@,

BiolVled Central

Molecular Neurodegeneration

Review

The Alzheimer's disease [}-secretase enzyme, BACEI
Sarah L Cole and Robert Vassar*

Address: Department of Cell and Molecular Biology, The Feinberg School of Medicine, Northwestern University, Chicago Avenue, Chicago, IL, USA

Email: Sarah L Cole - s-cole4 @northwestern.edu; Robert Vassar* - r-vassar@northwestern.edu
* Corresponding author

Published: 15 November 2007
Molecular Neurodegeneration 2007, 2:22  doi:10.1186/1750-1326-2-22

Received: 16 August 2007
Accepted: |5 November 2007

This article is available from: http://www.molecularneurodegeneration.com/content/2/1/22

© 2007 Cole and Vassar; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The pathogenesis of Alzheimer's disease is highly complex. While several pathologies characterize
this disease, amyloid plaques, composed of the $-amyloid peptide are hallmark neuropathological
lesions in Alzheimer's disease brain. Indeed, a wealth of evidence suggests that f-amyloid is central
to the pathophysiology of AD and is likely to play an early role in this intractable neurodegenerative
disorder. The BACEI| enzyme is essential for the generation of 3-amyloid. BACE| knockout mice
do not produce 3-amyloid and are free from Alzheimer's associated pathologies including neuronal
loss and certain memory deficits. The fact that BACE| initiates the formation of B-amyloid, and the
observation that BACEI levels are elevated in this disease provide direct and compelling reasons
to develop therapies directed at BACEI inhibition thus reducing [-amyloid and its associated
toxicities. However, new data indicates that complete abolishment of BACE| may be associated
with specific behavioral and physiological alterations. Recently a number of non-APP BACEI
substrates have been identified. It is plausible that failure to process certain BACE| substrates may
underlie some of the reported abnormalities in the BACE | -deficient mice. Here we review BACEI
biology, covering aspects ranging from the initial identification and characterization of this enzyme
to recent data detailing the apparent dysregulation of BACEI in Alzheimer's disease. We pay special
attention to the putative function of BACEI during healthy conditions and discuss in detail the
relationship that exists between key risk factors for AD, such as vascular disease (and downstream
cellular consequences), and the pathogenic alterations in BACEI that are observed in the diseased
state.

Background

AD is the most prevalent form of dementia, and current
indications show that twenty-nine million people live
with AD worldwide, a figure expected rise exponentially
over the coming decades. It has been recently estimated
that the worldwide costs for dementia care are $315.4 bil-
lion annually (US; Alzheimer's Association). Clearly,
blocking disease progression or, in the best-case scenario,
preventing AD altogether would be of benefit in both
social and economic terms. However, current AD thera-
pies are merely palliative and only temporarily slow cog-

nitive decline, and treatments that address the underlying
pathologic mechanisms of AD are completely lacking.
While familial AD (FAD) is caused by autosomal domi-
nant mutations in either amyloid precursor protein (APP)
[1,2] or the presenilin (PS1, PS2) [3,4] genes, the underly-
ing cause (s) of the remaining ~98% of so-called sporadic
AD (SAD) cases remain elusive. However, specific risk fac-
tors for AD have been recently identified and include
aging, the presence of the apolipoprotein E4 (ApoE4)
allele [5] and vascular diseases such as stroke and heart
disease [6-10].
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AD pathology

Pathologically, AD is characterized by the accumulation
of amyloid beta peptide (AB), as fibrillar plaques and sol-
uble oligomers in high-order association brain regions.
The presence of intracellular neurofibrillary tangles, neu-
roinflammation, neuronal dysfunction and death further
characterizes this disease. Mounting evidence suggests
that AB plays a critical early role in AD pathogenesis, and
the basic tenant of the amyloid (or Ap cascade) hypothesis
is that AP aggregates trigger a complex pathological cas-
cade which leads to neurodegeneration [11]. A strong
genetic correlation exists between FAD and the 42 amino
acid AP form (AB42; reviewed in [12-14]). AB is derived
from APP and mutations in APP and PS increase AB42
production and cause FAD with nearly 100% penetrance.
Down's syndrome (DS) patients, who have an extra copy
of the APP gene on chromosome 21, and FAD families
with a duplicated APP gene locus [15], exhibit total Ap
overproduction and all develop early-onset AD. In FAD,
the AB42 increase is present years before AD symptoms
arise, suggesting that AB42 is likely to initiate AD patho-
physiology. The robust association of AB42 overproduc-
tion with FAD argues strongly in favor of a critical role for
AB42 in the etiology of AD, including in SAD. Fibrillar
and oligomeric forms of Af appear neurotoxic in vitro and
in vivo. Importantly, in specific transgenic (Tg) mouse
models of AD the lack of AP correlates with the absence of
neuronal loss and improved cognitive function [16-18].
Such data provides direct evidence for the amyloid
hypothesis in vivo, and also indicates that A is directly
responsible for neuronal death. Consequently, strategies
to lower AB42 levels in the brain are anticipated to be of
therapeutic benefit in AD.

A/ genesis

AP peptide is generated following the sequential cleavage
of APP by B- and y-secretase in the amyloidogenic path-
way (reviewed in [19,20]). AB genesis may be precluded if
APP is cleaved by a-secretase within the Af domain in the
non-amyloidogenic pathway (Fig. 1). Recently, the secre-
tases have been identified and the B-secretase is known to
be B-site APP cleaving enzyme I (BACE1; [21-25]), a novel
aspartyl protease. The y-secretase appears as a complex of
proteins consisting of PS1 or PS2 [26,27], nicastrin [28],
Aph1 and Pen2 [29,30], whereas three putative a-secre-
tases have been identified as TACE (TNF-a converting
enzyme; [31], ADAM (a disintegrin and metalloprotease
domain protein)-9 and ADAM-10 [32]. BACE1 cleavage
of APP is a pre-requisite for A formation. AP genesis is
initiated by BACE1 cleavage of APP at the Asp+1 residue
of the AP sequence to form the N-terminus of the peptide.
This scission liberates two cleavage fragments: a secreted
APP ectodomain, APPsp and a membrane-bound car-
boxyl terminal fragment (CTF), C99. C99 is subsequently
cleaved by y-secretase to generate the C-terminus of the AP
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peptide and an APP intracellular domain (AICD). Inter-
estingly, it has been shown that the AICD may play a role
in transcriptional transactivation [33]. Cleavage by the y-
secretase complex is not precise; while the majority of A
peptides liberated by y-secretase activity end at amino acid
40 (AP40), a small proportion end at amino acid 42
(AB42). It is this y-secretase-dependent cleavage that is
affected by most FAD mutations to cause excess genera-
tion of AB42 in FAD. In the alternative, non-amyloidog-
enic pathway, a-secretase cleavage of APP occurs within
the AP domain at Leu+17. a-secretase cleavage produces
the secreted APPsa ectodomain, and a CTF, C83, which in
turn is cleaved by y-secretase to form the non-amyloidog-
enic 3 kDa fragment, p3. In many instances, an increase in
non-amyloidogenic APP metabolism is coupled to a
reciprocal decrease in the amyloidogenic processing path-
way, and vice-versa, as the a- and B-secretase moieties
compete for APP substrate [23,34].

Given that BACE1 is the initiating enzyme in AP genera-
tion, and putatively rate-limiting, it is considered a prime
drug target for lowering cerebral AP levels in the treatment
and/or prevention of AD.

BACEI: The [-secretase

Prior to its identification, numerous studies were under-
taken to define the characteristics of pB-secretase activity.
Although the majority of body tissues exhibit B-secretase
activity [35], highest activity levels were observed in neu-
ral tissue and neuronal cell lines [36]. Indeed, B-secretase
appeared to predominate in neurons, with the level of B-
secretase activity appearing lower in astrocytes [37]. Data
showing that B-secretase efficiently cleaved only mem-
brane-bound substrates [38] indicated that the enzyme
was likely membrane-bound or closely associated with a
membrane protein. Furthermore, as highest B-secretase
activity was detected at acidic pH [28,39-41], within the
subcellular compartments of the secretory pathway,
including the trans-Golgi network (TGN) and endosomes
[42,43], it was predicted that the active site of this enzyme
is within the lumen of acidic intracellular compartments.

The sequence preference for B-secretase was determined
from site-directed mutagenesis of the amino acids sur-
rounding the cleavage site in APP [38]. Substitutions of
larger hydrophobic amino acids (such as Leu found in the
Swedish FAD mutation) for the Met residue at P1 improve
the efficiency of B-secretase cleavage. Conversely, substitu-
tion of the smaller hydrophobic amino acid Val at the
same position inhibits cleavage. Many other substitutions
at this site and at surrounding positions decrease cleavage,
and indicate that the B-secretase is highly sequence-spe-
cific. Radiosequencing demonstrated that AB isolated
from amyloid plaques, as well as that produced in cell
lines, predominantly begins at the Asp+1 residue of AP
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Figure |

APP metabolism by the secretase enzymes. APP is sequentially cleaved by BACEI, the (3-secretase, and y-secretase, a
complex comprised of presenilin, nicastin, Aph| and Pen2, to generate AB. BACE| cleavage of APP is a prerequisite for Af for-
mation and is putatively the rate-limiting step in AP genesis. BACE| cleavage of APP forms the N-terminus of the peptide, and
two cleavage fragments are liberated: APPs[3, a secreted ectodomain, and C99, a membrane bound fragment. C99 is the sub-
strate for y-secretase, and C99 cleavage generates the AICD together with the C-terminus of AB. AP formation is prevented
by the activities of a-secretase, which has been identified as TACE, ADAM9 and ADAMI 0. a-secretase cleaves APP to gener-
ate the secreted ectodomain, APPsa. and membrane bound fragment, C83. C83 is subsequently cleaved by the y-secretase

complex to yield the 3 KDa fragment, P3 and the AICD.

[44], although minor A species begin at Val-3, Ile-6, and
Glu+11 [35]. Inhibitor studies suggest that the Val-3 and
Ile-6 species are generated by a protease that is different
from the B-secretase [45]. However, the Glu+11 species is
produced in parallel with Asp+1 A [46], suggesting that
B-secretase is responsible for cleaving at both these posi-
tions. Interestingly, the Glu+11 species is the predomi-
nant form of AB made in rat primary neuron cultures [46].
Finally, B-secretase activity is insensitive to pepstatin, an
inhibitor of many (but not all) aspartic proteases.

