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Misfolded protein oligomers: 
mechanisms of formation, cytotoxic 
effects, and pharmacological approaches 
against protein misfolding diseases
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Abstract 

The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, 
including Alzheimer’s and Parkinson’s diseases. Increasing evidence implicates misfolded protein oligomers produced 
during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this 
review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, popu-
lation dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the 
formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
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Background
It has been known for many years that numerous nor-
mally soluble proteins can misfold and self-assemble 
into amyloid fibrils [1–5]. The architecture of these aber-
rant aggregates is highly organized, with a characteristic 
cross-β core formed by β-strands arranged perpendicu-
lar to the main axis of the fibril, creating an extensive 
network of hydrogen bonds that confer high stability 
to the amyloid state [1–4, 6]. Amyloid fibrils are associ-
ated with a variety of human diseases involving either 

the central nervous system (neuropathic conditions), a 
multiplicity of tissues and organs other than the brain 
(non-neuropathic systemic amyloidoses), or a specific 
organ (non-neuropathic localized amyloidoses) [1]. Indi-
vidual amyloid-associated diseases (Table 1) are generally 
characterized by the loss of native function for specific 
peptides or proteins, and these biomolecules can form 
aberrant and destructive aggregates [1, 7]. Collectively, 
these conditions affect dozens of millions of people 
worldwide [1]. To cite a few examples, the deposition in 
the brain of the tau protein into intracellular neurofibril-
lary tangles [8, 9] and the amyloid-β peptide (Aβ) into 
extracellular plaques [10, 11] is associated with Alzhei-
mer’s disease (AD). Parkinson’s disease (PD) is character-
ized by the aggregation of ⍺-synuclein into Lewy Bodies 
of dopaminergic neurons [12, 13], and type II diabetes 
(T2D) by the self-assembly of islet amyloid polypeptide 
(IAPP, also known as amylin) in the islets of Langerhans 
in the pancreas [14, 15]. Consequently, the characteriza-
tion of the various species that are formed within each 
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Table 1 Non-exhaustive list of protein misfolding diseases with their associated peptides or proteins, and in vitro and ex vivo 
structures of corresponding amyloid fibrils. Putative mechanisms of aggregation and toxicity are also indicated

Disease Proteins Length Prospective most 
toxic species

Dominant 
aggregation 
mechanism

In vitro amyloid 
structure

Ex vivo amyloid 
structure

Alzheimer’s disease 
(AD)

Amyloid-β (Aβ)
Tau (3R + 4R)

40 or 42
352–441

Aβ: Oligomers [3, 
16, 17]
Tau: Oligomers 
[18–20]

Secondary nuclea-
tion [21, 22]
Secondary nuclea-
tion [23]

Aβ40 [24]
Aβ42 [25]
Tau [26]

Aβ40 [27, 28]
Aβ42 [5]
Tau [29, 30]

Parkinson’s disease 
(PD)

⍺-synuclein 140 Oligomers [31–33] Condition-depend-
ent [34], includ-
ing lipid-induced 
aggregation [35]

[36–39] [40–42]

Dementia 
with Lewy Bodies 
(DLB)

⍺-synuclein 140 Pre-synaptic 
aggregates [43] & 
oligomers [44, 45]

Not yet known, sec-
ondary pathways 
[46]

- [40, 47]

PD dementia (PDD) ⍺-synuclein 140 Not yet known, pos-
sibly oligomers [48]

- - [40]

Multiple system 
atrophy (MSA)

⍺-synuclein 140 Oligomers [49, 50] - - [42, 51]

Huntington’s dis-
ease (HD)

Huntingtin variable Not yet known, 
possibly oligomers 
[52–54]

Possibly stochastic 
nucleation [55]

[56] -

Chronic traumatic 
encephalopathy 
(CTE)

Tau (3R + 4R) 352–441 Not yet known Not yet known, 
possibly secondary 
pathways [57]

[26] [58]

Pick’s disease (PiD) Tau (3R) 352–410 Not yet known Not yet known, 
possibly secondary 
pathways [59]

- [60]

Corticobasal 
degeneration (CBD)

Tau (4R) 383–441 Not yet known Not yet known, 
possibly secondary 
pathway [61]

- [62]

Progressive supra-
nuclear palsy (PSP)

Tau (4R) 383–441 Not yet known - - [4]

Argyrophilic grain 
disease (AGD)

Tau (4R) 383–441 Not yet known Not yet known, 
possibly secondary 
pathways [63]

- [4]

Globular glial 
tauopathy (GGT)

Tau (4R) 383–441 Not yet known Not yet known, 
possibly secondary 
pathways [64]

- [4]

Spongiform 
encephalopathies

Prion protein (PrP) 208 PrPSc [65], possibly 
oligomers [66, 67]

Fragmentation [68] [69–72] Mouse PrP
[73, 74]
RML prion [75]
Scrapie [70]
Bovine serum 
encephalopathy 
[76]

Type II diabetes Amylin (IAPP) 37 Oligomers [77, 78] Secondary nuclea-
tion [79]

[80, 81] [82]

Cataracts Crystallins 175 Aggregates of dam-
aged proteins [83, 
84]

- - -

AA amyloidosis Serum amyloid A 104 Fibrils [85] and oli-
gomers [86]

Secondary path-
ways [87]

[85, 88] [85, 88]

Transthyretin amy-
loidosis

ATTRwt
Val30Met ATTR 

127 Various species 
[89–91]

- - [92, 93]

Ig-related amyloi-
dosis (AL)

Immunoglobulin 
light chain

Proteolytic frag-
ments

Fibrils [94] and 
oligomers [95]

Not yet known, 
seed-competent 
[96]

- [97, 98]
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aggregation reaction, and the study of the mechanisms 
by which they contribute to cellular dysfunction and 
death, would help reveal the molecular origins of pro-
tein misfolding diseases and provide insights into possi-
ble therapeutic and diagnostic methods to combat these 
conditions.

The fibrillar species of amyloidogenic proteins were 
initially thought to be the most toxic aggregate forms 
in many protein misfolding diseases. However, increas-
ing evidence has shown that smaller, intermediate and 
metastable soluble aggregates, known as misfolded 
protein oligomers, are in many cases more toxic than 
their mature fibrillar counterparts [18, 19, 77, 99–104]. 
In other protein misfolding diseases, amyloid fibrils are 
cytotoxic either by sequestering functional proteins 
(loss-of-function) or by directly damaging the cells and 
tissues where they form (toxic gain-of-function) [1, 100, 
105, 106]. Moreover, once formed, amyloid fibrils can, in 
certain amyloid systems, establish a positive feedback 
loop that further promotes the proliferation of more 
oligomers in a multiplicative manner through surface-
catalyzed secondary nucleation [21, 107]. Furthermore, 
amyloid fibrils can act as reservoirs of oligomers that can 
detach from the fibril ends [108]. Mature fibrillar aggre-
gates also remain main pathological biomarkers and his-
tological hallmarks [109–112], while oligomers may be a 
crucial target for effective drug screening programs [16, 
101, 113, 114].

Because of the elusive nature of misfolded protein oli-
gomers, they can vary in their characteristics, includ-
ing differences in their size and hydrophobicity, as 
well as their degree of metastability [1, 115, 116]. The 
detection of oligomers ex  vivo for diagnostic purposes 
thus presents challenges, particularly due to their het-
erogeneous structure, transient nature, and low con-
centrations [115]. Aβ oligomers have been detected 
in AD brains using conformation-sensitive antibodies 
specific for well-defined oligomers with low reactiv-
ity towards monomers, fibrils and other oligomer types 
[115, 117–122]. Aβ oligomers have also been detected 
in peripheral fluids, including the cerebrospinal fluid 
(CSF), where they are present in the circa attomolar to 
picomolar concentration range [115, 123, 124], and tau 
oligomers have been found in the CSF at approximately 
femtomolar concentrations [125].

Despite these challenges, progress has been made to 
reinforce our understanding of misfolded protein oligom-
ers on several fronts, as we will describe in this review 
article. We consider here these oligomers with respect to 
their biophysical characterization and population dynam-
ics, quantification techniques, the processes by which 
they form, and the consequences of their dysregulated 

presence. We then conclude by summarizing recent 
developments in drug discovery against oligomers.

