumulation, further exacerbating CAA 
and ARIA. ARIA is generally managed through tempo-
rary treatment suspension or dosage reduction, pulsed 
steroid therapy may ameliorate it [311].

Behavioral metrics (smoking, BMI, physical activ-
ity, and diet) are associated with WMH and lacunes 
risk [312]. Thus, lifestyle interventions are promising 
approaches for cSVD therapy. While smoking cessation 
is essential in current smokers with cSVD, multidomain 
intervention (diet, exercise, cognitive training, vascular 
risk monitoring) could improve or maintain cognitive 
functioning in the elderly [313]. Since exercise [314] and 
the Mediterranean diet improve endothelial function. 
[315], they could be beneficial in treating cSVD patients. 
Furthermore, the association between low serum vita-
min  B12 levels and increased white matter volume was 
identified [316]. A study reported that B-vitamin (folate, 
vitamins  B12 and  B6) supplementation lowers plasma 
homocysteine levels and reduces WMH burden in 
patients with severe cSVD intervention [317]. Vitamin E 
tocotrienols were also found to be beneficial in the atten-
uation of WMHs among cognitively unimpaired individ-
uals [318].

There are also several emerging new therapeutic strate-
gies for cSVD based on animal studies. For example, an 
angiotensin II receptor blocker, candesartan, attenuates 
vascular distensibility and cerebral blood flow by modu-
lating pathological extracellular matrix accumulation in 
CARASIL model mice [319]. In addition, several active 
or passive immunotherapy strategies targeting NOTCH3 
have been reported to be effective for CADASIL in mouse 
models [320–322]. Since nicotinamide mononucleotide 
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supplementation could restore cerebrovascular endothe-
lial dysfunction and improve cognitive function in aged 
wild-type mice, nicotinamide mononucleotide may pose 
protective effects age-related VCID [323]. Furthermore, 
G-CSF administration has been shown to restore white 
matter damage and improve non-spatial cognitive func-
tion in spontaneously hypertensive rats [324]. Minocy-
cline could also reduce white matter damage, improved 
behavior, and prolonged life in spontaneously hyperten-
sive/stroke prone rats [325].

Conclusions
As contributions of VCID to age-related cognitive decline 
have been increasingly recognized, greater understand-
ing of cSVD pathophysiology and etiology is desired to 
develop novel diagnostic and therapeutic strategies for 
the disease. Given that hypertension, smoking, and dia-
betes are strong risk factors for cSVD, it is reasonable 
to consider cSVD as a primary phenotype of metabolic 
syndrome in the brain. Although how these risk factors 
relate to each aspect of cSVD pathogenesis remains to 
be elucidated, lifestyle interventions focusing on vascu-
lar health might be the most effective approach to reduce 
cSVD risk, cardiovascular diseases, and stroke. In most 
of cSVD cases, clinical symptoms silently progress for 
many years before symptoms become evident. Although 
further studies are needed to define the adequate thera-
peutic window, earlier intervention at the pre-sympto-
matic stage should be beneficial to treat cSVD. Current 
advancements in neuroimaging enables precise cSVD 
diagnosis. However, there is a difficulty in predicting the 
onset and progression of cSVD. Early accurate diagnosis 
or prediction of cSVD may be accelerated through eas-
ily identifiable fluid biomarkers. Accumulating evidence 
indicates etiological pathways such as hypoperfusion/
hypoxia, BBB dysregulation, ISF/CSF drainage distur-
bances, and vascular inflammation in cSVD, where a 
variety of cell types are involved in the pathogenesis. 
Since these different aspects of cerebrovascular damages 
are likely associated with one another, it might be critical 
to target multiple pathways to establish effective cSVD 
therapies.

In addition, cSVD might be causatively and conse-
quently involved in AD pathogenesis as CAA is a com-
mon type of cSVD. While cSVD and AD frequently 
coexist in the elderly, future studies should further define 
how ameliorating cSVD phenotypes influence the onset 
and development of AD.
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