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Abstract

emerged to be as a likely proximal cause of AD.

neurotoxicity.

Background: One pathological hallmark of Alzheimer’s disease (AD) is amyloid plaques, composed primarily of
amyloid8 peptide (AB). Over-production or diminished clearance of the 42 amino acid form of A (AB42) in the
brain leads to accumulation of soluble AB and plague formation. Soluble oligomeric AB (0AB) has recently

Results: Here we demonstrate that endocytosis is critical in mediating oAB42-induced neurotoxicity and
intraneuronal accumulation of AB. Inhibition of clathrin function either with a pharmacological inhibitor, knock-
down of clathrin heavy chain expression, or expression of the dominant-negative mutant of clathrin-assembly
protein AP180 did not block 0AB42-induced neurotoxicity or intraneuronal accumulation of AB. However, inhibition
of dynamin and RhoA by expression of dominant negative mutants reduced neurotoxicity and intraneuronal Ap
accumulation. Pharmacologic inhibition of the dynamin-mediated endocytic pathway by genistein also reduced

Conclusions: These data suggest that dynamin-mediated and RhoA-regulated endocytosis are integral steps for
oligomeric AB42-induced neurotoxicity and intraneuronal AR accumulation.

Background

Amyloid-p peptide (AB) is believed to be a causative
agent underlying the pathological mechanism for Alzhei-
mer’s disease, the major form of dementia in the elderly
[1]. The levels of soluble AP species appear to correlate
with disease progression [2-12]. Evidence points to solu-
ble oligomeric AR (0AP) as the assembly form of the
peptide that is likely the proximal cause in AD [13-24],
leading to synaptic dysfunction and eventual neuron
loss in the vulnerable regions of AD brains (for recent
review [25]). Extracellular oAB has been proposed to
bind the cell surface, leading to functional disruption of
NMDAR [26,27] and AMPAR [28,29], and activation of
caspases [30].

In addition to extracellular AB, AR accumulates inside
neurons. Intraneuronal A accumulation has been iden-
tified in Down syndrome and AD patients, amyloid pre-
cursor protein (APP) and PS1 Presenilin 1 transgenic
mice, and cultured cells [31-48]. In AD patients, intra-
neuronal AB42 accumulation appears in vulnerable

* Correspondence: mladu@uic.edu
Department of Anatomy and Cell Biology, University of lllinois at Chicago,
Chicago, IL 60612 USA

( BioMVed Central

brain regions prior to extracellular amyloid formation
and accumulates with aging [31-37,39,44,45,49-52]. In
addition, synaptic dysfunction occurs prior to, or in the
absence of, amyloid plaques in both AD and APP trans-
genic mouse brains [9,53-56]. Studies using triple trans-
genic mice demonstrated that intraneuronal AB causes
the onset of early AD-related cognitive deficits
[43,57,58]. Intriguingly, clearance of intraneuronal Af by
immunotherapy rescued early cognitive deficits, prior to
changes in plaque density. Intraneuronal AP and cogni-
tive deficits re-emerged with the subsequent withdrawal
of immunotherapy [58,59]. These observations support
the hypothesis that intraneuronal A accumulation may
be one of the initial steps in a cascade of events leading
to AD [60,61]. Neurons internalize and accumulate exo-
genous AP [62-65]. Intraneuronal AB could be viewed
as compromised clearance of extracellular soluble AB by
neurons, and excessive accumulation of intraneuronal
AR could lead to cellular organelle dysfunction and
eventual neuron death. For example, intraneuronal Af
was reported to activate caspase 6 leading to neuronal
apoptosis [66]. We recently demonstrated that
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intracellular 0AB42 can activate casein kinase-2, causing
inhibition of fast axonal transport [67].

Neurons, like many other cell types, have several
major endocytic pathways, including clathrin-dependent,
caveolae-dependent, and clathrin- and caveolar-indepen-
dent pathways. However, the specific endocytic path-
ways involved in oAB-uptake and neurotoxicity remain
unclear. Using complementary approaches of pharmaco-
logical inhibition, genetic manipulation by over-expres-
sing dominant-negative mutants and gene knock-down,
we provide data that show that the endocytosis of
0AP42 is linked to neurotoxicity via a dynamin-depen-
dent and RhoA-mediated endocytic pathway in vitro.

We previously established a homogenous preparation
of 0AB42 [19] that causes neurotoxicity in co-cultures
of primary neurons and glia, as well as Neuro-2A cells
(N2A) [18,68,69]. This 0AB42 preparation also inhibits
LTP [70], causes cognitive deficits [71], disrupts fast
axonal transport [67], and induces neuroinflammation
[72]. Here we focus mainly on endocytic pathways in
relation to 0AB42 toxicity in N2A cells.