The amyloid state of proteins
Many proteins in their physiological states are fre-
quently expressed at levels close to their solubility lim-
its [126, 127]. These proteins are thermodynamically 
metastable in their native states and over time tend to 
convert into aggregates [128] (Fig. 1). The amyloid state 
is characterized by the presence of fibrillar aggregates 
consisting of a number of β-sheet structures running 
along the fibril axis [129, 130]; a fibrillar morphol-
ogy with characteristic cross-β structure and signa-
ture tinctorial properties, including binding of the dyes 
thioflavin-T and Congo red, are commonly accepted as 
key hallmarks of the amyloid state [1]. It is accessible 
independently of the sequence, structure and function 
of the precursor native proteins and is now recognized 
to often be the most stable state of a protein, even more 
stable than the native state, at the high protein con-
centrations present in the cellular environment [131, 
132]. Breakthrough developments in solid-state nuclear 
magnetic resonance (ssNMR) spectroscopy and then 
cryogenic electron microscopy (cryo-EM), particularly 
the increased sensitivity of instruments [133] and the 
advancement of analytical software [134], have facili-
tated the determination of high-resolution structures 
(approaching the 2  Å limit) of brain-derived amyloid 
fibrils of disease-associated proteins and peptides. Fila-
mentous structures have been solved for many amyloi-
dogenic biomolecules,  including for tau [135], TDP-43 
[136], ⍺-synuclein [40], and amyloid-β [5], although 
those of TDP-43 do not exhibit cross-β structure with 
the 10–11  Å spacing and binding to amyloid diagnos-
tic dyes [136]. Remarkably, it has been shown that the 
tau  protein can self-assemble into a range of different 
amyloid structures, known as polymorphs, in a pathol-
ogy-dependent manner, including in AD, Pick’s disease 
(PiD), chronic traumatic encephalopathy (CTE), corti-
cobasal degeneration (CBD), and progressive supranu-
clear palsy (PSP) [4, 135] (Table 1), and the same is true 
for amyloid fibrils formed from other proteins [137]. 
Polymorphism has also been observed for Aβ fibrils in 
AD, with different polymorphs in different patients [5, 
138], and in familial and sporadic forms [139].

We also note that in some cases amyloid species can 
be functional, and be formed both intra- and extra-
cellularly in diverse organisms ranging from bacte-
ria to mammals [142–144]. For example, functional 
amyloids serve roles in curli formation in E. coli, in 
the control of nitrogen catabolism in yeast, and as 
scaffolds that promote melanin synthesis in human 
melanocytes [142, 143]. Unlike pathological amyloid 
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fibrils, functional amyloids form under controlled con-
ditions and seem to have evolved to avoid secondary 
pathways, possibly in order to eliminate autocatalytic 
processes that would be difficult to regulate [145]. 
From a materials chemistry perspective, functional 
synthetic amyloids have been leveraged for a variety 
of biotechnological applications, such as silk microco-
coons for antibody drug delivery [146], and amyloid-
coated purification systems to reduce heavy metal 
concentrations in contaminated water sources [147]. 
Although predominantly studied for their pathogenic-
ity, fibrillar species from protein misfolding diseases 
have also demonstrated a capacity to catalyze chemi-
cal reactions. For example, it has been shown recently 
that various amyloid fibrils can also catalyze chemical 
reactions, including the hydrolysis of para-nitrophenyl 
acetate and dephosphorylation of para-nitrophenyl-
orthophosphate induced by ⍺-synuclein fibrils [148] 

and the degradation of specific neurotransmitters 
induced by Aβ fibrils [149].

Structure and mechanism of oligomer formation
The conversion of proteins from their soluble native state 
to amyloid fibrils is a complex process that involves a 
number of intermediate states. We will refer to the inter-
mediates that are multimeric but small enough to remain 
soluble as misfolded protein oligomers. A great assort-
ment of oligomers has been described for the widely 
studied Aβ40/Aβ42 system and a wide range of names 
have been given them, such as spherical and chain-like 
protofibrils, paranuclei, pentamers, globulomers, amylo-
spheroids, SDS-stable dimers/trimers, Aβ-derived diffus-
ible ligands (ADDLs), prefibrillar and fibrillar oligomers, 
and spherical amyloid intermediates. [101, 118, 120, 
150–159]. Different oligomeric species have also been 
described for ⍺-synuclein, including type A, type A*, 

Fig. 1 Proteins interconvert between different conformational states in the cell. After its biosynthesis by the ribosome, a protein may fold into its 
native state and be trafficked to its correct cellular location, assemble into a functional complex, condense into membraneless organelles, or misfold 
and aggregate. These processes are regulated by the proteostasis network (PN) [1, 140]. Accessing the amyloid state is a process that typically 
involves the conversion of monomeric proteins into oligomers and ultimately, highly ordered, rigid cross-β sheet fibrillar structures [1]. In addition 
to being associated with disease, amyloid fibrils can also be functional, and for this reason they have applications in material sciences, biomedical 
engineering, and drug discovery [1, 2, 141]. Created with biorender.com
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type B and type B* oligomers, amongst many other forms 
[33, 108, 160–163].

Comparison between structural characteristics of the 
various oligomers indicates that the β-sheet content gen-
erally increases with molecular weight, suggesting that an 
increase in oligomer size stabilizes their β-sheet struc-
ture. Such structure has generally been shown to involve 
both anti-parallel [157, 161, 164] and parallel but out-
of-register strands [165], unlike fibrils where β-strands 
are generally parallel and in-register. When various oli-
gomers of Aβ or ⍺-synuclein appear sequentially with 
time during an aggregation process, the first species are 
unstructured, and the species containing β-sheet struc-
ture appear later [154, 159, 160, 165, 166]. The aggrega-
tion of globular proteins recapitulates many of these 
characteristics if the process takes place under conditions 
promoting their unfolding [167, 168]. However, when it 
is initiated under native conditions, it often leads to early 
aggregates where the individual monomers populate 
native-like states, which later convert into β-sheet con-
taining protofibrils/fibrils [169, 170].

The largest oligomers with the highest β-sheet content, 
such as the fibrillar oligomers, annular protofibrils, chain-
like protofibrils and amylospheroids for Aβ and type B 
or B* oligomers for ⍺-synuclein, represent off-pathway 
species that need to reassemble at least partially before 
forming amyloid fibrils [164, 171, 172]. These species are 
large and have antiparallel or parallel but out-of-register 
β-sheet arrangements that needs to be substantially reor-
ganized to form the parallel in-register cross-β structure 
of the fibrils. Their off-pathway nature is also shown by 
dedicated kinetic tests [164, 171, 173]. On-pathway oli-
gomers are more difficult to detect and isolate because 
they generally convert into other oligomers or fibrils. 
Indeed, one important class of oligomers include nuclei 
of fibril formation, which can be identified kinetically, as 
described in the next section.

Kinetic mechanisms of amyloid fibril formation 
to reveal oligomeric nuclei
Macroscopic measurements
Quantitative kinetic analysis of amyloid fibril formation 
makes it possible to gain insight into the mechanism 
of misfolded protein oligomer generation that are on-
pathway to fibril formation, as well as their population 
dynamics [174]. Chemical kinetics enables the establish-
ment of models to describe the conversion of monomeric 
proteins into fibrillar products by breaking the process 
down into a series of elementary steps governed by rate 
laws [175]. Fluorescent dyes are commonly used to moni-
tor fibril formation, as they exhibit a substantial increase 
in quantum yield upon their interaction with β-sheet 
rich structures (Fig.  2) [176, 177]. Consequently, the 

binding of these dyes to amyloid fibrils induces a large 
fluorescence emission increase that, over time, mani-
fests as a classic sigmoidal curve in in vitro aggregation 
assays. Macroscopically, this sigmoidal curve can be 
thought of as having three major phases: (1) a lag phase 
where aggregation is already under way, but the amount 
of fibrillar structures is too low to be detectable, (2) a 
growth phase dominated by secondary processes (i.e. 
microscopic steps that depend on the presence of fibrils), 
and (3) a plateau phase that begins when the concentra-
tion of the monomers remaining in solution becomes 
rate limiting [178].  However, because of their ability to 
recognize molecular grooves of a fibrillar surface, the 
dyes are not ideally suited to quantify the heterogene-
ous species formed in the early stages of the aggregation 
process, including oligomers and protofibrils. Biophysi-
cal methods can instead be used, such as dynamic light 
scattering (DLS) or microfluidic free-flow electrophoresis 
[115], amongst others discussed later in this review.

To connect these macroscopic observables with the 
microscopic processes that contribute to the overall 
reaction, one can use the formalism of chemical kinetics 
(Table 2). In this approach, the elementary steps underly-
ing the aggregation process are described by a system of 
differential equations, known as a master equation. This 
equation defines the time dependence of the populations 
of the intermediate species produced during the reaction, 
which cannot be readily measured, from the knowledge 
of the time dependence of the populations of the reac-
tants and products, which can instead be measured [180]. 
The steps accounted for within the master equation 
approach for amyloid systems can be classified into two 
groups: those that affect the aggregate mass (growth), 
such as fibril elongation and monomer dissociation, and 
those that contribute to the total number of aggregates, 
such as primary nucleation, secondary nucleation, and 
fibril fragmentation.

In practice, a series of aggregation assays are con-
ducted with different initial conditions to probe spe-
cific microscopic mechanisms [175, 181]. Specifically, 
the addition of low concentrations of fibrillar seeds at 
the start of the aggregation reaction can bypass primary 
nucleation, while the addition of high concentrations of 
seeds bypasses both primary and secondary nucleation, 
thus assessing elongation. The combination of unseeded 
and seeded aggregation assays can offer sufficient con-
straints to enable the determination of the microscopic 
rate constants by a global fit of the kinetic data [180, 
182–184]. The web platform Amylofit, which is freely 
available (https:// amylo fit. com/), has been developed 
to facilitate this type of analysis [181], and it can solve 
molecular mechanisms and kinetic parameters with and 
without additives like small molecules. The differential 

https://amylofit.com/
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equations  for key elementary steps in the amyloid path-
way are summarized in Table  2, and the microscopic 
steps relevant to oligomer formation (Fig. 3) are analyzed 
in the following sections. Examples of individual kinetic 
traces from several different protein systems analyzed 
with this analytical procedure and single-molecule bio-
physical experiments are also shown in Fig. 4.