During 1999-2000, five teams concluded that the novel
transmembrane aspartic protease BACE1 (also named
memapsin and Asp2) was the B-secretase [21-25]. Indeed,
BACE1 exhibited all the known characteristics of the B-
secretase. The 501 amino acid sequence of BACE1 bears

the hallmark features of eukaryotic aspartic proteases of
the pepsin family. BACE1 has two aspartic protease active
site motifs, DTGS (residues 93-96) and DSGT (residues
289-292), and mutation of either aspartic acid renders
the enzyme inactive [21,47]. Like other aspartic proteases,
BACE]1 has an N-terminal signal sequence (residues 1-21)
and a pro-peptide domain (residues 22-45) that are
removed post-translationally, so the mature enzyme
begins at residue Glu46 [47]. Importantly, BACE1 has a
single transmembrane domain near its C-terminus (resi-
dues 455-480) and a palmitoylated cytoplasmic tail [48].
Thus, BACE1 is a type I membrane protein with a luminal
active site, features predicted for B-secretase. The position
of the BACE1 active site within the lumen of intracellular
compartments provides the correct topological orienta-
tion for cleavage of APP at the B-secretase site. As observed
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with other aspartic proteases, BACE1 has six luminal
cysteine residues that form three intramolecular disulfide
bonds and several N-linked glycosylation sites [49].

The pattern and level of BACE1 expression is largely con-
sistent with those of B-secretase activity in cells and tissues
[23,24,50]. The levels of BACE1 mRNA are highest in
brain and pancreas and are significantly lower in most
other tissues. Moreover, BACE1 mRNA is highly expressed
in neurons but little is found in resting glial cells of the
brain, as expected for B-secretase. The protein is abundant
in both normal human and AD brain [23,50]. Given the
low levels of B-secretase activity in the pancreas, the high
pancreatic mRNA expression was initially confusing [22].
However, subsequent reports indicated that BACE1
mRNA transcripts in pancreas largely consist of a splice
variant missing the majority of exon 3 [51,52]. This splice
variant encodes a BACE1 isoform devoid of B-secretase
activity, thus reconciling the paradoxically high BACE1
mRNA levels with the low (3-secretase activity found in the
pancreas. The functional relevance of this pancreas-spe-
cific splice variant remains unclear.

BACEL! induces a dramatic increase in -secretase activity
when transfected into stable APP-overexpressing cell lines.
The immediate products of B-secretase cleavage, APPsf
and C99, are increased several fold over levels found in
untransfected cells, and AP production is also elevated.
Interestingly, APPsa. levels are reduced upon BACET1 trans-
fection, indicative that o- and B-secretases compete for
APP substrate in cells. In contrast to the effects of BACE1
transfection, treatment of APP-overexpressing cells with
BACE1 antisense oligonucleotides decreases BACE1
mRNA levels and inhibits B-secretase activity [23,24].
BACE1 antisense inhibition reduces production of APPsf,
C99, and AP in cells; conversely, APPsa. and C83 genera-
tion is elevated.

BACE]1 cleaves APP only at the known B-secretase sites of
Asp+1 and Glu+11 of AB [23]. Moreover, purified recom-
binant BACE1 directly cleaves APP substrates at these
same sites in vitro, demonstrating that the BACE1 mole-
cule intrinsically exhibits protease activity [23,24]. The
sequence specificity of purified BACEL1 is the same as B-
secretase. For example, it cleaves Swedish mutant APP
substrate much more efficiently than wild type, and does
not cleave a P1 Met-Val mutant substrate that is resistant
to B-secretase cleavage. Like B-secretase, BACE1 has opti-
mal activity at ~pH 4.5, is resistant to inhibition by pep-
statin, and is localized within acidic subcellular
compartments of the secretory pathway, primarily the
Golgi apparatus, TGN and endosomes. Taken as a whole,
the properties of BACE1 correlate very well with the previ-
ously established characteristics of B-secretase activity in
cells and tissues.

http://www.molecularneurodegeneration.com/content/2/1/22

BACEI knockouts: The consequences of BACE| deficiency
Unequivocal proof that BACE1 was the major -secretase
in the brain was provided by data derived from BACE1
knockout (BACE17/-) mice. In addition, BACE17/- mice
have also been used to determine whether BACE1 has any
vital function in vivo, or if it is dispensable. To investiga-
tors interested in the therapeutic development of BACE1
inhibitors such knowledge is of critical importance.

A number of strategies were used to achieve inactivation
of the BACE1 gene [53-55], and initial data indicated that
the absence of BACE1 expression did not appear to
adversely affect embryonic development, or significantly
affect the morphology, physiology, biochemistry, and
gross behavior of post-natal or adult knockout mice
[54,55]. Gross behavioral and neuromuscular parameters
were investigated in order to examine brain function in
knockout mice [54,55] and it was established that no
demonstrable differences existed, as compared to wild-
type mice. Overall these initial findings indicated that the
absence of BACE1 is well tolerated in vivo and did not
appear to cause untoward effects in the embryonic, post-
natal, or adult mouse.

Data generated from BACE1-deficient mouse models was
unanimous in demonstrating that B-secretase activity is
abolished in brains and cultured neurons of BACE1/-
mice. Unlike wild-type mice, which produce endogenous
AB at low levels, Swedish APP-overexpressing Tg mice
(Tg2576; [56]) produce robust levels of brain A and dur-
ing aging develop AP plaques in the brain. Importantly,
BACE1-/-#Tg2576 bigenic mice lacked all forms of brain
AP, as well as APPsp and C99, as compared to BACE1+/-
*Tg2576 or BACE1+/+eTg2576 mice [54]. Thus all prod-
ucts of APP processing by B-secretase, including Ap, were
abolished in BACE1 knockout brain, unequivocally prov-
ing that BACEL1 is the major, if not only, B-secretase that is
absolutely required for AB generation in the brain. Find-
ings from in vitro studies of BACE1-/- primary neurons and
brain tissue added further support for the predominant
role of BACE1 in AP generation [53,55]. BACE1-/-¢Tg2576
mice not only lack cerebral AB, but also fail to develop
amyloid plaques with age [57]. Tg2576 mice begin to
deposit amyloid in the brain at ~9-12 months of age.
Conversely, BACE1-/-¢Tg2576 bigenic mice show no evi-
dence of amyloid deposits even at 13 months of age. Sim-
ilar results were obtained by Laird and colleagues using
different BACE1-/-and APP Tg mice [18]. Taken together,
these results demonstrate BACE1 is required for amyloid
formation.

We recently conducted studies to determine whether
BACE1 deficiency, and the consequent ablation of Ap, is
sufficient to rescue memory deficits in Tg2576 mice [16].
In AD brain, both fibrillar and soluble AB accumulate
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[58,59]. We demonstrated that memory deficits and
cholinergic dysfunction in the hippocampus did not
develop in BACE1/-¢Tg2576 bigenic mice that lacked A,
while florid deficits were apparent in AB-overproducing
Tg2576 monogenics. Because the AP in Tg2576 at the time
of testing was non-fibrillar and soluble, we concluded that
soluble AP assemblies rather than amyloid plaques are
responsible for at least some aspects of AD-related mem-
ory deficits. This data further validates BACE1 as a prime
therapeutic target for AD, and also provides direct evi-
dence for the amyloid hypothesis in vivo.

APP/PS1 double Tg mice exhibit accelerated A accumula-
tion and AD-associated memory deficits as compared to
single Tg mice. These bigenic animals have been exam-
ined to determine the consequences of BACE1 ablation in
aged animals. Aged APPswe;PS1IAE9 Tg mice display
abundant amyloid pathology and exhibit impairments in
water maze learning [18]. However, APPswe;PS1AE9 lack-
ing BACE1 performed as well as wild type controls [18].
Amyloid pathology was not detected in the
APPswe;PS1AE9;BACE1-/- mice, thus demonstrating that
BACE1 deletion abolishes amyloid deposition and pre-
vented spatial reference memory deficits in aged
APPswe;PS1AE9 mice. We observed a similar scenario in
the 5XFAD APP/PS1 Tg mouse model [17,60,61], in
which an APP transgene carrying the Swedish (K670N,
M671L), London (V7171) and Florida (I716V) mutations
is co-expressed with a PS1 transgene carrying double FAD
mutations (M146L and L286V; [60]). 5XFAD mice exhibit
aggressive pathology with plaque deposition occurring at
2 months and exhibit significant neuronal loss in AD-sen-
sitive brain regions [60]. We clearly demonstrated that
deficits in hippocampus-dependent temporal associative
learning found in 5XFAD mice were rescued in BACE1+/-
;5XFAD mice [61] reviewed in [62]. Not only were the ele-
vated AP levels observed in 5XFAD mice ablated in
BACE1/;5XFAD bigenic mouse brain, but the genetic
abrogation of BACE1 also prevented neuronal loss [17].
These data provide strong support, at least in Tg AD mod-
els, for the role of AP peptides in age-associated cognitive
impairments, and also indicate that AP is ultimately
responsible for neuronal death.

While initial studies of BACE1 knockout mice did not
reveal gross alterations in behavior, recently, more precise
behavioral phenotyping studies of BACE17/- mice have
revealed abnormalities in cognitive and emotional func-
tions, suggesting potential mechanism-based toxicities
resulting from complete BACE1 inhibition [16,18,61]. We
reported that BACE1-/- mice were impaired in both spatial
and reference memories. Further, these mice also exhib-
ited impairments in temporal associative memory
although they appeared normal in social recognition.
These data raise the possibility that BACE1 is required for
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some normal hippocampal memory processes [16,61].
Consistent with our findings, others have also reported
that mice deficient in BACE1 exhibited impaired spatial
reference and working memories [18,63].

BACE]1 is crucial for AP generation, and the normal pro-
duction of A in the brain raises the possibility that rather
than being a toxic by-product of APP metabolism, AR may
fulfill a regular physiological function. Indeed, the data
described above, indicating that complete abrogation of
AP was associated with impaired memory performance,
suggests a role for AB in normal memory [16]. These data
were consistent with earlier reports of a potential physio-
logical role of AB in normal neuronal function [64,65],
and a recent report suggests that the production of endog-
enous A is an important physiological regulator of potas-
sium channel expression and negatively modulates
neuronal excitability [66]. However, our data indicate that
BACE]1 deficiency does not impact all types of hippocam-
pal learning [16] and it is clear that further work is
required to examine the putative normal role of AB in vivo,
under non-pathological conditions. Alternatively, BACE1
cleavage of APP leading to AICD-mediated gene transcrip-
tion may be important for cognitive function [67].

