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Abstract

The y-secretase complex is a major therapeutic target for the prevention and treatment of
Alzheimer's disease. Previous studies have shown that treatment of young APP mice with specific
inhibitors of y-secretase prevented formation of new plaques. It has not yet been shown directly
whether existing plaques would be affected by y-secretase inhibitor treatment. Similarly, alterations
in neuronal morphology in the immediate vicinity of plaques represent a plaque-specific neurotoxic
effect. Reversal of these alterations is an important endpoint of successful therapy whether or not
a treatment affects plaque size. In the present study we used longitudinal imaging in vivo with
multiphoton microscopy to study the effects of the orally active y-secretase inhibitor LY-41 1575 in
10—11 month old APP:PSI mice with established amyloid pathology and neuritic abnormalities.
Neurons expressed YFP allowing fluorescent detection of morphology whereas plaques were
labelled with methoxy-XO4. The same identified neurites and plaques were followed in weekly
imaging sessions in living mice treated daily (5 mg/kg) for 3 weeks with the compound. Although
LY-411575 reduced Af levels in plasma and brain, it did not have an effect on the size of existing
plaques. There was also no effect on the abnormal neuritic curvature near plaques, or the
dystrophies in very close proximity to senile plaques. Our results suggest that therapeutics aimed
at inhibition of A} generation are less effective for reversal of existing plaques than for prevention
of new plaque formation and have no effect on the plaque-mediated neuritic abnormalities, at least
under these conditions where A production is suppressed but not completely blocked. Therefore,
a combination therapy of AP} suppression with agents that increase clearance of amyloid and/or
prevent neurotoxicity might be needed for a more effective treatment in patients with pre-existing

pathology.
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Background

Alzheimer's disease (AD) is the most common cause of
dementia among elderly people and it has no known cure.
Compelling evidence from histological and biochemical
studies support the idea that the accumulation of amy-
loid-B (AB) aggregates in the brain plays a seminal role in
the pathogenesis of AD [1]. Likewise, the genetic evidence
regarding familial mutations of the amyloid precursor
protein (APP) and presenilins support the pathogenic role
of Ap accumulation [2]. A deposits as compact or dense
core plaques that are sources of focal neurotoxicity in
transgenic mice and in AD [3]. In this regard, senile
plaques are associated with neuritic dystrophies and syn-
aptic loss [4-6] and it has also been shown that senile
plaques may disrupt cortical synaptic integration[7].

AP is generated after sequential cleavage of APP by 3 and
y-secretases. Therefore, both B-secretase [8] and y-secretase
inhibitors are primary pharmacological targets in the
treatment of AD (for review see [9-11]). The y-secretase
complex is constituted by at least four integral membrane
proteins including presenilin, nicastrin, APH-1 and PEN-
2. The activity of y-secretase determines the solubility of
the AP fragments, with AB42 more prone to aggregation
than the shorter cleavage products [10]. Due to these con-
siderations, different approaches towards modulating v-
secretase activity towards producing shorter peptide frag-
ments are being developed. There has been considerable
success in generating small molecules capable of entering
the central nervous system that inhibit y-secretase activity
potently leading to a sustained reduction in brain Af lev-
els [12]. In both humans and animal models, the use of y-
secretase inhibitors to reduce AP levels and slow A depo-
sition has been demonstrated. Administration of y-secre-
tase inhibitors significantly reduced Ap levels in plasma in
control and AD patients [13,14], as well as in CSF [15].
Similarly, it has also been shown that inhibiting y-secre-
tase activity can reduce AP levels in plasma, CSF and brain
both in young and aged transgenic mice [16-18] and long-
term treatments can slow senile plaque deposition in
Tg2576 mice [19]. Moreover, acute treatment with y-secre-
tase inhibitors led to partial reversal of the deficits in hip-
pocampal-dependent contextual fear conditioning test in
Tg2576 mice [20]. The previous work has demonstrated
positive effects of y-secretase inhibition therapy to prevent
or slow A progression. It is unknown, however, whether
inhibiting y-secretase activity will be effective in a treat-
ment paradigm. Will inhibition of y-secretase lead to the
clearance of existing plaques or the reversal of the mor-
phological alterations in neurons in the mouse models of
AD? In the present work, we use a well characterized y-
secretase inhibitor, N(2)-[(2S)-2-(3,5-difluorophenyl)-2-
hydroxyethanoyl]-N(1)-[(7S)-5-methyl-6-0x0-6,7-dihy-