Fibril elongation
Elongation is a microscopic process in which a mono-
mer is added to a fibril end. The rate at which this pro-
cess takes place, specified by the rate constant  k+, is highly 
dependent upon conditions such as temperature, pH, and 
ionic strength [187]. Generally, fibril elongation sees the 
adsorption of monomer to the ends of a growing fibril, fol-
lowed by a rapid conversion step. However, at sufficiently 

high concentrations of monomers, fibril elongation can be 
saturated, suggesting a two-step process [188].

Primary nucleation
In this process, individual monomers self-associate into 
small, disordered oligomers. The majority of the oligom-
ers produced in this way dissociate back into mono-
mers [174], though in some cases they can persist long 
enough to convert into ordered oligomers, which are 
effectively fibril fragments and can act as seed for fibril 
growth [174]. The presence of surfaces, for example other 
proteins or lipid membranes, can, in certain instances, 
serve as a catalyst that induces heterogeneous primary 
nucleation [189, 190]. It is difficult to observe individual 
primary nuclei in a macroscopic sample due to their low 
concentration, transient nature, and a lack of molecu-
lar probes that bind them with specificity. The use of 

Fig. 2 From macroscopic measurements to microscopic mechanisms of protein aggregation. In a typical in vitro aggregation experiment, 
recombinant proteins are purified using a number of procedures, including fast protein liquid chromatography. Samples containing purified 
proteins are aliquoted with an amyloid-binding fluorophore in a low-bind multiwell plate. A plate reader tracks the time-dependent evolution 
of the overall fibril mass, and kinetic traces can be subsequently analyzed using chemical kinetics to resolve the mechanism of aggregation, as well 
as the effects of additive species, such as aggregation inhibitors. The reactive flux towards oligomeric species can be calculated using this approach 
[179]. Relative flux graphic reprinted from Staats et.al [179]. Created with biorender.com
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microfluidic techniques has, however, enabled their vis-
ualization, thus providing novel insight into the role of 
system size on primary nucleation events and the propa-
gative nature of the amyloid cascade [191].

Secondary nucleation
The process by which new aggregates form by a mono-
mer adsorbing onto and nucleating at the surface of an 
existing fibril is known as secondary nucleation [192]. It 
has been observed crystalline systems [193] and a range 
of protein deposition reactions, including for sickle-cell 

hemoglobin [194], IAPP [80, 195], insulin [196], Aβ42 
[21], ⍺-synuclein [35, 197], and tau [23], with increasing 
evidence implicating its key role in disease and pathol-
ogy. Secondary nucleation in protein aggregation has 
been directly visualized using direct stochastic optical 
reconstruction microscopy (dSTORM) [198] and total 
internal reflection fluorescence (TIRF) microscopy [199]. 
Furthermore, the formation of oligomers is greatest when 
both monomers and fibrils are involved in an aggregation 
reaction, compared to any other molecular process in the 
amyloid network. Thus, secondary nucleation, markedly 

Table 2 Time evolution of the fibril number concentration (P), fibril mass concentration (M) and oligomer mass concentration (S) for 
the microscopic processes involved in amyloid formation [181]. m(t), time-dependent monomer concentration; M(t), time-dependent 
fibril mass concentration; P(t), time-dependent fibril number concentration; S(t), time-dependent oligomer mass concentration;  kn, 
primary nucleation rate constant;  k2, secondary nucleation rate constant;  k+, elongation rate constant;  k-, fragmentation rate constant; 
 kd, oligomer dissociation rate constant;  ko1, primary oligomer association rate constant;  ko2, secondary oligomer association rate 
constant;  kconv, oligomer conversion rate constant;  kd2, fibril-mediated oligomer dissociation rate constant;  nc, reaction order of primary 
nucleation;  n2, reaction order of secondary nucleation;  nconv, reaction order of oligomer conversion;  no1, reaction order of primary 
oligomer association;  no2, reaction order of secondary oligomer association;  KE, Michaelis–Menten constant for saturating elongation 
(monomer concentration at which the rate of elongation is half the maximal velocity,  Vmax);  KM (Michaelis–Menten constant for 
saturating secondary nucleation (monomer concentration at which the rate of secondary nucleation is half the maximal velocity,  Vmax)

Molecular process Time evolution model Illustration of the model

Primary nucleation dP
dt

= knm(t)nc

Heterogeneous primary nucleation varies

Elongation dM
dt

= 2k+m(t)P(t)

Saturating elongation dM
dt

= 2k+m(t)P(t)

1+ m(t)
KE

Fragmentation dP
dt

= k−M(t)

Secondary nucleation dP
dt

= k2m(t)n2M(t)

Multistep secondary nucleation dP
dt

= k2m(t)n2M(t)

1+ m(t)
KM

n2

Primary association of oligomers dS
dt

= ko1m(t)no1

Primary dissociation of oligomers dS
dt

= kdS(t)

Oligomer conversion dS
dt

= kconvm(t)nconv S(t)

Secondary association of oligomers dS
dt

= ko2m(t)no2M(t)

Fibril-mediated oligomer dissociation dS
dt

= kd2S(t)M(t)
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more so than other microscopic steps, can be often 
implicated as a major source of toxic misfolded protein 
oligomers (Fig. 3) [200].

Fragmentation
Concurrent with or independent of secondary nuclea-
tion depending on solution conditions, fragmentation is 
another secondary pathway which may be particularly 
relevant, such as for the aggregation of insulin [180], 
β-lactoglobulin [201, 202], and the prion glycoprotein 
[203]. In a process dominated by fibril fragmentation, 
a fibril breaks into shorter fibril fragments, leading to a 
proliferation of fibril ends and therefore an exponen-
tial increase in fibril mass in the presence of fibril elon-
gation. Fibril fragmentation may result from thermal 
fluctuations and mechanical stress [204], or regulatory 
processes, such as by molecular chaperones [205]. In the 
real-time quaking-induced conversion (RT-QuIC) assay, 
monomeric substrate can be seeded by pathogenic fibrils 
present in a diluted brain homogenate sample alongside 
shaking to induce fragmentation, including for 3R [59, 
206] and 4R [61] tauopathies, and synucleinopathies 
[207]. Like secondary nucleation, fragmentation can 

enhance the overall cytotoxicity within the amyloid cas-
cade [208]. Exacerbated cytotoxicity may stem from the 
ability for oligomers to detach from fibril ends [108], the 
exponential growth of fibril ends for monomer adsorp-
tion, or enhanced cellular uptake of, on average, shorter 
fibrils [209–211].

Oligomer dynamics
Recent advances in experimental methods to detect and 
quantify oligomers [115] (see below) have facilitated the 
development of kinetic models that explicitly include the 
formation and disruption of oligomers, including ones 
that are both on- and off-pathway (Table 2). This inclu-
sion of oligomer dynamics in the rate equations for pro-
tein aggregation, and their subsequent fitting to data 
using amyloid-binding dyes that monitor for fibril forma-
tion, now enables the detailed description of the kinetics 
of oligomer populations formed during aggregation reac-
tions for multiple protein systems [174, 186, 212].

As done with amyloid assembly kinetics, the evolution 
of oligomeric species can be broken down into a series 
of microscopic elementary steps: monomer association 
into oligomers, oligomer dissociation into monomers, 

Fig. 3 Petri net representation of the reaction network that models an aggregation reaction. The monomer mass concentration (m), fibril mass 
concentration (M), fibril number concentration (P) and oligomer mass concentration (S), as well as the rate constants of their interconversions (see 
Table 2 for definitions), are indicated. M* represents monomer bound to fibril prior to its conversion or detachment, and P* represents a multistep 
elongation process including association and rearrangement. These processes fall into three categories: growth processes (elongation pathways), 
primary pathways, and secondary pathways (i.e. those that require the presence of fibrils). Note that no fibrillar mass is lost due to secondary 
nucleation or fragmentation, unless non-fibrillar oligomers are capable of detaching from fibril ends. Pathways shown in red and purple increase 
the relative fibrillar mass and number, respectively. In green are the pathways considered to be ’pro-oligomer,’ meaning they lead to a net increase 
in the oligomer population. Conversely, pathways shown in blue represent microscopic processes that lead to oligomer dissociation. Adapted 
from Meisl et.al [185], to include the reactive flux towards and away from oligomers. Created with biorender.com
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oligomer conversion into oligomers competent for fibril 
elongation (fibrillar oligomers), and elongation of fibril-
lar oligomers to fibrils (Fig. 3, Table 2) [186]. Non-fibril-
lar (i.e. non-converted) oligomers can form via primary 
nucleation, which is a fibril-independent pathway, or 
via fibril-dependent secondary mechanisms (Table  2). 
Upon formation, oligomers can be depleted by either 
their conversion into elongation-competent fibrillar spe-
cies, or their dissociation back into monomers (Table 2). 
Because of the reversibility of secondary nucleation, it is 
also possible that oligomers dissociate back to monomers 
upon interaction with the fibril surface. This is included 
in Fig. 3 and Table 2 as secondary dissociation or fibril-
mediated oligomer dissociation. Each of these steps con-
tributes to the oligomer population dynamics for a given 
amyloid system, which can be summarized by four main 
parameters that differ considerably from one amyloid 

system to another. These paramters are: persistence, pro-
ductivity, abundance, and peak half-time.