When suitable BACE1 inhibitors are developed, it will be
almost impossible to completely suppress BACE1 enzy-
matic activity in vivo. Interestingly, Singer and colleagues
used RNA interference (RNAI) to silence BACE1 and dem-
onstrated that a partial reduction in BACE1 can improve
amyloid neuropathology including the deposition of Af,
alongside cognitive deficits in APP Tg mice [68]. Further-
more, comparison of BACE1 homozygous and hetero-
zygous (BACE1+/-) knockout mice indicated that BACE1+/
- mice exhibited normal spatial memory function com-
pared to BACE17/- mice, suggesting that partial inhibition
of BACE1 may not affect normal learning and memory
processes. Laird and colleagues demonstrated that AB bur-
den appears sensitive to BACE1 dosage in young animals,
with AP levels reduced to ~60-70% in APPswe;PS1AE9;
BACE1+/- compared to age-matched APPswe;PS1AE9 ani-
mals [18]. However, the A burden was not altered in
older mice, despite the same decrease in BACE1 levels,
indicating that BACE1 is no longer a limiting factor in the
aged mouse. Consistent with these findings was that older
APPswe;PS1AE9; BACE1+- mice were significantly
impaired in the Morris water maze, indicating that 50%
reductions in BACE are not sufficient to significantly
ameliorate cognitive deficits in aged mouse in contrast to
complete BACE1 ablation. Although further work is
required, these data indicate that a partial suppression of
BACE1 may have the most benefit for the earlier phases of
AB-dependent cognitive impairments. However, the age-
dependent benefits of partial reduction BACE1 expression
appear complex. McConlogue and colleagues recently
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reported that, in contrast to the observations of Laird, a
50% decrease in BACEL1 levels exerts little impact on AB
levels in young APP Tg mice, but led to a dramatic reduc-
tion in AP levels and synaptic deficits in aged mice [69].
The reasons as to why these findings appear discordant
with those of the previous study remain to be determined,
but may be due to the expression of different APP moie-
ties, APP with the Swedish mutation [18] vs. APP with the
V717F mutation [69]. The Swedish mutation enhances
the cleavage of APP by BACE1. As McConlogue and col-
leagues discuss, the co-expression of APPswe with the PS1
transgene in the Laird study led to an aggressive model of
plaque development that may somehow impact the sensi-
tivity of APP metabolism to alterations in BACE1 levels.

Together with the putative effect of complete BACE1 abla-
tion on specific cognitive functions, recent findings have
indicated that BACE1 deficiency might be associated with
other learning-unrelated phenotypes. BACE1”/- mice
exhibited a higher mortality rate in early life [70], and
those on the PDAPP background displayed severe seizures
[63]. In addition, mice deficient in BACE1 appeared
hyperactive, with enhanced locomotion [18,70]. BACE1-/
~mice spent more time in central parts of the open-field
and visited open-arms in the plus-maze test more often
than wild type controls, indicating that BACE1 may play
some role in anxiety [18]. However, the putative role that
BACE1 may play in emotion appears complicated.
Indeed, in contrast to Laird [18], Harrison and colleagues
previously reported that BACE1/- mice showed timid,
more anxious behavior [71]. While strain differences may
account for these apparently contrasting data, the exact
reasons underlying these putative opposing effects of
BACE1 on emotion remain to be determined.

In conclusion, the lack of AB generation in the brains of
BACE1 deficient mice indicates that therapeutic inhibi-
tion of BACE1 should reduce cerebral Af levels and amy-
loid development, an outcome likely to be beneficial for
AD. While recent studies indicate that complete blockage
of BACEL1 activity may be associated with certain undesir-
able side-effects (also see "Putative Non-APP BACE1 Sub-
strates" section below), important data demonstrates that
in specific AD Tg models, partial reduction of BACE1 lev-
els may improve cognitive deficits and amyloid neuropa-
thology including AB deposition.

BACE2, the BACE| homologue

BACE?2 is a homologue of BACE1 that is mapped to the DS
critical region on chromosome 21 [72]. The amino acid
sequences of BACE1 and BACE2 are ~45% identical and
75% homologous [73,74]. As with BACE1, the BACE2 C-
terminal domain is significantly larger than other aspartic
proteases, although overall the BACE2 structure contains
features typical of this protease family. Unlike BACE1,
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pro-BACE2 requires autocatalytic pro-domain processing
for enzymatic activation [75]. BACE1 and BACE2 have
distinct transcriptional regulation and function [73].
BACE2 mRNA has been observed at low levels in most
human peripheral tissues. However, unlike BACE1, which
is enriched in neuronal populations [23], human adult
and fetal whole brain express very low or undetectable lev-
els of BACE2 mRNA [50,74]. In vitro, BACE2 can cleave
APP at the B-secretase cleavage site [76,77] and BACE2
appears to be primarily responsible for Ap production in
Flemish mutant APP transfected cells [76]. However,
other studies have demonstrated that BACE2 functions as
an alternative a-secretase and as an antagonist of BACE1
[78,79]. BACE2 does not get upregulated to compensate
for a lack of BACEL1 in knockout mice [57]. Further evi-
dence that BACE2 functions not as a B-secretase comes
from a recent study which identifies BACE2 as a novel
theta (0)-secretase. Radiosequencing clearly demon-
strated that the major BACE2 cleavage site is between
Phe+19 and Phe+20 sites of APP, thus BACE2 cleaves APP
at a novel O-site downstream of the a-secretase cleavage
site [80]. Cleavage of APP by BACE2 at this site abolishes
AP production. Furthermore, overexpression of BACE2
reduced AP production in primary neuronal cultures
derived from APP Tg mice [80].

BACEI expression

Increasingly, reports indicate that BACE1 expression is
tightly regulated at both the transcriptional and transla-
tional level (reviewed in [81]). Insight into the regulation
of BACE1 gene expression may aid identification of mech-
anisms that lead to disease, illuminate the role of BACE1
in normal biology, and may suggest approaches to inhibit
BACE]1 therapeutically. To this end, both the human and
rat BACE1 gene promoters have been sequenced and ana-
lyzed [82-85]. The BACE1 gene spans ~30 kilobases (kb)
on human chromosome 11g23.2 and includes 9 exons.
The BACE1 gene promoter lacks the typical CAAT and
TATA boxes, but contains six unique functional domains
and three structural domains of increasing sequence com-
plexity as the ATG start codon is approached [86]. It also
contains a variety of transcription factor binding sites,
including those for Sp1, GATA-1, AP1, AP2, CREB, estro-
gen and glucocorticoid receptors, NFkB, STAT1, HIF-1 and
HSF-1, among others. It is likely that these sites influence
transcriptional activity from the BACE1 promoter, and it
is interesting to note that a number of these transcription
factor binding sites become activated in response to cell
stress.

A strong inflammatory reaction is present in AD brain and
long-term NSAID use reduces the risk of AD, suggesting
inflammation may play an important role in AD patho-
physiology [87]. The BACE1 gene promoter also has a
binding site for the transcriptional regulator proliferator-
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activated receptor y (PPARy; [88]). Activation of PPARy
with nonsteroidal anti-inflammatory drugs (NSAIDs) or
PPARy agonists cause repression of BACE1 gene promoter
activity, while proinflammatory cytokines that reduce
PPARy levels lead to increased BACE1 mRNA [88]. Thus,
the effects of inflammation and NSAIDs on AD may
involve, at least in part, the action of PPARy on BACE1
gene expression.

Neurons are responsible for the major portion of BACE1
and AP expression in the brain under normal conditions,
and this is also likely to be true during AD. However, evi-
dence is mounting that glia, and astrocytes in particular,
may produce significant levels of BACE1 and A, espe-
cially during inflammation. Glia out-number neurons by
~10:1, so even a slight increase in glial BACE1 expression
might contribute substantially to cerebral A and exacer-
bate AD pathology. NF«B is increased in both aged and
AD brain. Interestingly, whereas NFkB acts as a repressor
in neurons, this transcription factor acts as an activator of
BACE]1 transcription in activated astrocytes present in the
central nervous system (CNS) during chronic stress [89], a
feature observed in AD. In addition, following exposure to
A, a functional NFxB site was stimulated in neural cells
suggesting that elevated NFxB in the brain may signifi-
cantly contribute to increased A levels, acting as a posi-
tive feedback loop of chronic inflammation, astrocyte
activation, and increased BACE1 transcription. Proinflam-
matory cytokines such as interferon y (IFNy), tumor
necrosis factor o (TNFa) and interleukin B (IL1B) have
been shown to increase AP secretion in cultured human
astrocytes and astrocytic cell lines [90], and BACE1 levels
rise, at least with IFNy treatment [91,92]. Injection of INFy
into mouse brain led to elevated astrocytic BACE1 expres-
sion. Molecular analysis indicated that INFy activated
JAK2 and ERK1/2. Following phosphorylation, STAT-1
then binds to the putative STAT1 binding sequence in the
BACE1 promoter region to modulate astrocytic BACE1
expression [92].

Although previous studies have reported BACE1 immu-
noreactivity in reactive astrocytes around amyloid plaques
in both Tg2576 mice [93] and human AD brain [94-96],
subsequent analyses by our group on other APP Tg and
AD brains show that plaques elevate BACE1 levels in neu-
rons not astrocytes [97]. This discrepancy likely results
from the use of BACE1 antibodies in the earlier reports
that were not monospecific for BACE1, while our study
used a novel, extensively validated BACE1 antibody,
BACE-Catl, that does not cross-react with other proteins.

Although the BACE1 elevation in AD primarily occurs in
neurons, the amplified number of astrocytes in AD brain
is likely to result in a significant increase of astrocytic AP
production. Interestingly, treatments with the NSAID ibu-
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profen or pioglitazone, a PPARy agonist, decrease BACE1
and reduce plaque load [98]. Furthermore, BACE1 levels
appear to rise at focal sites of glial activation even before
plaques begin to develop [99].

While it is apparent that BACE1 expression can be tightly
regulated at the transcriptional level, in some studies
BACE1 mRNA levels in either neurons or astrocytes
around amyloid plaques in APP transgenic brain are not
elevated [97,100,101], implying that a post-translational
mechanism may be responsible for the BACE1 increase.
Increased BACE1 protein in the absence of altered BACE1
mRNA levels might be caused by alterations in BACE1
protein stability and/or changes in the rate of BACE1
translation. Indeed, features of BACE1 5' untranslated
region (5'UTR) such as the GC content, the length, evolu-
tionary conservation and the presence of upstream AUGs
indicate that this 5'UTR may play an important role in the
regulation of translational control and several studies
indicate that BACE1 may be regulated in this fashion
[102-104].