dro-5H-dibenzo[b,d]azepin-7-yl]-l-alaninamide (LY-
411575) [21,22] and multiphoton microscopy to assess in
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vivo the effect of long-term treatment on existing senile
plaques and the neuronal abnormalities associated with
the plaques in APPswe/PS1dE9 mice. This animal model
shows early deposition of AB by 4-6 months of age
[23,24] and develops neuritic dystrophies and abnormal
neuritic curvature [5,25]. Therefore, at the age used in this
study (10-11 months old) the AB deposition and related
neuropathological changes represent a model of estab-
lished neuropathology.

Results

In vivo effect of LY-411575 on size of existing plaques
The orally active y-secretase inhibitor LY-411575 was
administered daily via gavage for 3 weeks to APP:PS1 mice
with pre-existing amyloid pathology. No adverse effects
were observed in the mice during this treatment period.
Using longitudinal imaging of the brain with multipho-
ton microscopy, the size of individual, identified plaques
was monitored.

Mice were injected with methoxy-XO4 to label amyloid
pathology and fluorescent angiograms were used to iden-
tify imaging volumes over time. With each plaque serving
as its own control, as previously described [26], there was
no significant effect of LY-411575 treatment on plaque
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Figure |

LY-411575 treatment had no effect on the size of
individual plaques in APPswe/PS|IdE9xYFP mice. Indi-
vidual, identified plaques were monitored with longitudinal
imaging during the course of the treatment using multipho-
ton microscopy. Plaques in control treated animals did not
change in size, as previously described [25,26]. Existing
plaques in the treated mice were also unaffected; we did not
detect a treatmentXsession effect [F 3,5 = 1.087; P = 0.356]
or a treatment effect. However, there was a trend towards a
slight reduction in plaque size at 2 weeks that was maintained
until the end of the treatment. Data are representative of
16-57 plaques from 6—7 animals.
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size throughout the treatment period (Figure 1). This
result suggests that prevention of amyloid production
with potent secretase inhibitors has no effect on the size
of existing plaques over a 3 week treatment protocol. It
should be noted, however, that this may be a limitation of
the dosage or treatment duration. Likewise, our measure-
ments were based on using methoxy-XO4 as the plaque
label, and this reports the congophilic core of plaques, not
the halo of immuno-positive amyloid that tends to sur-
round individual plaques. Hence, it is possible that very
small or undetectable effects on plaque size may still lead
to reduced neurotoxicity and beneficial effects.

In vivo effect of LY-411575 on neuritic abnormalities

It has been shown previously that neuritic processes in the
vicinity of senile plaques are significantly more distorted,
or "curvy", supporting the toxic effect of senile plaques
and providing a useful model to study neuronal patho-
physiology [5,25]. Using the quantitative curvature ratio,
we have previously shown that these neuritic abnormali-
ties can be at least partially reversed in short periods of
time with candidate therapeutics [5,6,27]. We monitored
these pathological abnormalities through the use of
APPswe/PS1dE9 mice crossed with neuron specific YFP
expression [28] to allow simultaneous multiphoton imag-
ing of AP deposits and neuronal processes throughout the
treatment period. We examined the neurites located in the
close proximity to senile plaques (within 50 um of plaque
borders) where the distorted pathology is most severe.
The average distance of the measured neurites to plaques
before the beginning of the treatment for Control mice
was 21.0 + 1.5 um (n = 66), and 24.1 + 1.2 um (n = 101)
for LY-411575 treated mice. No statistical differences
between average distances to plaques were detected using
Student-t test (P = 0.110). The stability of the selected
population was also assessed in the consecutive sessions
and no treatmentXsession effect was detected using two
way ANOVA for repeated measures ([F(3 305 = 0.311; P =
0.817] n = 11-101 from 3-4 mice), indicating that the
selected neuritic populations were comparable. We did
not observe any effect of the y-secretase inhibitor LY-
411575 on the shaft diameter of the selected neurites
(table 1). When we examined the morphology of the
selected neurites, we observed a curvature ratio before
starting the treatment (session 1, day 0) in the range pre-
viously described for this model (~0.955) [5,25] both for
Control and LY-411575 groups. We did not detect a treat-
mentXsession effect using two-way ANOVA for repeated
measures after 3 weeks of oral administration of LY-
411575 (Figure 2, Figure 3 for representative example).