The first of these, oligomer persistence, measures the 
decay, whether through dissociation or conversion, of the 
oligomer population upon reaching the peak concentra-
tion. It is governed by the average lifetime of the oligom-
ers. Revisiting available in vitro kinetics data [21, 22, 213, 
214] with a mechanistic model accounting for oligomeric 
reactions revealed that the intermediate species have dif-
ferent lifetimes ranging from a few minutes (PrP) to hun-
dreds of hours (⍺-synuclein) under their corresponding 
conditions of analysis. 

Another parameter to describe the dynamics of oli-
gomers, the kinetic productivity, measures the tendency 
of oligomers to convert into fibrillar nuclei instead of 
dissociating. Like persistance, the productivity of oli-
gomers varies substantially between the various amyloid 
systems studied so far. From tau to α-synuclein, oligomer 

Fig. 4 Global simultaneous fits for fibril mass concentration using amyloid-binding dyes and soluble oligomer concentration. Fibril (top panels) 
and oligomer (bottom panels) concentrations were determined using amyloid-binding dyes and single molecule biophysical techniques, 
respectively. Fitting parameters are summarized herein and described in detail in ref. [186]. This study shows that it is possible to monitor oligomer 
dynamics from macroscopic amyloid-dye binding experiments. Reprinted from Dear et. al [186]
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productivity can vary by over four orders of magnitude, 
reaching values up to approximately 23% [114]. A higher 
rate of productivity effectively translates to a reduction in 
the concentration of oligomers at any given time. 

Abundance, the maximum concentration of oligomers 
that can be estimated theoretically, is determined by the 
maximal rate of oligomer formation relative to the maxi-
mal rate of depletion. These rates are determined by the 
rates of primary nucleation and/or secondary nucleation, 
as applicable [114, 186]. This parameter is generally less 
variable between systems compared to the differences in 
productivity and half time, with predicted values as low 
as 0.3% for Ure2 and as high as 8% for ⍺-synuclein and 
Aβ42 [186]. 

Finally, the peak time refers to the timepoint in the 
experiment when oligomer concentration is maximal and 
is set by the characteristic rate of aggregation and initial 
monomer concentration, and it varies by approximately 
one order of magnitude for different proteins.

For systems dominated by secondary nucleation, these 
four experimentally observable parameters, peak time, 
productivity, persistence, and abundance, can be math-
ematically represented (Table  3). Consequently, these 
metrics facilitate the investigation of the various effects 
of potential therapeutics or additive agents on targeting 
one or more microscopic steps (Fig. 5).

Amyloid aggregation within protein condensates
The process by which proteins form a liquid-like con-
densed phase is also becoming increasingly recognized as 
relevant in both physiology [132, 215–217] and pathology 

[218, 219]. This phenomenon, which is known as pro-
tein phase separation (PPS), may take place when pro-
tein–protein interactions become more favorable than 
protein-solvent interactions [217]. Driving forces for this 
process include electrostatic interactions (cation–anion, 
dipole–dipole cation-π, sp2-π, π-π), polar interactions 
mediated by hydrogen bonds, and hydrophobic interac-
tions, amongst others [220–223]. The environmental 
conditions influence greatly protein phase separation, 
where factors like protein concentration, RNA inter-
action partners, co-solutes, temperature, pH, salt type 
and concentration, and crowding agents can drastically 
change the way in which proteins interact with each 
other. Although most proteins appear capable of protein 
phase separation [132], we are only beginning to under-
stand the sequence-based determinants of the propensi-
ties of different proteins to do so [223–228].

The presence of liquid-like condensates opens the pos-
sibility of an alternative pathway to amyloid aggregation. 
This “condensation pathway” is distinct from the direct 
formation of amyloid aggregates from the native state 
occurring through oligomeric species, which is known 
as the “deposition pathway”. Formation of solid deposits 
either directly through the deposition pathway or from 
liquid droplets through the condensation pathway have 
been observed even within the same cell and protein sys-
tem undergoing self-assembly [229–232].

The role of oligomers is not yet clear, however, when 
amyloid aggregation takes place within condensates. 
TDP-43 oligomers were found to form in both the depo-
sition and condensation pathways, and to form before 

Table 3 Analytical expressions for various descriptors of oligomer population dynamics [114]. ρo1 and ρo2 represent the rates of 
oligomer formation via primary and secondary nucleation, respectively, ρ+ represents the rate for fibril elongation, ρc represents the 
rate of oligomer conversion, and ρe represents the combined rates of oligomer conversion and dissociation

Descriptor Non-equilibrium oligomerisation Quasi-equilibrium 
oligomerisation

Secondary nucleation-dominated
 Peak time τpeak =

1

(ρo2ρcρ+)
1
3

τpeak =
1

(ρo2ρ+)
1
2

√

ρe
ρc

 Persistence τdecay ≃
1

ρc+ρd τdecay ≃
1

(ρo2ρ+)
1
2

√

ρe
ρc

 Productivity p = ρc
ρe p = ρc

ρe
 Abundance cpeak

m(0)
= ρo2

ρe

cpeak
m(0)

= ρo2
ρe

Primary nucleation-dominated
 Peak time τpeak ≃

1

(ρo1ρ+)
1
2

√

ρe
ρc  , or 

1√
ρ+k− (if fragmentation dominated)

 Persistence
τdecay ≃

1

ρc+ρd
τdecay ≃

1

(ρo1ρ+)
1
2

√

ρe
ρc

 Productivity p = ρc
ρe

p = ρc
ρe

 Abundance cpeak
m(0)

= ρo1
ρe

cpeak
m(0)

= ρo1
ρe
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solid aggregates emerge within a condensed gel-like 
phase [233]. It has also been reported that ⍺-synuclein 
oligomers formed immediately following phase separa-
tion of the monomeric protein into a hydrogel, where 
monomers, oligomers and fibrils co-exist and where the 
hydrogels entrap, rather than release, oligomeric and 
fibrillar ⍺-synuclein in a highly cytotoxic state [234]. 
Similarly, it was found for tau that liquid–liquid phase 

separation precedes gel formation and then aggregation 
in  vitro [235], and induces a pathogenic conformation 
and oligomerization [235, 236]. Another RNA-binding 
protein, TIA1, further potentiates tau phase separation, 
facilitating the oligomerization and subsequent cytotox-
icity of the microtubule-associated protein [237]. The 
investigation of a coarse-grained peptide also found the 

Fig. 5 Simulated effects on the time evolution of fibril and oligomer populations upon addition of compounds that inhibit specific microscopic 
steps in the aggregation reaction of a given protein. Reprinted from Michaels et. al [114], with the permission of AIP Publishing
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formation of both metastable and stable oligomers in a 
dense phase [238].

Oligomer detection methods
Although oligomers are aberrant assemblies that can 
interact with a wide range of cellular components [1, 
100], their concentration remains low during the amyloid 
aggregation process. For example, at the half-point of an 
aggregation reaction in  vitro where half the monomers 
have converted into fibrils, the concentration of oligom-
ers can be two or three orders of magnitude lower than 
the monomer concentration [21]. It is therefore often 
necessary to isolate oligomers at higher concentrations 
or stabilize them to facilitate their investigation in vitro 
[161, 239–241]. It is important to note that on-pathway 
oligomers are the focus of the kinetic models described 
above, whereas stabilization methods typically redi-
rect the aggregation reaction towards the formation 
of off-pathway oligomers at experimentally amenable 
concentrations.

Many techniques are available for the detection of oli-
gomers [115]. Immunoassays are commonly used and are 
based on conformation- or sequence-specific antibodies 
that capture and trap oligomers in solution, ideally with-
out appreciably detecting monomers or fibrils [118, 242]. 
Examples include the A11 polyclonal antibody to detect 
prefibrillar spherical oligomers by Aβ and other systems 
[118], the OC polyclonal antibody against Aβ fibrillar 
oligomers [120], the polyclonal M94 antiserum against 
Aβ ADDLs [243], ASyO2 to bind 600 kDa ⍺-syn oligom-
ers [244], mAB-O that binds 25–150  kDa Aβ42 oligom-
ers [244], 71A1 to bind 670 + kDa Aβ oligomers [245], 
and another that binds Aβ oligomers markedly more so 
than its monomers or fibrils [246]. Importantly, antibod-
ies of this type have been used to detect oligomers in AD 
brains that were absent in aged-matched healthy individ-
uals [118, 120, 243].