Overall, the evidence suggests that astrocytes may express
significant levels of BACE1 and contribute to Af} produc-
tion, at least under certain proinflammatory conditions.
In addition to inflammation other conditions may cause
BACE1 expression to increase in the brain, including oxi-
dative stress, traumatic brain injury (TBI), hypoxia and
ischemia. This topic is discussed in detail below.

The cell biology of BACE I: Post-translational
modifications and intracellular trafficking

The cell biology of BACE1 was investigated in order to fur-
ther understand BACE1 regulation and to identify other
potential therapeutic targets in the B-secretase pathway.
BACE] is initially synthesized in the endoplasmic reticu-
lum (ER; Fig. 2) as an immature precursor protein
(proBACE1) with a molecular mass of ~60 kDa [49,105-
107]. ProBACE1 is short-lived and undergoes rapid matu-
ration into a 70 kDa form in the Golgi, which involves the
addition of complex carbohydrates and the removal of the
propeptide domain.

BACE1 undergoes extensive post-translational modifica-
tions, being glycosylated at four N-linked sites [49].
Mature N-glycosylated BACE1 is sulfated and three
cysteine residues within the cytosolic tail of BACE1
become palmitoylated [48]. While glycosylation appears
important for enzymatic activity [108], palmitoylation
may influence the trafficking and localization of BACE1
[48]. The majority of BACE1 in cells is produced as an
integral membrane protein. However, a small fraction of
BACE1 undergoes ectodomain shedding, a process that is
suppressed by palmitoylation [48]. Inhibition of shed-
ding does not influence processing of APP at the B-site
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Figure 2

The intracellular trafficking of BACEI. (1) Following synthesis in the ER, pro-BACE| traffics to the Golgi. Here, the
propeptide is removed and BACE| undergoes significant post-translational modifications. The trafficking and localization of
BACEI appear dependent on the ACDL motif, composed of DISLL residues, in its C-terminal tail. Importantly, phosphorylation
of the serine 498 residue (S498) is important for binding of BACEI to the GGA monomeric adaptor proteins which are impli-
cated in the sorting of cargo between the TGN and endosomes and vice versa [127-131], in addition to the Golgi complex to
the endosomes [130]. (2) BACE| traffics to the plasma membrane and while the re-internalization of BACEI from the cell sur-
face appears to be independent of the phosphorylation state of S498 [131], it has been reported that the di-leucine residues
are important for BACE| endocytosis [126]. Non-phosphorylated BACEI may recycle from the endosome back to the cell
surface [131]. However, BACE| phosphorylated at the S498 site interacts with GGAI in the endosome and traffics back to the
TGN [131], and (3) the interaction of phosphorylated BACE| with GGA3 appears to direct BACEI to the lysosome, where it
is degraded [135]. In addition to S498 phosphorylation, the di-leucine residues are also important for the sorting of BACEI
into lysosomal compartments [140]. BACE|I is also degraded in the proteasome [133]. The precise subcellular localization
(early verses late endosomes) of the BACEI-GGA complex requires determination, and while it appears likely that BACEI can
traffic from the TGN to the endosome directly, it remains to be demonstrated experimentally.
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[109]. However, co-expression of APP and the soluble
ectodomain of BACE1 in cells increases the generation of
AB, suggesting the enhanced BACE1 ectodomain shed-
ding may raise amyloidogenic processing of APP [48]. In
addition, Murayama and colleagues reported the release
of detectable levels of BACE1 holoprotein in vitro [110],
although the physiological relevance of this event remains
to be clarified. Interestingly, active, soluble BACE1 has
been detected in human CSF, [111], a finding which raises
the potential use of BACE1 detection in an easily accessi-
ble biological fluid, such as CSF, in future diagnostic or
prognostic applications.

The BACE1 propeptide domain is removed within the
Golgi apparatus by cleavage between Arg45 and Glu46
[47,74]. Unlike the majority of aspartic proteases, includ-
ing BACE2, which cleave the propeptide domain autocat-
alytically, BACE1 propeptide removal involves
intermolecular cleavage by a different protease. Golgi-
localized proprotein convertases (PC) are capable of
cleaving the BACE1 propeptide and furin, a ubiquitous
PC, appears to be the major protease regulating this proc-
ess [48,74,107]. In contrast to other zymogens, proBACE1
exhibits robust P-secretase activity, indicating that the
BACE1 propeptide domain does not significantly sup-
press protease activity [48,107]. These findings suggest
that inhibiting the removal of the BACE1 propeptide
would not be an effective therapeutic strategy for reducing
AP levels in AD. However, proBACE1 may cleave APP
early in the biosynthetic pathway leading to the genera-
tion of an intracellular pool of AB in the ER, thought by
some investigators to be particularly neurotoxic [107].

The activity of the BACE1 enzyme is influenced by various
post-translational and cell biological events. Mature
BACE]1 localizes largely within cholesterol-rich lipid rafts
[112,113] and replacing the BACE1 transmembrane
domain with a glycosylphosphatidylinositol (GPI)
anchor exclusively targets BACE1 to lipid rafts and sub-
stantially increases AB production [114]. Indeed, various
types of lipid stimulate BACE1 activity and the raft locali-
zation of BACE1 may be enhanced by palmitoylation
[115]. Mature BACE1 is relatively stable, having a half-life
of over nine hours in cultured cells. Interestingly, cere-
mide, a lipid with signaling properties, can increase the
half-life of BACE1 [116]. BACE1 is capable of forming sta-
ble homodimers that exhibit enhanced catalytic activity
[117,118]. Interestingly, a variety of molecules have been
shown to interact with BACE1 and increase enzyme activ-
ity, like prostate apoptosis response-4 (PAR-4) protein
[119], while the effects of other interacting partners, such
as the copper chaperone for superoxide dismutase-1 [120]
and the brain-specific Type II membrane protein BRI3
[121], remain unclear. Conversely, certain molecules have
been shown to inhibit the BACE1-APP interaction and
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thus reduce B-site cleavage, including heparan sulfate
[122], reticulon/nogo proteins [123], and sorLA/LR11
[124]. These may provide clues for designing strategies to
inhibit BACE1 therapeutically.

Like APP, BACE1 cycles between compartments of the
secretory pathway [125-127] and BACE1 activity resides
in both the endosomes and secretory pathway. The intra-
cellular trafficking and localization of the BACE1 protein
is largely controlled by targeting signals present in the
cytosolic portion of the C-terminal tail [127]. The DISLL
sequence in the C-terminus of the BACE1 cytosolic tail
(amino acids 496-500) is a so-called an acid cluster-dileu-
cine motif (ACDL) and is known to be involved in endo-
somal trafficking. Deletion of the ACDL motif [125] or
mutation of the leucines to alanines [127] alters the sub-
cellular distribution of BACE1, such that a greater propor-
tion of the protein is localized at the cell surface and less
is sequestered within endosomes.

The ACDL of BACE1 binds to members of the Golgi-local-
ized y-ear containing ADP ribosylation factor-binding
(GGA) family implicated in the sorting of cargo proteins
between TGN and endosomes [128-132]. GGA1, 2 and 3
are monomeric adaptors involved in transport of proteins
containing the ACDL motif from the Golgi complex to the
endosome, and in the recycling pathway, from endo-
somes to the TGN [131]. They may also be involved in the
delivery of endosomal cargoes to the lysosome [133]. Koh
and colleagues recently reported the lysosomal degrada-
tion of BACE1, and mutation of the di-leucine motif pre-
vented lysosomal BACE1l accumulation following
inhibition of lysosomal hydrolases [134]. Importantly, all
three GGA proteins appear to be involved in the traffick-
ing of BACE1 as depletion of any of the three through
RNAI caused a significant BACE1 re-distribution [131].
GGAL1 interacts with BACE1 and influences BACE1 traf-
ficking through the secretory pathway. The ACDL motif
interaction with GGA1 is modulated by serine phosphor-
ylation of the BACE1 motif [126,127,129-131]. BACE1
phosphorylation at the S498 site and interaction with
GGA proteins regulate the transport and recycling of the
enzyme between TGN, cell surface, and early and late
endosomes. Although BACE1 phosphorylation does not
appear to dramatically alter B-secretase activity in experi-
mental systems, BACE1 trafficking may have a significant
impact on AB production in the brain.

Overexpression of GGA1 led to an increase in the levels of
both immature BACE1 and APP species [135]. Despite the
immature status of BACE1, APP metabolism still occurred
and elevations in C99 and APPsp were observed. How-
ever, levels of Ap were reduced, data indicative that GGA1
blocked APP B-cleavage products from becoming y-secre-
tase substrates. It was demonstrated that GGA1 confined
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APP to the Golgi [135]. Thus not only does GGA1 interact
with BACE1, but it acts also as a sorting protein that affects
APP trafficking and ultimately the proteolysis of this mol-
ecule. Interestingly, a very recent report has highlighted
the individual roles of the GGA proteins in mediating
BACE1 trafficking. In contrast to GGA1, Tesco and col-
leagues demonstrated that an inhibition of GGA3, via
RNAI, led to an elevation of BACE, C99 and AB [136]. Cas-
pase cleavage of GGA3 during apoptosis also caused
BACE1 levels to increase, suggesting a potential mecha-
nism for BACE1 elevation.

In cultured polarized cells such as neurons or Madin-
Darby canine kidney cells, BACE1 is predominantly trans-
ported to the axonal/apical compartment, while APP and
o-secretase are sorted mainly to the somatodendritic/
basolateral compartment [137]. This trafficking pattern is
consistent with observations in vivo indicating that BACE1
is transported down axons of the perforant pathway [138]
and that axon terminals may be major sites of A produc-
tion [138,139].

While BACE1 has a relatively long half-life, the enzyme is
known to be degraded by at least three mechanisms: 1.
endoproteolysis within its catalytic domain [140]; 2. the
ubiquitin-proteasomal pathway [141]; 3. the lysosomal
pathway [134].