We also monitored an additional neuritic alteration com-
prised of dystrophic swellings of neurites in the immedi-
ate vicinity of plaques. These dystrophies, which are
thought to be dendritic as well as axonal [29], represent a
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Table I: LY-411575 has no effect on dystrophy size or neurite
diameter in APPswe/PSIdE9xYFP mice

Treatment Dystrophy size (um2) Neurite diameter (um)

Control LY-411575 Control LY-411575
Session | 5407 4703 0.95+0.04 097 £0.02
Session 2 43+09 55+05 0.95+0.03 1.07 £0.05
Session 3 63+0.9 65+0.5 .00 £0.04 1.12+0.05
Session 4 43+05 62+05 0.99 £0.05 1.12£0.06

LY-411575 (5 mg/Kg) had no effect on dystrophy size when
dystrophies located in close proximity to senile plaques (within I5
1m) were measured in four consecutive imaging sessions using
multiphoton imaging. The first imaging session (session |) was
acquired before the commencement of the treatment. Animals
received daily gavage administrations of LY-41 1575 or vehicle for 3
weeks. Imaging was performed on a weekly basis (sessions 2, 3 and 4).
Analysis using a two way ANOVA for repeated measures resulted in:
sessionXtreatment [F3 j9¢5) = 1.46|; P = 0.223]). Data are from 3—4
mice and 36—534 dystrophies. We also did not detect any significant
effect on shaft diameter of the neurites, located within 50 pm of
plaques, (two way ANOVA for repeated measures
sessionXtreatment [F 3 359 = 0.884; P = 0.450]). Data are from 3—4
mice and 23—111 neurites.

distinct manifestation of plaque-specific neurotoxicity
that can be at least partially reversed with candidate ther-
apeutics [27,30]. When we assessed the size of these dys-
trophic swellings over time, we did not observe any effect
after 3 weeks of treatment. Similarly, when we normalized
the dystrophy size to plaque size we did not detect a sig-
nificant sessionXtreatment effect [F(3,129) = 0.428; P =
0.734] (data not shown). These results demonstrate that
this plaque associated neuronal pathology was not
improved with treatment with the y-secretase inhibitor.
All together, these results suggest that even after 3 weeks
of treatment, there was no detectable effect of y-secretase
inhibition on the neurotoxicity, manifested as morpho-
logical changes in neuronal processes, associated with
existing plaques in vivo.

Effect of LY-411575 on Af40 and 42 levels in plasma
Blood samples were taken at weekly intervals during the
course of the study to monitor the effectiveness of y-secre-
tase inhibition. A standard ELISA kit was used to deter-
mine soluble AB40 and 42 levels over time. Plasma levels
of both AB40 and 42 were significantly reduced in LY-
411575 treated mice within one week after the com-
mencement of the treatment when compared to Control
values, and this effect was maintained until the end of the
treatment (Figure 4). This result demonstrates that the
dose of inhibitor used was able to reduce circulating Af
levels by approximately 60% throughout the course of
treatment.
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LY-411575 treatment had no effect on neuritic curva-
ture in APPswe/PS|1dE9xYFP mice when neurites up
to 50 um from the plaque border were analyzed. Data
are representative of 44—138 neurites from 8-9 animals. The
first imaging session (session 1) was acquired before the
commencement of the treatment. Animals received daily gav-
age administrations of LY-411575 (5 mg-Kg) or vehicle and
for the next 3 weeks and imaging sessions were completed
on a weekly basis (sessions 2, 3 and 4). The curvature ratio of
the same identified neurites were measured over time, with
each neurite serving as its own control. No treatmentXses-
sion effect was detected [F35¢) = 0.171; P = 0.916] despite a
slight trend towards a straightening effect observed in LY-
411575 mice at the conclusion of the treatment.