A variety of antibody-based assays are used for detect-
ing oligomers in various samples [115, 123, 247]. How-
ever, generating antibodies with high specificity for 
oligomers remains challenging, as many antibodies ini-
tially reported to be oligomer-specific often do not differ-
entiate well between oligomers and fibrils [248]. Despite 
this, developments have been made with biosensors 
[115], which allow for a label-free capture and detection 
of oligomers through antibodies. Biolayer interferometry 
(BLI) uses oligomer-specific antibodies attached to glass 
fibre tips for their functionalization [249]. Using surface 
plasmon resonance (SPR), interactions between immobi-
lized conformation-specific antibodies and oligomers are 
observable through changes in reflected light. SPR can 
be end-coupled to mass-spectrometry for further char-
acterization (i.e., mass, stoichiometry, topology, charge, 

etc.) and quantification of oligomers [250–254]. Other 
oligomer detection techniques include dye-derived fluo-
rescence spectroscopy and microscopy, electron micros-
copy, atomic force microscopy (AFM), DLS, filter-trap 
assays, radiolabeling, mass photometry, and numerous 
others [115].

Characterization methods of oligomer structure
The physicochemical properties of oligomers are impor-
tant mediators of their cytotoxicity. A variety of experi-
mental techniques have been developed to monitor these 
properties, some of which are discussed here. Hydro-
phobicity is readily quantified in certain experimental 
settings using 8-anilinonaphthalene-1-sulfonate (ANS) 
florescence (or its derivative bis-ANS), as its intensity 
increases and its wavelength of maximum fluorescence 
undergoes a blue shift upon binding to hydrophobic 
regions that are solvent exposed in a protein [255]. Oli-
gomers induce these changes more than fibrils, whereas 
monomers typically exhibit minimal changes in ANS flu-
orescence [241].

Oligomer size can be quantified through a wide array 
of methods with varying levels of sensitivity, includ-
ing microfluidic diffusional sizing [246, 256], single-
molecule TIRF and dSTORM super-resolution imaging 
[246], static and dynamic light scattering (SLS and DLS, 
respectively) [257–259], size-exclusion chromatography 
[91], several types of polyacrylamide gel electrophoresis 
[260], photo-induced cross-linking of unmodified protein 
(PICUP) [261], AFM [262], and cryo-EM [161].

The secondary structure of oligomers has also been 
widely investigated, for example using circular dichroism 
(CD) and Fourier transform infrared (FTIR) spectroscopy 
[241]. Based on these studies, our current understand-
ing is that secondary structure is not clearly linked to 
oligomer toxicity [263], unlike size and hydrophobicity. 
Analogous to the case for ANS binding, CD and FTIR 
spectra differ significantly for oligomers in comparison 
to monomers or fibrils. While ANS binding tends to be 
higher for oligomers, the secondary structure of oligom-
ers assessed by CD or FTIR tends to be intermediate 
between monomeric and fibrillar preparations.

Site-specific structural information has been gained 
using a variety of experimental approaches. Protein engi-
neering to substitute a given residue to cysteine has been 
used to label the same residue with a probe that is either 
fluorescent or paramagnetic and reporting on a specific 
structural type of information, such as solvent exposure, 
degree of packing, and distance from another residue via 
fluorescence resonance energy transfer (FRET), using 
either fluorescence or electron paramagnetic resonance 
(EPR) [240, 264–266]. Proline scanning mutagenesis has 
also been used to scan the involvement of any residue in 
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oligomer structure [267]. Various applications of solu-
tion and solid-state nuclear magnetic resonance (NMR) 
spectroscopy have been utilized to map out residues with 
β-sheet structure within the oligomers [33, 154, 165, 
266]. Further advancement awaits technological progress 
in applications of cryo-EM, which is not as advanced in 
providing oligomer structures as it is on fibril structures.

Oligomers in protein misfolding diseases
Despite a quest that has already lasted over two dec-
ades, it has been difficult to obtain direct evidence that 
misfolded protein oligomers are cytotoxic species in 
protein misfolding diseases. While there is a wealth of 
information about the cytotoxicity of oligomers in  vitro 
on cultured cells, primary neurons and brain slices using 
a variety of peptide and protein systems and a variety of 
biological observables, it has proven much more chal-
lenging to establish direct links between oligomer forma-
tion, cellular dysfunction and disease phenotype in vivo 
[104]. Perhaps one of the strongest elements of support 
for the oligomer toxicity hypothesis comes from recent 
clinical trials on AD patients, and consequent Food and 
Drug Administration (FDA) accelerated  and then tradi-
tional approval to treat AD, of lecanemab, an antibody 
raised against high molecular weight Aβ oligomers, also 
known as soluble protofibrils, which has shown that tar-
geting these species slows down cognitive decline in AD 
human cases [268], and reduces brain and CSF Aβ oli-
gomers in a mouse model [269]. The mechanism of action 
of lecanemab is consistent with that of aducanumab [270, 
271], another, but more controversial, antibody approved 
by the FDA for AD treatment, which has been shown to 
target mature  forms of Aβ and reduce oligomer forma-
tion by inhibiting secondary nucleation in vitro [272]. In 
particular, lecanemab, aducanumab, and gantenerumab 
have been characterized to bind differentially to various 
Aβ  species, where lecanemab demonstrated a 10-fold 
stronger binding affinity for protofibrils over fibrils, 
and aducanumab and  gantenerumab showed prefferen-
tial binding to fibrils instead of protofibrils [273].  It was 
also shown that all three antibodies had a low affinity for 
monomers, but lecanemab and aducanumab showed very 
weak monomer binding [273].

Well before these achievements, the hypothesis that 
small oligomers, as opposed to fibrils, are the main 
pathogenic species in AD had been supported by many 
lines of circumstantial evidence [1, 100, 102, 103]. 
These include: (1) the higher cytotoxicity and synap-
totoxicity of oligomers to cultured cells, primary neu-
rons, and iPSC-derived human neurons [50, 100, 274], 
(2) impairment of social memory, reduced brain vol-
ume, increased caspase-3-positive cells, microglial and 

pro-inflammatory responses, following the injection of 
human Aβ in rat brains [275], (3) evidence that sever-
ity of AD and synaptic loss does not correlate with the 
extent of amyloid plaque formation, but with the bio-
chemically detected amount of soluble Aβ (including 
soluble oligomers) [276], (4) observations that in some 
transgenic APP mouse models, biochemical and elec-
trophysiological evidence of synaptic alteration and 
cognitive impairment precedes amyloid plaque for-
mation, but occurs after Aβ levels start to rise stead-
ily [277], and (5) the E693G mutation associated with 
familial early AD promotes protofibril rather than fibril 
formation [278].

One of the reasons for the lack of direct evidence of 
a causal role of oligomers in disease is the difficulties in 
isolating oligomers from post-mortem brain tissue due 
to their small size, low stabilities, low concentrations, 
transient nature, and extensive structural heterogene-
ity. Structures for toxic oligomers have been determined 
from in vitro preparations and were cylindrical in shape, 
including for example ⍺B-crystallin [279] and ⍺-synu-
clein [161]. While there are over 250 amyloid fibril struc-
tures resolved by ssNMR or cryo-EM in the Amyloid 
Atlas [137], a key challenge remains analyzing the struc-
tural motifs of the oligomers present in human pathology. 
It is clear that different fibril polymorphs are associated 
with different diseases and phenotypes, but it remains 
to be determined if this phenomenon holds true also for 
oligomeric aggregates. Moreover, supernatants of high-
speed ultracentrifugation preparations from aqueous 
AD brain extracts have been recently reported to contain 
fibrils with the same structure as those from plaques, and 
these fibrils bound lecanemab resulting in their dimin-
ished synaptotoxicity [280].

Nevertheless, conformation-sensitive antibodies have 
allowed the detection of well-defined oligomers in AD 
and PD patients relative to aged-matched controls [43–
45, 121, 243, 281–286] and increased levels of oligom-
ers have been observed in the CSF of AD [284, 287] and 
PD cases [45, 288, 289], although these observations do 
not stand per se as a conclusive proof that oligomers 
are the causative agents of protein misfolding diseases. 
Recently, soluble protein aggregates were isolated from 
eight brain regions for AD patients at Braak stage III 
[290]. Soluble aggregates approximately 2  nm in diam-
eter and less than 100 nm in length from all these regions 
were neuroinflammatory and permeabilized liposomes 
to varying extents, suggesting that this early stage of 
disease is characterized by a global pathology occur-
ring to differing extents in various regions but simulta-
neously in the entire brain. Another study using gentle 
extraction methods rather than conventional brain tissue 
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homogenization found that only a critical minority of Aβ 
consisted of diffusible oligomers, which were responsible 
for inducing toxicity [291].

Comparing the CSF of individuals with AD, mild cog-
nitive impairment (MCI), and healthy controls, MCI 
cases demonstrated a greater extent of small aggregates 
that could induce membrane permeabilization, while 
AD individuals exhibited larger aggregates that robustly 
triggered pro-inflammatory responses in glial cells [292]. 
These results in part suggest that the number and size 
distributions of aggregates evolves over time during the 
progression of AD, the latter of which could be quantified 
in CSF samples [292].