The x-ray structure of BACE|

Structural information about the interaction of substrate
with the active site of BACE1 would greatly facilitate the
rational design of small molecule BACE1 inhibitors.
Towards this end, Sauder et al. [142] used molecular mod-
eling to simulate the BACE1 active site bound with wild-
type or mutant APP substrates. The basic structure of most
aspartic protease active sites is well conserved and the X-
ray structure of pepsin was used to model BACE1. X-ray
structural information of a peptide inhibitor bound to
rhizopuspepsin was also incorporated to model the inter-
action with APP. The molecular modeling identified sev-
eral residues in BACE1 that potentially contribute to
substrate specificity. In particular, Arg296 forms a salt-
bridge with the P1' Asp+1 residue of the -secretase cleav-
age site, thus explaining the unusual preference of BACE1
among aspartic proteases for substrates that are negatively
charged at this position. In addition, several hydrophobic
residues in BACE1 form a pocket for the hydrophobic P1
residue. The model also showed that the Swedish FAD
mutation, LysMet—AsnLeu at P2-P1, interacts more favo-
rably with Arg296 and the hydrophobic pocket of BACE1
than does wild-type substrate, providing an explanation
for the enhanced cleavage of this mutation. Conversely,
the substitution of Met—Val at P1 blocks the catalytic
Asp93 residue, explaining the lack of cleavage of this
mutation by BACE1.
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Shortly after the molecular modeling study, the X-ray
structure of the BACE1 protease domain co-crystallized
with a transition-state inhibitor was determined to 1.9
angstrom resolution [143]. As expected, the BACE1 cata-
lytic domain is similar in structure to pepsin and other
aspartic proteases, despite the relatively low sequence sim-
ilarity. Interestingly, the BACE1 active site is more open
and less hydrophobic than that of other aspartic pro-
teases. Four hydrogen bonds from the catalytic aspartic
acid residues (Asp93 and Asp289) and ten additional
hydrogen bonds from various residues in the active site
are made with the inhibitor, most of which are conserved
in other aspartic proteases. The X-ray structure indicates
that Arg296 and the hydrophobic pocket of the active site
play an important role in substrate binding, confirming
the results of the molecular modeling study. In addition,
the bound inhibitor has an unusual kinked conformation
from P2' to P4'. The BACE1 X-ray structure suggests that
small molecules targeting Arg296 and the hydrophobic
pocket residues should inhibit B-secretase cleavage. More-
over, mimicking the unique P2'-P4' conformation of the
bound inhibitor may increase the selectivity of inhibitors
for BACE1 over BACE2 and the other aspartic proteases.

Putative non-APP BACE| substrates

Given the fact that the majority of APP molecules are
cleaved by a-secretase moieties, with only a small fraction
being BACE1 substrate, it is highly likely that other BACE1
substrates exist. In addition to APP, it is known that
BACE]1 also cleaves the APP homologues, amyloid precur-
sor-like proteins, APLP1 and APLP2 [144,145]. While the
AP sequence is absent in both APLP1 and APLP2, rela-
tively little else is known about APLP1 and -2, although it
is known that the APLPs can be processed by y-secretase
generating intracellular fragments with potential tran-
scriptional activity [146,147].

While the essential cellular functions of BACE1 under nor-
mal conditions have proved somewhat elusive, recent
findings have started to define a physiological function
for this enzyme. As discussed earlier, given the apparent
phenotypic alterations observed in BACE1 deficient mice,
the identification of other BACE1 substrates and an
understanding of their biological function is essential.

BACE]1 is enriched in neuronal populations, and 3-secre-
tase processing of APP is modulated by the interaction of
BACE1 with neurite growth inhibitor NOGO, a member
of the reticulon protein family and a component of mye-
lin [123]. Recently, a role for BACE1 in axonal growth and
brain development has been proposed, whereby BACE1
regulates the myelination process [148,149]. The neuro-
nal type III isoform of the epidermal growth factor (EGF)-
like factor neuregulin 1 (NRG1) regulates myelination
and is a known initiator of peripheral nervous system
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(PNS) myelination and a modulator of myelin sheath
thickness in both the CNS and PNS. BACE1 is transported
to axons by a kinesin-1-dependent pathway [150] and the
highest levels of BACE1 expression are observed when
myelination occurs during the early postnatal stages
[149]. Co-expression of BACE1 with type III NRG1 was
observed within sensory and motor neurons whose axons
project within peripheral nerves. Importantly, data gener-
ated from BACE1-/- mice showed that the absence of
BACE1 was associated with hypomyelination of both cen-
tral and peripheral nervous system axons.

In line with previous observations indicating that BACE1
deficient mice exhibit altered synaptic plasticity and
decreased cognitive function [16,18,61] reviewed in [62],
specific neurological impairments were also associated
with the genetic ablation of BACELI in this myelination
study [148]. When compared to wild type brain, BACE1-/-
accumulated full length, uncleaved NRG1 and exhibited
reduced levels of NRG1 cleavage fragments, findings con-
sistent with a role for BACE1 in the proteolysis of NRG1
[148,149]. It remains undetermined as to whether NRG1
cleavage is required for maintenance of the mature myelin
sheath. It should be noted that complete deletion of
BACE1 was necessary in order to alter the signaling events
and cause hypomyelination. In agreement with previous
findings that partial BACE1 inhibition may be without
effect on normal learning and memory processes, [18]
reviewed in [62], BACE+-mice did not display any of the
biochemical and morphological features observed in the
BACE1 null mice.

Synaptic dysfunction precedes overt neurodegeneration
during AD progression, and data indicates that BACE1
cleaves APP to generate AP in the synaptic terminal
[138,139]. Indeed a role for BACE1 in the maintenance of
synaptic function has been proposed, and several addi-
tional, non-APP BACE1 substrates have recently been
identified, some of which may be localized at the termi-
nal, suggesting that BACE1 cleavage of particular sub-
strates may be required for normal function at the
synapse.

Voltage-gated sodium channels (VGSC [151]; Na,1 [152])
are abundant ion channels responsible for the initiation
and propagation of action potentials. These channels are
large complexes consisting of an o subunit and at least
one B subunit. The VGSCB subunits are important auxil-
iary units, although they are not essential for the basic
functioning of the VGSC. However, expression of both
subunit types is required for full functionality of the
VGSC, as well as for the modification of channel proper-
ties and intracellular localization. In a manner analogous
to APP processing, VGSCP subunits are substrates of both
BACE1 and y-secretase. BACE1 cleavage generates a mem-
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brane-tethered B-CTF [151,152], and the VGSCP subunits
are processed further by y-secretase, which generates an
B2-intracellular domain (B2-ICD; [152]). Recently, the
functional ramifications of these cleavage events have
been elucidated [152]. 2-ICD regulates expression of the
o subunit, Na, 1.1. Importantly, the increased pool of
Na,1.1 is maintained within the cell and the BACE1 cleav-
age of the 2 subunit actually leads to loss of functional
membrane channels, a reduction in Na+* current and alter-
ations in membrane excitability [152]. Importantly, the
processing of VGSCB2 and VGSCP4 by BACE1 has been
demonstrated in vivo and elevated B2-CIF and Na, 1.1
were observed in human AD brain tissue [151,152]. Neu-
ral activity regulates A production through - and y-secre-
tase and synaptic transmission and neuronal activity is
depressed by AP [65,153]. It is thus plausible that the
turnover of membrane-localized functional sodium chan-
nels by the sequential processing by BACE1 and y-secre-
tase in wild type neurons may play a role in such a
feedback mechanism as to modulate neuronal activity
and endogenous AP production.

The proteolytic processing of membrane proteins to their
soluble counterparts during ectodomain shedding is an
important step in regulating the biological activity of
membrane proteins. Ectodomain shedding is carried out
by members of the ADAM family and matrix metallopro-
teases, and to a lesser extent by BACE1 and BACE2
(reviewed in [154]). Ectodomain shedding is the first
cleavage event in a two-step proteolytic cleavage event
known as regulated intramembrane proteolysis (RIP).
Following shedding, the resulting membrane bound CTF,
undergoes a second cleavage event within its transmem-
brane domain, called intramembrane proteolysis. APP
undergoes RIP by the a- and B-secretases, with the subse-
quent intramembrane proteolysis being catalyzed by the
y-secretase complex. Given the fact that APP is only
cleaved to a small extent by BACE1, it appeared highly
likely that other BACE1 substrates may be found among
proteins undergoing ectodomain shedding.

This notion has been recently confirmed by the identifica-
tion of the lipoprotein receptor-related protein (LRP) as
another putative BACE1 substrate. As detailed below,
accumulating evidence indicates that elevated cholesterol
might be closely involved in AD development. LRP is a
type I integral membrane protein which functions as a
multifunctional endocytic receptor implicated as having
signaling roles in neurons [155]. LRP appears to be inti-
mately associated with AD pathology and previous
reports have implicated LRP in the mediation of endocy-
tosis of a number of important AD-linked ligands includ-
ing APP and ApoE. Indeed, it has been shown that LRP
regulates AP trafficking, binds Ap complexes and mediates
its degradation. In vivo, the absence of LRP in the presence
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of APP overexpression led to a two fold increase in amy-
loid deposition, findings supporting the notion that the
LRP might play an integral role in AB clearance and might
be neuroprotective against AB toxicity [156]. Like the
VGSCP subunit, LRP is processed in manner analogous to
APP, at least in vitro. Not only is LRP proteolyzed by
matrix metalloproteases, but the y-secretase cleavage of
LRP enables release of the LRP-intracellular domain (LRP-
ICD). Furthermore, LRP may be a substrate for BACE1
cleavage [157]. Endogenous BACE1 and LRP co-immuno-
precipitate from human brain and it appears as if the LRP-
BACE1 complexes occur in lipid-rafts, with the closest
association being at the cell surface. Further in vitro analy-
ses demonstrated that endogenous levels of BACE1 activ-
ity facilitated an increase in the secretion of LRP, in
addition to the formation of the LRP CTF. Moreover,
increased BACE1 expression facilitated an enhancement
of y-secretase LRP cleavage and release of the LRP-ICD.
Indeed, it was also shown that LRP competes with APP for
y-secretase activity [158]. The LRP-ICD has been shown to
translocate to the nucleus and interact with Fe65 and
Tip60, although whether this occurs under physiological
conditions remains to be determined. However, it should
be noted that the processing of LRP by BACE1 in vivo
remains to be determined and data from BACE1 knock-
outs regarding this matter should prove to be highly
informative.

As discussed earlier, neuroinflammation is a pathological
feature of AD and increasing evidence suggests that neuro-
toxicity is mediated by CNS inflammatory processes
whereby A is involved in the activation of microglia facil-
itating the subsequent release of inflammatory cytokines
including IL-1B, IL-6 and TNF-a, among others (reviewed
in [159]). Interestingly, several putative BACE1 substrates
are closely associated with the inflammatory response.