Effect of LY-411575 on A$340 and 42 levels in brain
Biochemical measures of the effectiveness of the treat-
ment were also used. At the end of the experiments, mice
were killed, the brains extracted, and one hemisphere was
flash frozen. These samples were homogenized and ana-
lyzed for AP levels using standardized ELISA kits. The lev-
els of soluble AB40 and 42 in the brain were significantly
reduced at the end of the treatment when compared to
control values (Figure 5), supporting previous studies
where similar effects were reported in a different mouse
model [22]. The levels of formic acid extractable (insolu-
ble) AB40 and 42 were also reduced, but to a lesser extent.
These results demonstrate that LY-411575 can reduce
total A levels in the brain within this 3 week treatment
period, in accord with previous reports.

Discussion

It is well established that exaggerated production and dep-
osition of AP aggregates as soluble oligomers, ADDLs, and
senile plaques plays a key role in the pathogenesis of AD
[31,32]. Therefore, blocking the production, limiting
aggregation, or enhancing AP clearance has become a
major challenge in the treatment of the illness [33]. Con-
certed efforts have been directed towards the prevention
of production of AB through inhibition of y-secretase. The
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Figure 3

Representative example of the effect of LY-411575
treatment on neuritic curvature in APPswe/
PSI1dE9xYFP mice. Animals received daily oral administra-
tion of LY-411575 (5 mg/Kg) or vehicle for 3 weeks. These in
vivo multiphoton images were taken before starting the treat-
ment (session |, A-LY-411575, C-vehicle) and after 3 weeks
of treatment (session 4, B-LY-411575 and D-vehicle). Each
image is 2 maximum intensity projection of a small volume of
the brain. Individual neurites are traced for the curvature
measurements before and after treatment. Neurons are
green, blood vessels are blue, and dense-core AP plaques
(red) were labeled by systemic injection of methoxy-X0O4.
Scale bar: 25 um

y-secretase is a multi-component protease complex that
catalyzes the intramembranous cleavage of a number of
type I tansmembrane proteins, including APP. Inhibiting
APP processing reduces Af production and this may pre-
vent or limit the progression of the illness. Although an
extensive bibliography supports the capacity of y-secretase
inhibitors to prevent AP} formation and aggregation both
in human and in transgenic mouse models [2,13,17,22],
it remains unclear whether y-secretase inhibition can also
lead to reversal of existing pathology or the associated
neuropathology. This distinction is important in the con-
text of preventative vs treatment paradigms.

In the present work, we used as proof-in-principle the low
molecular weight y-secretase inhibitor LY-411575; a
highly potent compound that crosses the blood-brain bar-
rier and interacts with a binding site located in the PS1 C-
terminal fragment [34]. It is well established that y-secre-
tase also leads to cleavage of other substrates, with Notch
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LY-411575 treatment reduced AB40 and 42 plasma
levels in APPswe/PSIdE9xYFP mice. Animals received
daily oral administration of LY-411575 (5 mg/Kg) or vehicle
for 3 weeks. Plasma samples were taken before starting the
treatment (session |) and on a weekly basis for the next 3
weeks. All measurements were done in duplicate and data
are representative of 3—5 mice. We observed a significant
sessionXtreatment effect [F, 4 = 6.307; P = 0.011] and
[F,14= 11.806; P = 0.001] }or AB40 and 42 respectively.
Student-t test for independent sessions showed significant
differences for both measurements after the first week of
treatment when compared with control values. Differences
were maintained until the end of the treatment (*p < 0.05).

being an important alternative substrate. It has been
reported, for example, that Notch inhibition induced by y-
secretase inhibitors can reduce thymus size and induce
hyperplasia in the gastrointestinal track, however these
side effects were reversible and can be controlled by
adjusting dosage and length of the treatment [21].
Although we did not specifically check for adverse gas-
trointestinal and thymus effects, the dose used in this
study (5 mg/Kg/day) did not induce the "sickly" pheno-
type described by Hyde et al [21] at higher doses.