Oligomer toxicity in animal models
Oligomers have been investigated in transgenic ani-
mal models, including Aβ oligomers [293–295] and 
⍺-synuclein oligomers [296, 297]. Many studies have 
linked these small aggregates in particular to the onset 
and development of cellular dysfunction and neurode-
generation [31, 43, 100, 298, 299]. APP transgenic mice 
with the E693 delta mutation exhibit extensive Aβ oli-
gomerization without fibril formation alongside impair-
ments to synaptic plasticity and memory, abnormal tau 
phosphorylation, microglial and astrocyte activation, and 
neuronal loss at varying time points from 8–24 months 
[294]. Injection of oligomers from various sources in 
mice or rat brains resulted in severe impairments. For 
example, toxic misfolded HypF-N oligomers injected 
into rodent brains caused loss of cholinergic neurons, 
spatial memory impairments, synaptic colocalization in 
primary neurons, and attenuated long-term potentiation 
(LTP) in hippocampal brain slices [274, 300]. Tau oligom-
ers injected into the wild-type mouse brain also triggered 
synaptic and mitochondrial dysfunction [18]. Natural Aβ 
oligomers formed within specific intracellular vesicles 
and subsequently secreted extracellularly were also found 
to be effective at inhibiting LTP in rats in vivo upon cer-
ebral microinjection [301]. Oligomeric Aβ also markedly 
potentiated intracellular  Ca2+ ion influx upon the exog-
enous treatment of healthy mice brains with soluble Aβ 
oligomers [302]. In addition, Aβ oligomers triggered tau 
pathology, caused synaptic loss and axon transport dys-
function, insulin resistance, cholinergic impairment, 
choline acetyltransferase inhibition, neuroinflamma-
tion, and epigenetic changes [284, 303]. Injection of toxic 
α-synuclein type B* oligomers into the mouse striatum 
induced a small but significant loss of dopaminergic neu-
rons in the substantia nigra pars compacta, although a 
higher effect was found when injecting small short fibrils 
of the same protein as a result of the ability of fibrils to 
spread and amplify ⍺-synuclein aggregation [304].

Oligomer interactions with cellular targets
Misfolded protein oligomers have been shown to bind 
generically to biological membranes resulting in a 
toxic gain of function, to specific membrane receptors 
resulting in a loss of native function, and to cytosolic 
proteins and nucleic acids, wherein these mechanisms 
can occur simultaneously [1]. It is unlikely that a single 
molecular interaction, mechanism of action or cellular 
cascade is responsible for causing pathology in protein 
misfolding diseases [1]. Rather, the toxicity of protein 
aggregates, including misfolded protein oligomers, is 
likely a consequence of their misfolded structure and 
extensive heterogeneity, which enables them to induce 
a wide range of dysfunctional cellular interactions in a 
litany of cellular compartments, including lipid bilay-
ers, discrete receptors, soluble proteins, RNAs, and 
metabolites and culminating in cell death [1]. In the last 
sections of review, we consider the role that oligomeric 
species play in the events associated with amyloid-
associated cytotoxicity, with a focus on how oligomers 
interact with cells, the cellular consequences of these 
interactions, and a subsequent discussion of therapeu-
tic efforts aimed at these approaches.

Membrane disruption caused by protein misfolded oli-
gomers leads to neurotoxicity characterized by calcium 
imbalance, mitochondrial dysfunction, and intracellu-
lar reactive oxygens species (ROS) production [240, 305, 
306]. With respect to how oligomers induce membrane 
perturbation, which can also be accomplished by fibrils 
albeit often to a lower extent [106, 108, 307], a clear rela-
tionship exists between size, hydrophobicity and toxic-
ity of misfolded protein oligomers, where oligomers that 
are small and have a greater extent of hydrophobic amino 
acids being solved exposed are the most cytotoxic (Fig. 6). 
Small oligomers have greater diffusional mobility and 
therefore reach the cell membrane more frequently [308, 
309], while oligomers with enhanced hydrophobicity are 
able to embed and readily insert into the interior of lipid 
bilayers [33, 160, 240, 264, 310, 311], therein perturbing 
the membrane and inducing toxicity. High molecular 
weight oligomers isolated from AD brains were found 
to be only mildly neurotoxic, whereas their dissociation 
into lower molecular weight oligomers in mildly alkaline 
buffer markedly increased their toxicities [312].

Molecular chaperones have been shown to alleviate oli-
gomer toxicity by increasing their size [308]. A size-tox-
icity relationship has been established for Aβ aggregates, 
where low molecular weight oligomers are markedly 
more cytotoxic than larger oligomers and fibrillar aggre-
gates display the least toxicity [100]. By isolating Aβ42 
soluble aggregates of different sizes using gradient ultra-
centrifugation, smaller soluble aggregates were found to 
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more overtly induce membrane permeabilization, sug-
gesting an inverse relationship between size and toxicity, 
while larger soluble aggregates more potently induced an 
inflammatory response in microglia cells [313]. Recently, 
small soluble aggregates of ⍺-synuclein less than 100-
200 nm were identified as the toxic species in PD through 
the comparison of in  vitro oligomers to soluble aggre-
gates in post-mortem PD brains [32].

The importance of the hydrophobicity-toxicity connec-
tion is exemplified from the observation that oligomers of 
similar size and dissimilar hydrophobicity can be experi-
mentally stabilized, where only the oligomers of greater 
solvent exposed hydrophobicity are capable of induc-
ing significant levels of cellular toxicity and dysfunction. 
This phenomenon has been observed for pairs of toxic 
and nontoxic oligomers [116] for HypF-N [240, 264], 
sup35NM [311], ⍺-synuclein [33, 160], and Aβ [310].

In addition to the properties of oligomers that can miti-
gate their binding to cell membranes, the composition of 
the cell membranes themselves plays an important role in 
oligomer binding and in the induction of toxicity [314]. In 
fact, cell membranes enriched in the monosialotetrahexo-
sylganglioside GM1, which is abundant in lipid rafts along-
side cholesterol and sphingomyelin, exhibit heightened 
Aβ42 and HypF-N oligomer binding [306]. A key finding of 
that study is that the quantified toxicity was directly pro-
portional to the extent of oligomer binding [306].

Beside interacting with biological membranes, 
misfolded protein oligomers have been reported to 
interact with, or modulate the activity of, a variety of cel-
lular  components and receptors, including the  cellular 
form of the prion protein  (PrPC) [315], alpha7 nicotinic 
acetylcholine receptor (⍺7-nAChR) [316, 317], low-den-
sity lipoprotein receptor-related protein-1 (LRP1) [315, 
318], and many others. In particular, Aβ oligomers have 
been described to interact with over 20 types of receptors 

[319] and also extracellular and intracellular synaptic 
proteins, including Na/K-ATPase, synGap, and Shank3 
[320]. Calcium dyshomeostasis has been associated with 
AD via overactivation of glutamatergic receptors, and Aβ 
oligomers have been found to activate to a small extent 
AMPA receptors and to a large extent NMDA receptors 
resulting in the rapid influx of calcium ions into the cyto-
plasm [321]. The misfolded oligomers interact indirectly 
with these receptors, and the activation was caused by 
oligomer-induced changes in membrane tension that 
were sensed by mechanosensitive NMDA and AMPA 
receptors [321]. Specific receptors for Aβ oligomers were 
shown to recognize features of both toxic oligomers and 
fibril ends. In particular,  PrPC, Fcγ receptor IIb (FcγRIIb), 
and leukocyte immunoglobulin-like receptor B2 (LilrB2) 
were characterized to bind the ends of fibrils, neuro-
toxic oligomers, and protofibrils, therein inhibiting fibril 
growth [322].

While Aβ oligomers can bind membrane bilayers and 
proteins and trigger aberrant intracellular cascades, 
evidence also suggests that Aβ oligomer formation in 
the cell, or internalization into the cell, is also impor-
tant. Aβ aggregation induced by cell uptake contributes 
to cell death and culminates in the release of amyloid 
aggregates outside the cell [323]. Aβ can enter the cell 
by pore formation, endocytosis, and via specific recep-
tors [324–326]. Moreover, oligomers can initiate aberrant 
protein–protein interactions. The hyperphosphorylation 
of tau and its aggregation, for example, can potentiate Aβ 
oligomer-induced dysfunction in AMPA receptor sign-
aling [327]. Aβ oligomers have also been shown to pro-
mote the internalization of fibrillar tau seeds resulting 
in increased intracellular tau aggregation [328]. Differ-
ent conformations of neurodegeneration-linked proteins 
can also impact one another. For example, ⍺-synuclein 
monomers inhibit Aβ42 secondary nucleation, whereas 

Fig. 6 Physicochemical parameters that influence the toxicity of protein misfolded oligomers. The toxicity typically scales with increasing 
hydrophobicity and decreasing size. Created with biorender.com
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fibrillar ⍺-synuclein stimulates Aβ42 heterogeneous 
nucleation [329]. Pathological ⍺-synuclein accumulation 
was recently shown to disrupt the decapping module of 
P-bodies, therein disrupting mRNA stability in iPSC-
derived neuronal models of PD [330]. Figure  7 summa-
rizes a subset of the deleterious interactions and effects 
that results from the interaction between cells and mis-
folded protein oligomers.