P-selectin glycoprotein ligand 1 (PSGL-1) modulates leu-
kocyte adhesion in inflammatory reactions. Interestingly,
cleavage of PSGL-1 by BACE1 liberated cleavage products
observed in vivo, and no PSGL-1 cleavage fragments were
detected in primary cells derived from BACE1 deficient
mice, adding further support for the role of BACE1 in
PSGL-1 proteolysis [160].

Beta-galactoside alpha 2, 6-sialyltransferase (ST6Gal1l) is a
second membrane protein involved in regulating the
immune response that also appears to be a BACE1 sub-
strate. BACE1 is enriched in neuronal Golgi membranes
and ST6Gall is a Golgi-resident sialyltransferase that is
secreted out of the cell after proteolytic cleavage. BACE1
and ST6Gal 1 co-localize in the Golgi and BACE1 overex-
pression elevates ST6Gal I secretion [161]. Moreover, data
from mouse models demonstrated that BACE1 cleaves
ST6Gal I in vivo [162].
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Ectodomain shedding is important in the inflammatory
response. The interleukin-1 receptor II (IL-1R2) under-
goes shedding and functions as a decoy receptor thought
to limit the detrimental effects of IL-1 in the brain.
Increased proteolytic processing and secretion of IL-1R2
has been linked to AD pathogenesis [163], and a recent
report indicates that all three secretase moieties appear to
cleave IL-1R2 [164]. Interestingly, the secretion of IL-1R2
was elevated by both BACE1 and BACE2 overexpression.
Cleavage of IL-1R2 by both BACE enzymes occurred at
sites that agreed well with the known cleavage specificity
of BACE1 and BACE2 and led to the generation of CTF
that were similar to those generated by a-secretase cleav-
age. In contrast to other BACE substrates, including APP,
PSGL-1, ST6Gall, VGSCP and NRG1, the cleavage of IL-
1R2 was not reduced in BACE deficient cells. Arguing
against the fact that IL-1R2 may not be a physiological
substrate of BACE, Kuhn and colleagues demonstrated
that BACE1 and BACE2 cleaved IL-1R2 only 4 amino acids
away from the a-secretase cleavage site, so close that the
a-secretase and BACE IL-1R2 CTFs would be very similar
in size and likely impossible to identify individually.
Thus, it was suggested that a decrease in BACE IL-1R2
cleavage would be compensated for by an increase in a-
secretase cleavage and thus no net change in total IL-1R2
would be observed. Indeed, if BACE cleavage occurs close
to the cleavage sites of specific substrates by other pro-
teases, it may be particularly challenging to unequivocally
identify a specific protein as a novel BACE substrate.

It has been previously suggested that BACE1 exerts a gen-
eralized role in the secretion of membrane proteins, as the
BACE1 substrates identified to date are all membrane
localized. However, Kuhn and colleagues investigated
BACE cleavage specificity and observed that BACE1 and
BACE2 did not cleave a number of membrane proteins
including TNFa, P-selectin and CD14, suggesting that the
proteases did not simply contribute to general membrane
protein turnover [164].

BACE| dysregulation in AD

AP plays a central role in AD pathogenesis. With age, AB
levels increase and excessive A deposition occurs in AD.
While AP deposition can be attributed to excessive A pro-
duction mediated by APP/PS1 mutations or APP gene
dosage effects in both FAD and DS, the mechanism by
which excessive Af accumulation occurs in SAD remains
unclear. Reduced A clearance and/or degradation is one
potential mechanism leading to increased cerebral A lev-
els in AD. However, it is also possible that small increases
in AP production over time may tip the balance toward A
accumulation. BACEL1 is critical for Ap biosynthesis and it
is likely that factors that elevate BACE1 may lead to
increased AP generation and promote AD. Indeed, FAD
cases caused by the APP Swedish mutation, which
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enhances cleavage by BACE1, imply that increased BACE
activity may be sufficient to induce AD pathogenesis.
Recently, several important reports have indicated that
BACE1 dysregulation maybe involved in AD pathogene-
sis.

An age-related increase in BACE1 activity in mouse, mon-
key and non-demented human brain has been reported
[165] and there was a positive correlation between ele-
vated BACE1 activity and increased AP levels in mouse
and human brain regions. Furthermore, significant
increases in BACE1 protein and activity have been
observed in the AD brain. In high-order association brain
regions affected by Ap deposition BACE1 protein levels
and activity were increased significantly in AD brain com-
pared to non-demented control brain [166-170]. While
contrasting with other findings [166-170], Li and col-
leagues reported that the observed elevation of BACE1
activity is correlated with brain A 1-x and AB1-42 pro-
duction in the frontal cortex [170], suggesting that indeed,
BACE1 elevation may lead to enhanced AP production
and deposition. Interestingly, a significant correlation
between BACE1 levels and plaque load in AD brains was
observed [169,170].

Neuronal loss is a key feature of late-stage AD and so the
normalization of protein level and activity measurements
to levels of neuronal markers is crucially important. Inter-
estingly, the measures of BACE1 protein and activity levels
were even more pronounced in AD brain when normal-
ized to the synaptic marker, synaptophysin [166]. While a
separate study indicated that total BACE1 levels in AD
temporal cortex were not elevated [171], the ratio of
BACEL1 protein to specific neuronal markers was signifi-
cantly increased, indicating that the surviving neurons in
AD brain may express higher BACE1 levels than those
observed in neurons from control brain.

Interestingly, BACE1 increases have also been observed in
DS. People with DS inevitably develop characteristic AD
neuropathology thought to result from the extra copy of
chromosome 21. However, APP gene dosage alone may
not fully account for the AD pathology in DS [172].
Recently, a novel molecular mechanism by which AD may
develop in DS has been proposed [173]. Analysis of cere-
bral cortex derived from DS and normal fetus indicated an
elevation of C99, AB 40 and AB42 in the trisomic tissue.
The data indicated that the increase in APP level only par-
tially contributed to AP over-generation in DS. Further-
more, the DS tissue showed a significant increase in the
levels of total BACE1 protein, in particular mature BACE1
[173]. It was demonstrated that predominantly immobile
BACE1 proteins accumulated in the Golgi, whereas
BACE1 trafficking was unimpeded in control tissue.
Importantly, subcellular fractionation of normal and DS
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brain tissue showed the marked accumulation of mature
BACE]1 in the Golgi fraction of DS cells. The authors pro-
posed that the higher levels of mature BACE1 in DS tissue
result in higher BACE1 activity leading to elevated C99
and AP production. The cause of the BACE1 elevation in
DS remains to be determined.

Many biochemical parameters deviate from normal in AD
and approximately 100 different proteins have deranged
levels or abnormal modifications in AD (reviewed in
[174]). Indeed it is difficult to determine from postmor-
tem brain whether a specific change is an epiphenomenon
in late-stage AD, or whether it is an early event directly
involved in pathogenesis. To address this, we recently
examined BACE1 levels in two Tg models of AD [97],
namely the 5XFAD mouse [60] that develops amyloid
plaques at young ages and exhibits significant neuronal
loss, and the Tg2576 mouse [56], which develops plaques
at older ages and does not show neuronal death. Interest-
ingly, BACE1 was elevated in the brains of both Tg models
and AD patients. Importantly, because the BACE1
increase correlated with amyloid pathology in both Tg
models and was observed in both the absence (Tg2576)
and presence (5XFAD) of significant neuronal loss, we
concluded that BACE1 elevation appeared to be associ-
ated with amyloid pathology rather than cell death.

As discussed previously, many BACE1 antibodies produce
nonspecific backgrounds in immunohistochemistry and
bind to numerous non-BACE1 polypeptides on immuno-
blots [97]. To circumvent these issues we used the mono-
specific BACE-Catl antibody and observed the neuronal
localization of BACE1, with BACE1 immunoreactivity sur-
rounding AP42-containing plaque cores in both the Tg
and AD brain. While further studies are required, the co-
localization of BACE1 immunoreactivity with synapto-
physin, but not MAP2, suggested a presynaptic localiza-
tion for BACE1. These data are in keeping with previous
observations [138] and suggest that the BACE1 elevation
occurs in presynaptic neuronal structures around neuritic
plaques and that AB42 may cause the increase.

Putative cause of BACEI elevations in AD

AD pathogenesis is highly complex. Perhaps as a conse-
quence of this complexity, many major questions about
this disease remain open. Indeed, apparently basic ques-
tions including those regarding the initiating events in
AD, and whether such events cause elevate A, remain to
be determined. Given the number of pathologies that
characterize AD, it is highly possible that there are several
events that culminate to trigger AD. We know that A ele-
vation occurs early in the disease and plays a central role
in AD pathogenesis. More recently, other pertinent ques-
tions have come to light and a major subject for current
debate is the cause of BACE1 elevation in AD and whether
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this elevation could be responsible for the initiation of AD
pathology.

Indeed, whether the BACE1 elevation in AD promotes A
generation and disease progression remains to be deter-
mined. However, an AD feedback loop has long been pro-
posed and our data are suggestive of a positive feedback
loop, whereby AB42 deposition in AD causes BACE1 lev-
els to rise in nearby neurons. Increased AB production
may follow, initiating a vicious cycle of additional amy-
loid deposition followed by further elevated BACE1 lev-
els. Interestingly, a recent in vitro study [175]
demonstrated that a relatively small increase in BACE1
expression results in sharply elevated AB production, until
a plateau is reached, whereby further increases in BACE1
expression and activity have no further effect of Ap gene-
sis.

Given the observation that BACE1l elevation occurs
around AP42 plaque cores it seems possible that AB42
somehow triggers the BACE1 increase. It is well estab-
lished that AB42 is neurotoxic and such toxicity may
induce the BACEL1 elevation. Indeed, as previously men-
tioned, the BACE1 promoter contains regions for tran-
scription factors known to be activated in response to
cellular stress. Furthermore, proinflammatory cytokines
appear to modulate BACE1 expression [91,92] and fol-
lowing A exposure a functional NFkp in the BACE1 pro-
moter region was stimulated [89]. However, it remains to
be determined as to which is the initiating event, Af ele-
vation and deposition or increased BACE1 activity. Inter-
estingly, Tamagno and colleagues have recently proposed
that AB acts via a biphasic neurotoxic mechanism, which
is conformation-dependent, with AB oligomers inducing
oxidative stress while fibrillar A increases BACE1 expres-
sion and activity [168]. Nevertheless, whether such a
biphasic mode of action occurs in vivo remains to be
determined.