We did, however, observe that chronic y-secretase inhibition
significantly reduced AB40 and 42 plasma levels within 1
week after the commencement of the treatment. This effect
confirms previous studies in other transgenic mouse models
[12,16,20,22,35] and in non transgenic mice [18]. Moreo-
ver, y-secretase inhibitors have been shown to reduce AB40
and 42 plasma levels both in healthy volunteers [2,13] and
in AD patients [14]. Similarly, when we assessed brain AB40
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LY-411575 treatment reduced soluble and insoluble
Ap40 and 42 brain levels in APPswe/PSIdE9xYFP
mice. All measurements were done in triplicate and data are
representative of 4-6 mice. Student-t test for independent
samples showed a significant reduction of soluble and insolu-
ble AB40 and 42 brain levels after 3 weeks of treatment
when compared with control values (*p < 0.05).

and AB42 levels in APPswe/PS1dE9 mice we observed a sig-
nificant effect after 3 weeks of treatment as previously shown
with this compound in other transgenic mice [19,22,35]. All
together, these data further support the capacity of LY-
411575 to cross the blood-brain barrier and reduce AP levels
both centrally and systemically. However, when we assessed
the effect of LY-411575 on existing senile plaques we
observed no reduction of plaque size after 3 weeks of treat-
ment. Identified plaques were neither cleared, nor reduced in
size. Several studies using cross-sectional analysis of tissue
after chronic treatment of APP mice with y-secretase inhibi-
tors have demonstrated a reduction in plaque burden that
probably reflects prevention of new plaque formation with
no effect on plaque sizes [19,36,37]. These data support the
idea that y-secretase inhibition limits the production of new
AP and therefore reduces the number of new senile plaques
deposited without a major effect on the plaques already
formed. Together, these data suggest that although vy-secre-
tase inhibition can successfully reduce AB production and
aggregation these compounds have a limited effect on revers-
ing or clearing AP deposits. These data are in accord with
experiments performed in a mouse model with inducible
APP expression. Nearly complete suppression of the trans-
gene with doxycycline for an additional 6 months after
plaque formation still revealed significant amyloid pathol-
ogy in the brain, suggesting that established plaques do not
spontaneously resolve even in the absence of continued Af
production [38].

There is compelling evidence associating compact senile

plaques with synaptic loss and neuritic dystrophy forma-
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tion [6,30]. Senile plaques also seem to be responsible for
the abnormal curvature of the surrounding neurites
[4,5,39], disruption of cortical synaptic integration [7]
and abnormal calcium regulation in close proximity to
senile plaques [40]. It has also been shown that soluble
AP can provoke cell death by a progressive degeneration
that begins in neurites and axons[41]. Taking these con-
siderations into account, we extended our in vivo observa-
tions to neuronal processes and we assessed the effect of
LY-411575 on neuritic abnormalities using multiphoton
microscopy. This approach allowed us to explore the pos-
sibility of reversing neuritic abnormalities that develop
within close proximity of senile plaques. As there is no
overt neuronal loss in these mouse models, the neuritic
alterations reflect the first steps in neurodegeneration and
are a quantifiable index of neuropathology. We observed
no effect on the size of neuritic dystrophies closely associ-
ated with plaques. Previous studies have shown that these
dystrophies can be reduced or eliminated after antibody
treatment against A [30] or treatment with curcumin
[27]. While the ultimate effect of these dystrophies in the
brain is unknown, it is clear that they represent a patho-
logical response to plaques and are not common in
healthy tissue.

When we assessed the effect of LY-411575 on neuritic cur-
vature, we observed no effect during the treatment. Neur-
ites are more distorted or "curvy" in the immediate
surround of senile plaques, and this curvature can be at
least partially reversed with immunotherapy [6] or anti-
oxidant treatment [5,27]. The lack of an effect on the cur-
vature ratio suggests that inhibiting y secretase does not
prevent the neurotoxicity of existing amyloid deposits. It
is, however, possible that longer or more potent treat-
ments could prove beneficial.