Cellular consequences of oligomer interactions
Toxic misfolded protein oligomers demonstrate a pref-
erential ability to penetrate the lipid bilayers of cell 

membranes (Fig.  8) [116]. These interactions trigger 
numerous events, including calcium influx into the cell, 
intracellular production of ROS, lipid peroxidation, cell 
membrane leaking and the escape of intracellular mol-
ecules, caspase-3 activation, and mitochondrial dam-
age [116, 240, 300, 305, 333, 334]. Among the earliest 
events that take place after misfolded protein oligomer 
binding to the cell are the influx of calcium ions from 
the extracellular medium that is mediated by NMDA 
receptors. Oligomeric Aβ, for example, is known to 
markedly potentiate intracellular  Ca2+ influx in cell 
culture [306, 321, 335, 336], which then triggers ROS 

Fig. 7 Oligomers induce cytotoxic effects that can be monitored over time. a In healthy cells, over short durations (minutes up to one hour), 
toxic oligomers exhibit extensive membrane binding, induce rapid influx of  Ca2+ ions, and then reactive oxygen species (ROS) accumulation 
[321]. Longer incubations (hours to days) induce elevated caspase-3 levels, metabolic dysfunction, and ultimately death of the cell [331]. Created 
with biorender.com. b Examples of observable impacts of Aβ42 and ⍺-synuclein oligomer treatment for short durations to SH-SY5Y human 
neuroblastoma cells [257, 332]. Membrane binding: oligomers (green chancel) and membranes (red channel) [257]. ROS production (green). 
Intracellular calcium ions (green). c Examples of observable impacts of HypF-N oligomer treatment for longer durations (hours to days) to SH-SY5Y 
cells, including caspase-3 production (green) [300] and metabolic defects as assessed using the MTT assay for Aβ40, Aβ42, ⍺-synuclein, and HypF-N 
oligomers [257, 258, 332]. Panels were adapted from Limbocker et. al [257], Zampagni et.al [300], Perni et. al [332], and Limbocker et. al [258]
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accumulation and following events [335]. Changes in 
 Ca2+ levels precede synaptic damage in vivo [302].

Another hallmark of neurodegenerative diseases 
arising from misfolded proteins is the presence of 
elevated levels of ROS [338, 339]. Misfolded protein 
oligomers are able to induce extensive ROS genera-
tion leading to a cascade of intracellular consequences, 
such as ROS-mediated activation of apoptosis signal-
regulating kinase 1 (ASK1) associated with the tox-
icity of Aβ in AD [340]. High levels of ROS can also 
stimulate lipid peroxidation of cell membranes, which 

in turn can impact protein aggregation and lead to 
the loss of organelle function [341]. In cardiomyopa-
thy, the deposition of transthyretin (TTR) increased 
the production of ROS, correlating with left ventricu-
lar systolic dysfunction, though likely indirectly from 
endoplasmic reticulum stress and calcium dyshomeo-
stasis by non-fibrillar TTR species [89, 342–344].

Mitochondrial dysfunction is also associated with the 
presence of misfolded protein oligomers [345]. Oligomers 
or protofibrils have been shown to perturb mitochondrial 
membranes and induce significantly the influx of  Ca2+ 

Fig. 8 Consequences of the exposure of cells to misfolded protein oligomers. AFM cross-sectional profile of Aβ40 oligomers stabilized by  Zn2+. 
Misfolded protein oligomers of this type typically are 2–6 nm in height, and they induce membrane binding and toxicity accompanied 
with deleterious changes to the properties of cell membranes, cellular responses, and changes to endogenous factors. The AFM map 
and cross-sectional profile were adapted from Limbocker et. al [337]. The membrane binding panel was adapted from Limbocker et. al [257]. 
Created with biorender.com
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[240, 321], interrupt normal metabolic processes during 
oxidative phosphorylation [345], and trigger apoptotic 
pathways [346, 347]. For example, IAPP oligomers asso-
ciated with type II diabetes are toxic by increasing  Ca2+ 
influx [336] and disrupting the mitochondrial membrane 
in pancreatic β-cells [78].

In addition, Aβ oligomers can also interact with pro-
teins or lipids at synapses and inhibit LTP, which is a cor-
relate of synaptic plasticity [291]. They can also induce 
an inflammatory response in microglial cells upregulat-
ing, among other factors, the major histocompatibility 
complex class II, inducible nitric oxide synthase, and 
CD40 in the hippocampus of AD transgenic mice [348] 
and release pro-inflammatory cytokines [349]. Several 
key dysfunctional responses caused by oligomers to cell 
membranes, whole cells and endogenous factors are 
summarized in Fig. 8.

Therapeutic approaches targeting misfolded 
protein oligomers
Numerous strategies have been studied in vitro to attenu-
ate the toxicity of misfolded protein oligomers, includ-
ing reducing their concentration and lifetime, increasing 
their size, neutralizing their hydrophobic surface, target-
ing their toxic interactions with molecular targets, such 
as specific receptors or cell membranes, or enhancing 
their clearance [101, 309, 350]. As covered in the previ-
ous sections, misfolded oligomers can induce cytotoxic-
ity in many ways, which is in large part a result of their 
intrinsic heterogeneity and ability to interact with a wide 
variety of cellular components. While it is critical to 
understand the diverse means by which these oligom-
ers can damage many parts of the cell, it is unlikely that 
blocking specific oligomer-target interactions will be suf-
ficient to arrest the toxicity of amyloid pathologies. The 
clinical relevance of many of the strategies discussed here 
will become clearer over the next few decades by building 
upon the momentum of the recent successes obtained 
with monoclonal antibodies for the treatment of AD.

Reduction of oligomer formation
The protein homeostasis system is capable of inhibiting 
specific microscopic steps of an aggregation process using 
molecular chaperones, such as ⍺B-crystallin that inhibits 
⍺-synuclein and Aβ elongation or Hsp70 that can inhibit 
tau primary nucleation as well as sequester oligomeric and 
mature tau into inert and seeding-incompetent species 
[351–354]. This strategy has been extensively investigated 
as a therapeutic approach for protein misfolding diseases 
with small molecules [355, 356]. A challenge, however, is 
that there is no direct relationship between the reduction 
in the number of amyloid aggregates and the reduction 
in the number of oligomers [114]. For example, a fibril 

elongation inhibitor delays the aggregation process, but 
contributes to the accumulation of oligomers [114]. It has 
been estimated that the inhibition of fibril elongation by 
one order of magnitude can generate a five-fold increase 
in the concentration of oligomers [212].

The inhibition of primary nucleation may offer oppor-
tunities for therapy, as it delays formation of oligomeric 
species (Fig. 5). In fact, several candidates have been iden-
tified for primary nucleation inhibition [332, 357–362]. 
Of great promise, targeting secondary nucleation would 
be particularly beneficial therapeutically as it causes the 
autocatalytic proliferation of aggregates and is primar-
ily responsible for oligomer production (Fig. 5) [21, 114, 
363]. This approach has been realized by several molecu-
lar agents, including a group of small molecules [364] and 
antibodies [365] that target secondary nucleation in Aβ42 
aggregation to differing extents. A similar approach was 
utilized to evaluate a library of flavones against ⍺-synu-
clein aggregation, with focus on drugs that most inhibit 
oligomer formation [179]. Moreover, specific aminoster-
ols can inhibit fibril amplification secondary processes in 
⍺-synuclein aggregation [362, 366]. Molecular chaperones 
can also target secondary nucleation in Aβ42 aggregation 
[354, 360]. Structure-kinetic activity relationship (SKAR) 
rules have also been leveraged to convert an inactive rho-
damine molecule into a derivative that could inhibit sec-
ondary nucleation in Aβ42 aggregation [113].

A kinetic analysis of four anti-Aβ antibodies in differ-
ent stages of clinical trials at the time of that publication 
found that aducanumab (granted accelerated approval 
by the FDA [367]) targets secondary nucleation in the 
Aβ42 aggregation process and therefore the reactive flux 
of oligomers, whereas bapineuzumab, solanezumab, and 
gantenerumab impacted other microscopic processes 
including elongation or primary nucleation (Fig.  9) 
[272].  Of interest,  the monoclonal antibody ACU193 is 
suggested to be an Aβ oligomer-selective immunothera-
peutic and is in clinical trials [368].

Neutralization of oligomers through binding
Compounds that bind directly misfolded oligomers have 
also been identified and their mechanism has been inves-
tigated. While binding oligomers can have the effect of 
stabilizing them, it can also neutralize their hydropho-
bic surfaces, inhibit their action as nuclei, or remodel 
the aggregation pathway towards the formation of less 
toxic species. Phage display was used to identify a solu-
ble inhibitor specific to Aβ42 oligomers and able to inhibit 
their ability to act as nuclei [369]. Similarly, a rational 
design strategy was used to obtain oligomer-specific anti-
bodies that undermine secondary nucleation [246]. It is 
also possible to drive off-pathway aggregation processes 
with small molecules, as observed for the polyphenol 
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(-)-epigallocatechin gallate (EGCG) that can form oli-
gomers of ⍺-synuclein and Aβ that are non-toxic [370] 
or resveratrol that can remodel Aβ42 into nontoxic, high 
molecular weight species [371].