Given the complexity of AD pathogenesis it is highly
likely that, in addition to AB, a number of other factors
could impact BACEL1 levels. Aging is the strongest risk fac-
tor in AD. Given that BACE1 activity increases with age
and to an even greater extent in SAD, it is plausible that
AD may reflect an exaggeration of age-related changes in
BACE]1 activity. It is interesting to note that the vast major-
ity of cardiovascular events occur in older people and
there appears to be a close relationship between cardio-
vascular (and cerebrovascular) disease and AD.

Individuals with AD and cerebrovascular pathologies
exhibit greater cognitive impairment than those exhibit-
ing either pathology alone [176-180]. Various types of
heart disease (for example, atrial fibrillation, congestive
heart failure, coronary heart disease, among others) and
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stroke (ischemic, hemorrhagic) are intimately associated
with elevated AD risk (reviewed in [181]). AD patients
exhibit more severe atherosclerosis in the cerebral arteries
at the base of the brain (the circle of Willis) when com-
pared to age-matched controls [182]. Indeed cerebral
blood supply is limited by the vascular narrowing caused
by these lesions [183-185] and many vascular-related AD
risk factors have an established association with cerebral
hypoperfusion. Importantly, there is increasing evidence
from epidemiological [186-189] and neuroimaging stud-
ies [190-192] which suggests that vascular risk factors, and
the ensuing reduced cerebral blood flow (CBF) and
chronic brain hypoperfusion (CBH) are key factors in AD
development and may even play a causative role in
dementia (reviewed in [181,193]). Evidence suggests that
the subcellular changes that are crucial to neurodegenera-
tion development are provoked by CBH brought on by
the cardio-cerebral damage associated with cardiovascular
events (reviewed in [181]). Indeed, CBH is a pre-clinical
condition of mild cognitive impairment (MCI), a condi-
tion thought to precede AD, and is an accurate indicator
for predicting the development of AD [194-198]. Interest-
ingly, an association between impaired functionality of
microvessels and unfavorable evolution of cognitive func-
tion in AD patients has been recently reported [199].

CBH can cause hypoxia, in addition to ischemic episodes.
The later involves both hypoxia and reoxygenation, which
represent forms of cellular stress, and such episodes have
also been reported to increase AD risk. Interestingly, oxi-
dative stress has been implicated in AD pathology and is
characterized by the presence of oxidative stress markers
such as 4hydroxy-2-nonenal (HNE) at the early patholog-
ical stages of AD [200,201]. In addition, several studies
indicate that defective energy metabolism may play a fun-
damental role in AD pathogenesis. The expression of sev-
eral enzymes is downregulated in AD brain, implicating
the impairment of brain energy metabolism in this dis-
ease [202-204]. Data derived from positron emission
tomography imaging indicates that glucose utilization is
lower in AD brains than in age-matched control brain.
Moreover, both patients with MCI and young adults car-
rying the ApoE4 allele exhibit reduced glucose metabo-
lism, suggesting that insufficient energy metabolism may
also be a factor in preclinical AD.

It is likely that multiple cellular events may account for
the neurodegeneration observed in the AD brain and
some negate the role of AR in AD (reviewed in [181]).
However, we hypothesize that the downstream cellular
consequences of cardiovascular events, which may indeed
play an early and possibly causative role in AD, lead to the
significant alterations in AB metabolism that are central to
AD pathogenesis. Given the strong genetic evidence from
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FAD cases, we maintain that AB fulfills an early and crucial
role in AD progression.

The direct contribution of vascular factors to AD patho-
genesis remains a contentious issue. However, an increas-
ing body of evidence indicates that AR may be vasoactive
and cause cerebrovascular impairment by exerting effects
on both the systemic and cerebral vasculature (reviewed
in [184]). Interestingly, Shin and colleagues reported that
deposited, but not soluble, AB impaired blood flow when
deposited in the vasculature [205]. In addition to exerting
causative effects on the vasculature, alterations in AP lev-
els may occur as a consequence of cardio- and cerebrovas-
cular disease, possibly via a mechanism involving BACE1
elevations. Indeed, alterations in cholesterol homeostasis
facilitate amyloidosis and are associated with elevations
in BACE1 levels and activity [206-209]. Furthermore, sev-
eral key downstream cellular consequences of cardiovas-
cular insults and the resulting CBH, such as hypoxia,
energy depletion and cellular stress also increase BACE1
levels and activity [210-216]. These data provide a molec-
ular mechanism that could underlie the effect of specific
cardiovascular events on increased AB production and
consequently AD risk elevation.

Hypercholesterolemia and BACE |

Hypercholesterolemia can result in atherosclerosis.
Indeed, numerous studies suggest that alterations in cho-
lesterol homeostasis contribute to AD etiology by enhanc-
ing AP generation [217,218], and elevation of brain AP
levels following enrichment of dietary cholesterol has
been reported [206-208]. The molecular mechanisms
linking increased dietary cholesterol with enhanced brain
AP levels remained unclear for some time (reviewed in
[219]). Nevertheless, BACE1 activity is enhanced in lipid
microdomains [114] and cholesterol-rich microdomains
are critically involved in BACE1 cleavage of APP. Lipid
raft-localized APP is cleaved by BACE1, whereas APP out-
side the rafts is a substrate for a-secretase [113].

To explore the putative molecular mechanism(s) underly-
ing the apparent cholesterol sensitivity of Ap generation
further, Ghribi and colleagues examined the effect of a
low dose, relatively long-term, cholesterol-enriched diet
on neuronal cholesterol levels, BACE1 and AB42 in the
rabbit hippocampus [209]. In contrast to control animals,
the cholesterol-fed animals exhibited increased levels of
neuronal cholesterol, and the cholesterol appeared to co-
localize with BACE1, an association accompanied by an
increase in both the level of BACE1 protein and activity.
The increases with BACE1 corresponded with elevations
in APPsP, C99 and AB42. These data suggest that preven-
tion of cholesterol accumulation, or indeed cholesterol
reduction may represent a possible strategy for reduction
of BACE1 over-activation and may have therapeutic impli-
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cations for AD. Indeed, earlier reports indicated that long-
term treatment with cholesterol-lowering drugs (specific
statins) may significantly reduce AD risk [217,218],
although several later studies failed to replicate these data
[220-222]. The potential of statin therapy in AD still
hangs in the balance given the recent finding that Atorvas-
tatin therapy appeared to improve the cognitive ability in
patients living with mild-to-moderate AD [223].

Hypoxia and BACE|

A shortage of oxygen in the body, a condition referred to
as hypoxia, is a direct consequence of hypoperfusion and
can facilitate AD pathogenesis [214,224]. Oxygen home-
ostasis is essential for well being and the brain is particu-
larly susceptible to hypoxic conditions. As detailed
previously, BACE1 expression is regulated by multiple
mechanisms in a complex manner [73,83,84,225]. Inter-
estingly, BACE1 mRNA expression is increased in APP Tg
mice maintained under hypoxic conditions, and the
hypoxia appeared to potentiate the memory deficits
observed in these mice [214].

It is known that the hypoxia-inducible factor 1 (HIF-1), a
member of the basic helix-loop-helix transcription factor
family, is principally involved in the regulation of oxygen
homeostasis [226]. When oxygen supply is limited, HIF-1
binds to an hypoxia-responsive element (HRE) in gene
promoters or enhancers and activates a broad range of
genes including those involved in energy metabolism and
cell death [227]. As observed in vivo, hypoxia increased
APP metabolism and AP production by upregulating
BACE]1 activity in vitro. A molecular basis for the observed
elevation of BACE1 expression during hypoxia has been
recently provided by the identification of a functional
HRE in the BACE1 gene promoter [214,224]. Indeed,
these data may provide a molecular link between vascular
factors and AD that is centered around BACE1 elevations.

Mitochondrial dysfunction, oxidative stress, energy depletion and
BACE|

Mitochondrial dysfunction in neurons can be caused by
many cellular insults including transient hypoxia. Indeed,
energy-depleted hippocampal neurons unable to cope
with prolonged CBH undergo both oxidative and cellular
stress (reviewed in [181]). Importantly, several reports
document BACET1 as a stress-induced protease and in view
of the apparent importance of metabolic dysfunction and
amyloidosis in AD, it is noteworthy that BACE1 upregula-
tion has been observed under a variety of experimental
conditions likely involving energy disruption and/or
mitochondrial stress [136,212-215,228,229]. Indeed,
increased BACEL1 levels and activity have been reported in
both in vitro [210-212] and in vivo [213,215] under condi-
tions of altered energy metabolism and cellular stress.
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In many aspects of AD, particularly at the molecular level,
a chicken-and-egg scenario exists: does AR cause BACE1
elevation or vice versa? Does AP cause cerebrovascular
dysfunction or vice versa? It appears likely that in most
cases both scenarios might be true and may operate in a
vicious circle of events. This appears to likely be the case
with AP and oxidative stress. While AR accumulation may
lead to oxidative stress [230] reviewed in [231], it has also
been demonstrated that oxidative stress may lead to AP
accumulation. As previously indicated, HNE has been
observed in AD brain [200,201]. Tamagno reported that
HNE addition to cultured NT2 neurons facilitated an
increase in BACE1 activity [210]. Interestingly, oxidative
stress in vitro resulted in significant increases in BACE1
promoter activity [212] and Tamagno and colleagues
reported an increase in both BACE1 mRNA and protein
levels, with increased BACE1 activity, as determined by
enhanced AP production, being observed following HNE
exposure [210,211].

Inhibitors of mitochondrial respiration are generally con-
sidered to cause oxidative stress [232,233] and thus the
differentiation of energy inhibition from oxidative stress
with regards to the pharmacological blockage of mito-
chondrial energetic processes in vivo is practically impos-
sible. Nevertheless, following acute energy inhibition
(and/or oxidative stress) in vivo [213], we observed a sig-
nificant elevation in BACE1 protein. This effect was long-
lasting, with BACE1 levels remaining elevated for seven
days post-injection, and appeared to correspond with a
significant increase in cerebral AB40 load in treated mice.
In agreement with the previous in vitro studies, these data
suggest that energy inhibition is potentially amyloidog-
enic. Support for these observations come from the recent
findings that mitochondrial respiratory inhibition and
oxidative stress increased BACE1 levels [215]. Moreover,
as we previously hypothesized [97], evidence in support
of a role for AB in elevating BACE1 was provided from
data showing that the intravitreal application of fibrillar
APB42 appeared to exert extremely potent effects and
caused enhanced BACE1 expression and activity [215].