Conclusion

All together, our data suggest that the y-secretase inhibitor
LY-411575 can successfully reduce Ap plasma and brain
levels in treated mice, but has no effect over a 3 week
period on established amyloid deposits or the neuronal
abnormalities associated with senile plaques. This dem-
onstrates that therapeutics aimed at inhibition of Af gen-
eration are less effective for reversal of existing plaques
than for prevention of new plaque formation [19]. Given
the relatively short treatment duration of our study, how-
ever, longer term studies are warranted to determine
whether or not long-term y-secretase inhibition can
reverse the neuropathological abnormalities seen in
Alzheimer's disease. Since the ultimate goal would be to
restore cognitive impairments that may result from AP
deposition followed by the associated neurodegeneration,
a combination therapy may be warranted. Suppression of
AP generation along with other therapeutic approaches,
including immunotherapy or antioxidant agents that
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increase clearance of amyloid and reduce the toxic effects
of AP deposition, could provide a more successful
approach to treat the illness.

Methods

Animals

Animals were crosses of APPswe/PS1dE9 mice [42] with
the YFP expressing mice (thy-1:YFP line H+/-Tg mice [28])
10-11 months old, obtained from Jackson Lab (Bar Har-
bor, Maine). All studies were conducted with approved
protocols from the Massachusetts General Hospital Ani-
mal Care and Use Committee and in compliance with
NIH guidelines for the use of experimental animals.

Reagents

Texas Red dextran 70,000 D was obtained from Molecular
probes (Eugene, OR), methoxy-XO4 was a gift from Dr.
Klunk (U. Pittsburgh). LY-411575 was synthesized as
described [43], and tested for potency using cell based
assays [44]. Common chemical reagents where obtained
from Sigma (St. Louis, MO).

In vivo treatment and multiphoton imaging

The chronic treatment of APPswe/PS1dE9xYFP involved
daily gavage administration of LY-411575 (5 mg/Kg) for
3 weeks. Control animals followed similar procedures but
received vehicle instead of y-secretase inhibitor treatment.

Cranial window surgeries were performed as previously
described [45]. Briefly, animals were anesthetized using
isoflurane or avertin, the skin and periosteum were
removed and a 6-mm diameter craniotomy was per-
formed, making the anterior end immediately anterior to
Bregma and the posterior end just anterior to Lambda.
Glass windows (8 mm) were installed and secured with
dental cement. All animals received an i.p injection of
methoxy-XO4 (~2.5 mg/kg), a fluorescent compound that
crosses the blood-brain barrier and binds amyloid
plaques [46], the day before the surgery. To facilitate find-
ing the same sites in the brain between sessions, Texas Red
dextran (70,000 Da, 62.5 mg/kg in sterile PBS) was
injected into a lateral tail vein to provide a fluorescent
angiogram before every imaging session. As previously
described [47] two-photon fluorescence was generated
with 800 nm excitation from a mode-locked Ti:Sapphire
laser (MaiTai, Spectra-Physics, Mountain View, CA
mounted on a multiphoton imaging system (Bio-Rad
1024ES, Bio-Rad, Hercules, CA). A custom-built external
detector containing three photomultiplier tubes (Hama-
matsu Photonics, Bridgewater, NJ) collected emitted light
in the range 380-480, 500-540 and 560-650 nm. 3-color
images were acquired for plaques, neurites, and angiogra-
phy simultaneously using a 20x objective (NA = 0.95,
Olympus). In vivo images at low resolution (615 x 615
pum; z-step, 5 um, depth, ~200 pm) were acquired to pro-
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vide a map of the area, using the angiogram as a 3-D fidu-
cial. LY-411575 treated animals were imaged before the
commencement of the treatment (session 1, day 0) and
reimaged on a weekly basis for the next 3 consecutive
weeks (completing sessions 2, 3 and 4). Control treated
animals followed the identical imaging schedule.

Image processing

Plaque size was measured using the blue fluorescence
channel corresponding to methoxy-XO4 labelling. The
maximum intensity projection images were thresholded,
segmented, and measured using Image] software. The
same identified plaques were measured from each imag-
ing session such that each plaque served as its own con-
trol. The size of each plaque was normalized to 100% at
day 0 and then all plaque measurements over time were
averaged for summary statistics.