Stabilization of the native state
Another approach to prevent aggregation is the stabi-
lization of the native state of proteins. This approach 

has been implemented in the case of protein misfolding 
diseases caused by amyloid aggregation of transthyre-
tin, through the small molecule tafamidis [372, 373], 
which was approved by the European Medicines Agency 
(EMA)  in 2011 for the treatment of stage I ATTRv-
polyneuropathy, after successful completion of a phase 
III clinical trial [374]. Then, in 2019 and 2020, the drug 
was approved by the FDA and EMA, respectively, for 

Fig. 9 Clinical-stage antibodies against AD target different microscopic steps in Aβ42 aggregation. From Linse et. al [272]
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the treatment of ATTRv- and ATTRwt-cardiomyopathy 
at stages I and II, after a successful phase III clinical trial 
was noted [375]. Tafamidis was the first approved drug 
to slow down the progression of an amyloid disease. A 
similar approach is also being explored for light chain 
amyloidosis (AL) by using small molecules that bind 
at the native monomer–monomer interface of native 
dimeric immunoglobulin light chains [376]. Native state 
stabilization has been shown to be effective more gener-
ally for three other protein misfolding diseases that are 
not associated with amyloid formation, through the use 
of drugs is approved in all three cases by both FDA and 
EMA [377]. This approach, however, is challenging for 
disordered proteins, such as Aβ, tau and ⍺–synuclein, 
since these proteins do not exhibit stable binding pock-
ets for small molecules [378, 379]. Binding mechanisms 
in which the contribution to the free energy of binding 
comes from entropy have been explored [380]. The small 
molecule 10074-G5 was recently found to increase the 
conformational entropy of monomeric Aβ alongside 
decreasing its hydrophobic exposure, resulting in the sta-
bilization of the monomeric state and the prevention of 
aggregation [378].

Oligomer clearance
Other promising therapies are being explored to poten-
tiate oligomer degradation through a variety of mech-
anisms, including activating the unfolded protein 
response, stimulating autophagy, aiding extracellular 
clearance, rebalancing the proteostasis network (PN) 
by targeting specific heat shock factors, and exploiting 
molecular chaperones working as disaggregases [381]. 
However, approaches based on the exploitation of the 
PN are beyond the scope of the present review. Aβ oli-
gomer clearance by passive immunization is of course a 
very promising strategy, as shown by the recent acceler-
ated and then regular approval by the FDA of lecanemab, 
designed to target mainly soluble Aβ protofibrils among 
other species [16, 268]. Major efforts have also been 
devoted to reducing the amount of aggregation-prone 
Aβ monomers by targeting the proteolytic cleavage of 
APP, its precursor protein, by secretases [382, 383]. This 
in theory would reduce the number of oligomers formed, 
but this strategy has demonstrated limited success in 
clinical trials.

Reduction of oligomer interactions
In addition to inhibiting the formation of oligomers, 
promoting their clearance, changing their structure, 
and attenuating the aberrant interactions of the oligomers 
with their biological targets, another promising approach 
is the mitigation of specific oligomer-membrane protein 
interactions. This can be accomplished through targeting 

the action of oligomers on specific receptors, as exempli-
fied by studies on microglial Aβ-induced P2X7R-depend-
ent stimulation of inflammation and toxicity, which can 
be eliminated by the dihydropyridine nimodipine [384], 
and molecules that inhibited Aβ-LilrB2 interactions on 
the cell surface with reduced cytotoxicity [385]. Whether 
preventing the interaction of misfolded protein oligomers 
with cell membranes generally [366] or via specific recep-
tor proteins in the membrane [385], these approaches 
aim at reducing the interaction of Aβ with the cell mem-
brane, inhibit cell membrane destabilization and uptake 
of Aβ into the cytosol of the cell, which are known to 
lessen the toxicity of soluble Aβ species [386].

Several molecular chaperones have demonstrated 
capacity to modulate the size or hydrophobicity of mis-
folded protein oligomers. Sub-stoichiometric concentra-
tions of ⍺B-crystallin, heat shock protein 70, clusterin, 
haptoglobin, and ⍺2-macroglobulin reduced the toxicity 
of Aβ42, IAPP, and HypF-N oligomers by promoting their 
assembly into markedly larger species with reduced dif-
fusional mobility and reactive surfaces of the oligomers 
[308]. On the other hand, super-stoichiometric concen-
trations of the same chaperones can bind to the hydro-
phobic surfaces of the oligomers and neutralize them 
in the absence of their further clustering [387]. Heat 
shock protein B1 and transthyretin have also been char-
acterized to sequester Aβ42 oligomers into inert species 
[388–391]. Clusterin has been shown to bind to hydro-
phobic portions of Aβ42 oligomers, therein slowing down 
its aggregation by inhibiting primary and secondary 
nucleation [392]. Of note, small molecules and protein 
engineering have been used to stimulate or attenuate the 
activity of specific molecular chaperones as therapeutic 
means [381].

It has also been reported that cell membranes were 
protected from the deleterious effects of misfolded pro-
tein oligomers using compounds that do not bind to oli-
gomers or impact their structures, but rather integrate 
directly into the cell membrane [366]. Key aminosterols 
such as squalamine and trodusquemine strongly prevent 
and displace the binding of oligomers of ⍺-synuclein, 
Aβ40, Aβ42, and HypF-N to cell membranes, resulting in 
the attenuation of their toxicity to cultured cells [257, 
258, 332, 362, 393], and in transgenic C. elegans models 
of PD [332, 362] and AD [257] diseases. These molecules 
additionally have effects on the kinetics of amyloid for-
mation and therefore also impact the rate of oligomer 
formation [257, 332, 362]. Similarly, one report found 
that EGCG caused a partial reduction in the binding 
of ⍺-synuclein oligomers to vesicles and cells without 
impacting the secondary structure or size of the isolated 
oligomers [394]. Modulating the lipid composition of the 
neuronal membrane with endogenous factors such as 
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GM1 and cholesterol can also mitigate oligomer bind-
ing and their associated toxicity [306, 314]. Collectively, 
these results highlight the importance of physicochemi-
cal properties for both misfolded protein oligomers and 
plasma membranes in mediating the binding and ulti-
mate toxicity of oligomeric aggregates.

It is also possible to target the deleterious immuno-
logical effects of misfolded protein oligomer toxicity. 

Elevated markers of brain inflammation such as interleu-
kin (IL)-1β, tumor necrosis factor (TNF), and IL-6 have 
been found in the CSF, brains, and serum of patients with 
various neurodegenerative diseases [395, 396]. Recent 
work demonstrated that IL-1β regulates the dysfunc-
tion induced by Aβ oligomers to mitochondrial proteins 
[397], and blocking TNF receptor-1 genetically or phar-
macologically was beneficial in APP/PS1 transgenic mice 

Fig. 10 Overview of approaches under development that could be potentially able to suppress the formation, reduce the lifetime, or decrease 
the toxicity of misfolded protein oligomers. Biological or chemical structures of prototypical drugs are shown for each class of therapeutic. Created 
with biorender.com
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[398]. The molecule nimodipine has also been shown to 
reduce IL-1β levels caused by intra-hippocampal inocula-
tion with Aβ [384]. 

An overview of a subset of the different classes of 
therapeutics being developed to target oligomers is sum-
marized in Fig.  10, including seminal molecules corre-
sponding to each approach [101, 179, 272, 371, 378, 388, 
392, 399–430].

Conclusions
In order to provide a molecular-level understanding of 
current therapeutic strategies that are being explored 
for the treatment of protein misfolding diseases, and 
to inspire new ones, we have described the mecha-
nisms by which misfolded protein oligomers form, 
interact with cells and induce cytotoxicity, as well as 
approaches investigated to mitigate their toxicity. Sup-
port to therapeutic strategies targeting misfolded pro-
tein oligomers, such as those discussed in this review, 
has come from the recent accelerated approval  of the 
antibodies lecanemab and aducanumab by the FDA for 
the treatment of AD. These advances, however, should 
not confuse the fact that AD is a multifactorial disor-
der characterized not just by Aβ and tau aggregation, 
but also by excitotoxicity, synaptic loss, inflamma-
tion, cholinergic dysfunction, oxidative stress, glucose 
hypometabolism, alterations of the gut microbiome, 
the immune pathway, the endocrine pathway, and 
bacteria-derived metabolites [431]. Other neurode-
generative diseases such as PD are also multifactorial. 
On the misfolded protein oligomer side, further pro-
gress will require major developments in two areas. The 
first is the establishment of quantitative methods for 
the detection of oligomers in  vivo and for investigat-
ing their mechanisms of formation. The second is the 
development of toxicity assays that recapitulate patho-
logical mechanism relevant in disease. With continued 
research, we anticipate that more effective strategies to 
both achieve early diagnosis and develop compounds 
to target oligomeric species will lead to the generation 
of effective disease-modifying therapeutics for a wide 
variety of protein misfolding diseases.
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