The mechanism of the energy-induced BACE1 increase in
vivo is unclear and will likely be challenging to elucidate.
While studies have demonstrated increases in BACE1
mRNA level following oxidative stress and hypoxic insults
[211,214], our data indicates that a post-translational
mechanism may be implicated in the in vivo BACE1 eleva-
tion during times of energy depletion [213]. BACE1
mRNA levels did not significantly increase in Tg2576
brain following energy inhibition treatment and the
BACE]1 protein halflife is too long to account for the rapid
rise in BACE1 levels observed. As previously discussed
reports indicate that the 5'UTR of BACE1 mRNA influ-
ences translational efficiency [102-104]. Clearly, further,
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detailed analysis is required to solve this important issue,
but full understanding of such cellular mechanisms may
shed light on novel therapeutic approaches for AD.

Injury and BACE|

The observations that BACE1 levels are also elevated fol-
lowing brain trauma [228] and ischemia [136,229] add
further support for the role of BACEL1 as a stress response
protein. TBI and stroke are significant risk factors for AD
[234,235] and can be modeled experimentally [228,229].
Data derived from a rat model of TBI supports a role for
BACE]1 elevation in the increase of AP levels observed in
patients with brain trauma [236,237]. Following injury,
elevations in BACE1 mRNA, protein and activity were
observed in specific, AD-sensitive brain regions [228].

In an experimental stroke model used to study the effects
of transient cerebral ischemia, ischemia led to an eleva-
tion in BACE1 protein and activity, and BACE1 immuno-
reactivity was strongly associated with TUNEL staining, a
marker of apoptosis [229]. Interestingly, a recent study
has revealed a potential molecular mechanism that may
underlie the BACE1 increase following ischemic episodes
[136]. Whilst ischemia induces apoptosis, the contribu-
tion of apoptosis to AD pathogenesis remains unclear
although there is increasing evidence for caspase activa-
tion in the AD brain (reviewed in [238,239]). However,
AP levels in both neuronal and non-neuronal populations
are elevated during apoptosis and it was reported that
BACE]1 levels and associated activity were potentiated dur-
ing apoptosis [136]. Indeed, caspase activation during
programmed cell death induced the BACE1 increase via a
post-translational stabilization of BACE1 and a significant
impairment in BACE1 degradation and turnover. As pre-
viously detailed, the GGA adaptor proteins are implicated
in the subcellular trafficking of BACE1. Tesco demon-
strated that during apoptosis GGA3 is cleaved by activated
caspase-3 [136]. In the rat model of ischemia, this reduc-
tion in GGA3 levels was co-ordinated with caspase activa-
tion and increased BACE1 protein levels. Furthermore,
RNAI silencing of GGA3 caused an increase in the level
and activity of BACE1 as determined by elevations in C99
and AP. Indeed, He et al have previously demonstrated
that RNAi-mediated depletion of GGAs significantly
increases endosomal BACE1 levels [131]. Degradation of
BACE1 occurs, in part at least, in the lysosomal pathway
[134] and a role for GGA3 in the targeting of cargo to the
lysosome has been previously reported [133]. Thus, Tesco
and colleagues suggested that apoptosis, caused by
ischemic events, drives GGA3 depletion and results in the
stabilization and accumulation of BACE1 leading to ele-
vated enzymatic activity. Importantly, in AD brain, GGA3
protein levels were significantly decreased and this
decrease was inversely correlated with elevations in
BACE1 in AD-relevant regions, [136]. While other post-
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translational mechanisms may account for this observed
decrease in GGA3, it is tempting to speculate that apop-
totic events may play a role in the increase in BACE1 in AD
brain, Indeed, elevated BACE1 activity may lead to
increased A levels and, given that AB can induce apopto-
sis, this could potentially trigger a vicious cycle that self-
potentiates AP generation and cell death.

Concluding remarks

BACET1 remains a prime drug target for inhibiting the pro-
duction of AB. Not only does BACEL1 initiate A forma-
tion, but the observation that BACE1 levels are elevated in
AD [97,166-170] provides a direct and compelling reason
to develop therapies directed at BACE1 inhibition thus
reducing AP and its associated toxicities. Early on, data
indicated that BACE knockout mice were phenotypically
normal although more recent, detailed analyses show that
complete abolishment of BACE1 activity may have poten-
tially deleterious effects. Therefore, a partial, rather than
full, inhibition of this enzymatic activity may be benefi-
cial, although the percentage of BACE1 inhibition
required to significantly delay amyloid pathology and the
associated cognitive changes, remains to be determined.

The physiological role of BACE1 remains to be estab-
lished. However, several non-APP BACE1 substrates have
been recently identified and the inclusion of NRG1 and
VGSCP subunits as putative substrates for this enzyme,
indicates a potential role for BACE1 in the regulation of
neuronal function. BACE1 levels are elevated under a vari-
ety of conditions, including those cellular changes evoked
under the stressful conditions of cardio- and cerebrovas-
cular disease ([97,166,173,209-215]). Indeed, evidence
suggests that the BACE1 substrates identified so far may
play a role in the responses to stress and/or injury, such as
axonal growth and the regulation of glial cell survival
(NRG1; [240]), recovery from excitotoxicity (A [65]), AP
clearance (LRP; [241]), synapse formation (APP, APLP1,
APLP2; [242,243]), neuroprotection (secreted APP ecto-
domain; reviewed in [244]) and immune functions
(PSGL-1, ST6Gal I and IL-1R2; [160,161,164]). We specu-
late that BACE1 may be involved in the response to stress
and/or injury and that the elevation in BACET1 levels facil-
itates recovery after acute stress/injury. Indeed, it appears
plausible that cleavage of specific BACE1 substrates is nec-
essary for this function.

However, it may well be the case that chronic stress/injury
results in pathologic BACE1 levels and deleterious amy-
loid formation. Indeed, chronic stress/injury could cause
long-term BACE1 elevation and have harmful effects
attributable to cerebral AB overproduction. Furthermore,
we suggest that increased BACE1 activity may affect nor-
mal synaptic functioning, given that, in addition to Af,
other BACE1 cleavage products, including specific Na, 1s
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(such as Na,1.6) are localized to the synapse. Changes in
the normal function of the synapse may result in the neu-
rochemical deficits and behavioral abnormalities that
have been reported in BACE1l transgenic models
[16,18,61,70].

AD etiology remains elusive and the cause of the elevated
AP levels observed in SAD remain to be determined.
Indeed, whether increased BACE1 activity is sufficient to
induce AD pathogenesis, and the initial cause (s) of the
BACE]1 elevation remains unknown. Several lines of evi-
dence suggest that the observed BACE1 elevations may
occur throughout the course of AD development. While
our data indicates that the BACE1 elevation in AD is
actively involved in AD progression and may be detected
prior to the appearance of overt neurodegeneration [97],
increases in BACE1 activity have also been demonstrated
in vivo occurring in response to the induction of apoptosis;
an event associated with the later stages of neurodegener-
ation [136]. It is plausible that different factors cause ele-
vations in BACET1 levels and activity at different stages of
the disease. The association of elevated BACE1 with overt
amyloid pathology, in both Tg mouse models of AD and
AD brain, indicates that Af may potentially cause the
observed elevations in BACE1. Indeed, accumulating evi-
dence suggests that BACE1 is a stress response protein
[136,210-213,215,228,229] and AP is a known neuro-
toxin. However, while elevated A levels may facilitate
positive feedback loop whereby increased AP facilitates
enhanced BACE1 activity and auto-potentiates its own
production, there is accumulating data which links several
well-established AD risk factors (cardiovascular diseases,
stroke, ischemia and TBI), and their associated molecular
changes (hypoperfusion, hypoxia, metabolic dysfunction,
energy inhibition and oxidative stress), with increases in
BACEL1.

The molecular mechanisms governing these associations
are being intensely investigated. It is apparent that BACE1
expression is tightly regulated in a complex manner at
both transcriptional (HIF; [214,224] and post-transcrip-
tional levels including translational efficiency [102], lyso-
somal targeting [134], and proteasomal degradation
[141]. Furthermore, additional regulation of BACEL1 levels
may be attributed to alterations in the levels of proteins
known to associate with and affect the intracellular traf-
ficking of the enzyme (GGA3; [136]). Clearly understand-
ing the molecular mechanisms of BACE1 elevation during
SAD may facilitate the development of novel therapeutic
strategies to treat, and ultimately prevent this neurodegen-
erative disorder.
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AD : Alzheimer's disease;

ADAM : a disintegrin and metalloprotease domain pro-
tein;

APLP : amyloid precursor-like proteins;
ApoE : apolipoprotein E;

APP : amyloid precursor protein;
BACEL : 3-site APP Cleaving Enzyme 1;
BACE1-/-: BACE1 knockout;

CBF : cerebral blood flow;

CBH : chronic brain hypoperfusion;
CNS : central nervous system;

CRF : corticotrophin-releasing factor.
CTF : carboxyl terminal fragment;

DS : Down's syndrome;

EGF : epidermal growth factor;

ER : endoplasmic reticulum;

FAD : familial AD;

GGA : Golgi-localized y-ear containing ADP ribosylation
factor-binding;

GP1 : glycosylphosphatidylinositol;

HIF-1 : hypoxia-inducible factor 1;

HMGCoA : hydroxymethylglutaryl-coenzyme A;
HNE : 4hydroxy-2-nonenal;

HRE : hypoxia-responsive element;

ICD : intracellular domain;

IL1B : interleukin f3;

INFy : interferon y;

JNK : c-jun N-terminal kinases;

LRP : lipoprotein receptor-related protein;
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MBP : myelin basic protein;

MCI : mild cognitive impairment;

NRG : neuregulin 1;

NSAIDS : nonsteroidal anti-inflammatory drugs;
PAR-4 : prostate apoptosis response-4;

PC : proprotein convertase;

PI3K : phospatidylinositol-3-OH kinase;

PLP : proteolipid protein;

PNS : peripheral nervous system;

PPARy : transcriptional regulator proliferator-activated
receptor y;

PS : presenilin;

RIP : regulated intramembrane proteolysis;
RNAI : RNA interference;

SAD : sporadic AD;

ST6Gal1 : Beta-galactoside alpha 2,6-sialyltransferase;
TACE : TNF-a converting enzyme;

TBI : traumatic brain injury;

Tg : transgenic;

TGN : trans Golgi network;

TNFa : tumor necrosis factor o;

UTR : untranslated region;

VGSC : voltage-gated sodium channel.
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