To analyze neurite abnormalities higher resolution, images
were captured to identify single neurites and plaques (125 x
125 pm; z-step, 0.8 um, depth, 20 pm approximately). To
exclude motion artifacts induced by heartbeat and breathing,
image stacks were aligned using AutoDeblur software
(AutoQuant). Images from the green channel (YFP neurites)
were further processed with the blind 3D deconvolution
function in AutoDeblur to remove background noise. 2D
projections of stacks from the three channels were combined
in Adobe Photoshop 7 (Adobe Systems). Stacks were used to
measure plaque size, dystrophy size, neurite curvature and
neurite diameter. Neuritic dystrophies, defined as the areas
of swelling in the immediate surrounding of the senile
plaques (up to 15 pum from plaques border) [30,48] were
outlined on the 2D projections and the areas (in um?) were
measured with Image-J software. We also measured as many
neurites as we could confidently follow (that were at least 20
pum long) that were present and identifiable in each of the
weekly imaging sessions. Thus, the curvature data represent
longitudinal imaging with each neurite serving as its own
control. The neurite curvature ratio was calculated by divid-
ing the end-to-end distance of a neurite segment by the total
length between the two segment ends as previously
described [4,6,39]. Neurite shaft diameters were measured at
each end and the midpoint of each segment to provide an
average diameter along its length. To determine the effect of
proximity to plaques, the average distance between the near-
est methoxy-XO4 stained amyloid plaque and each neuritic
segment was calculated using the average of the distance
from the plaque edge to each end and the midpoint of the
neuritic segment on the three-channel images, and only neu-
rites located in the proximity of a senile plaque (within 50
pum from a plaque border) were included in the study.

ELISA measurements

AP 40 and 42 were quantified in plasma and brain samples
using colorimetric human A-beta 40 and A-beta 42 ELISA
kits (WAKO Chemicals USA) as previously described [49]

http://www.molecularneurodegeneration.com/content/4/1/19

with modifications. Plasma samples were obtained on a
weekly basis from the saphenous vein at the end of each
imaging session. Blood samples were collected in Eppendorf
tubes treated with 10 pl of EDTA (10 mg/ml) and centri-
fuged at 3500 rpm for 7 minutes. Plasma was frozen at-80 C
until the ELISA was run. At the end of the experiments the
mice were killed, the brains hemisected and soluble and
insoluble AB40 and AB42 were quantified in flash frozen
homogenized hemibrains. For plasma ELISA, samples were
diluted in phosphate buffer with 0.2% BSA, 0.4 M NaCl,
0.076% CHAPS, and 2 mM Na2EDTA. Plasma samples were
analyzed in duplicate. For brain tissue ELISA, hemibrains
were homogenized for 45 s at speed 20 (BioSpec Tissue-
Tearor™) in extraction buffer (10 ulL/mg brain mass) with
protease inhibitor (Complete Protease Cocktail, Roche Diag-
nostics GmbH, Mannheim, Germany). Extraction buffer
consisted of deionized water with 50 mM Tris HCI, 2 mM
EDTA 2Na, 0.01% Methiolate Na, 400 mM NaCl, and
1%BSA. One millilitre of each homogenized brain was cen-
trifuged at 15,000 RPM for 5 minutes at 4°C. The superna-
tant was removed (soluble AB, 1:10 final dilution), and the
pellet was diluted 1:8 and homogenized in 70% formic acid
(800 uL FA for a 100 mg pellet) and centrifuged at 15,000
RPM for 5 minutes at 4°C. Supernatant was removed again
(insoluble AB) and neutralized in Tris buffer with pH =11 (1
M Tris with 70% formic acid). The insoluble fraction was fur-
ther diluted for AB 42 measurements. Brain samples were
analyzed in triplicate. Standard curves for both plasma and
brain tissue ELISAs were made using human AB40 and AB42
standards provided in the ELISA kit. Absorbance was meas-
ured with a Wallac Victor 2 1420 Multilabel Counter (Perk-
inElmer Life & Analytical Sciences, Shelton, CT) and data
were expressed as pmol/g wet tissue.

Statistical analysis

To assess the dynamics of senile plaque size, neurite cur-
vature, and plasma A levels, two-way ANOVA for
repeated measures were used. Dystrophy size, neurite
diameter and AP brain levels were assessed with one-way
ANOVA.
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