Results

Clathrin-dependent endocytic pathway is not involved in
0AP42 mediated toxicity

As accumulation of intracellular AB42 accompanies neu-
rotoxicity, we wanted to determine whether blocking
specific endocytic pathways would inhibit neurotoxicity.
We used several approaches to examine clathrin-
mediated endocytosis, a major endocytic pathway. First,
to directly target clathrin, we transiently transfected
N2A cells with siRNA specifically targeting mouse cla-
thrin heavy chain. Western blot analysis showed that
siRNA substantially reduced clathrin protein levels, in
comparison to non-target siRNA control (Figure 1A
inset). Further, the knock-down of clathrin inhibited
transferrin uptake in these transfected cells (data not
shown). However, clathrin siRNA failed to block 0AB42
toxicity, similar to the non-targeting siRNA control
(Figure 1A). Second, we expressed a dominant-negative
mutant of the neuron-specific clathrin-assembly protein
AP180, AP180-CT. The construct contains the clathrin-
binding domain at C-terminal region of AP180, and its
expression is known to inhibit clathrin-mediated endo-
cytosis [73,74]. We transiently transfected N2A cells
with AP180 full-length wild type or a dominant-negative
mutant AP180-CT. Transiently transfected N2A cells
expressed AP180 and AP180-CT as detected by Western
blot analysis (Figure 1B inset). However, the AP180-CT
mutant did not inhibit cell toxicity induced by 0AB42,
similar to the wild type control (Figure 1B). Further-
more, in both AP180 and AP180-CT mutant transfected
cells, there were similar levels of intracellular AB
accumulation as detected by immunofluorescence
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quantitation (Figure 1C). Third, chlorpromazine, a catio-
nic amphiphilic drug that inhibits the formation of cla-
thrin-coated pits [75], was tested. While this compound
is toxic to N2A cells at high concentration, treatment
with 2 mM chlorpromazine retained 90% cell viability.
Again, this treatment failed to block 0AB42 neurotoxi-
city (data not shown). These combined results strongly
suggest that under our experimental conditions, the cla-
thrin-dependent endocytic pathway does not participate
in 0AB42-induced neurotoxicity.

Dynamin mediates 0AB42 neurotoxicity and intracellular
accumulation

Dynamin mediates both clathrin-dependent and -inde-
pendent endocytosis (for review, [76]). We first used
two pharmacological inhibitors to block the dynamin-
dependent endocytic pathway, genistein (a general tyro-
sine kinase inhibitor) and PP2 (a Src family tyrosine
kinase inhibitor). As shown in Figure 2A, genistein
significantly inhibited 0AB42-induced toxicity. The
result was consistent with previous reports that this
agent protected from AP induced toxicity in cultured
hippocampal neurons [77] and SH-SY5Y cells [78]. PP2
pre-treatment also decreased AB42 toxicity though to a
lesser extent than genistein (data not shown). In addi-
tion, we used a dominant-negative dynamin mutant
K44A, an established reagent to specifically abolish
dynamin function [79]. Both dynamin K44A mutant and
wild type proteins were expressed in the transfected
cells, as determined by Western blot analysis (Figure 2B
inset). With 0AB42 treatment, the K44A mutant inhib-
ited neurotoxicity compared to wild type dynamin
(Figure 2B). Thus, the prediction would be that blocking
dynamin mediated 0AB42 endocytosis would decrease
intracellular Ap accumulation. N2A cells were trans-
fected with dynamin wild type or mutant K44A. Treat-
ment of these transfected cells with 0AB42 resulted in
significantly less intracellular Af in dynamin mutant
cells compared to dynamin wild type cells (Figure 2C).
These data collectively support a role for dynamin in
0AB42 endocytosis and neurotoxicity.

RhoA regulates 0AB42 neurotoxicity and intracellular
accumulation

We next determined the role of RhoA in 0AB42 neuro-
toxicity and endocytosis. The small GTPase RhoA regu-
lates the clathrin-independent endocytic pathways [76].
For these experiments, we transiently transfected N2A
cells with vector alone, RhoA wild type or a dominant-
negative RhoA mutant T19N [80]. Western blot analysis
confirmed expression of RhoA and T19N proteins
(Figure 3A inset). In cells treated with 0AB42, the TI9N
RhoA mutant significantly protected cells from 0AB42-
induced neurotoxicity compare to RhoA wild type
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Figure 1 The clathrin mediated endocytic pathway is not involved in oligomeric AB42-induced neurotoxicity. A. N2A cells were
transiently transfected with siRNA for clathrin heavy chain, treated with 10 uM 0AB42 for 24 hours and assayed for neurotoxicity as detected
with an ATP-based luminescence cell viability assay (CellTiter-Glo, Promega); no difference with treatment. Inset, clathrin heavy chain levels were
characterized with clathrin heavy chain antibody (Sigma) by Western blot analysis with an equal amount of lysates from cells transfected with
non-targeted siRNA and CLTC siRNA. B. N2A cells were transiently transfected with wild type AP180-FL or dominant-negative AP180-CT
construct, treated with 10 uM 0AB42 for 24 hours, and assayed for neurotoxicity; no difference with treatment. Inset, AP180-CT was detected
with Flag antibody (Sigma) by Western blot analysis with an equal amount of lysate from cells transfected with AP180-FL and AP180-CT. C. N2A
cells were transiently transfected with AP180-FL or AP180-CT. 48 hours post-transfection, cells were treated with 10 uM 0AB42 for 30 minutes,
fixed and stained for AR with AB42 specific antibody (Invitrogen, green). AP180-FL and AP180-CT mutant transfected cells were identified by
anti-Flag antibody (red). Nuclei appear blue as detected by DAPI staining. Cells were individually outlined and mean fluorescence intensity of AB
signals was quantified with NIH image software. There were similar levels of AR accumulation in these transfected cells.
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Figure 2 Dynamin mediates oligomeric AB42-induced neurotoxicity. A. N2A cells were pre-treated + 10 mM genistein for 1 hour, treated
with 10 uM 0AB42 for 24 hours + genistein, and assayed for neurotoxicity as described in Figure Legend 1. Significant difference (p < 0.01)
between cells + genistein is indicated by an asterisk (¥). B. N2A cells were transiently transfected with dynamin wild type, dominant-negative
K44A mutant expression plasmids, or vector control; treated with 10 uM 0AB42 for 24 hours and assayed for neurotoxicity. Significant difference
(p < 0.01) between cells + dominant-negative K44A mutant are indicated by an asterisk (). Inset, expression levels of c-myc tagged dynamin
were characterized by anti-myc antibody with Western blot analysis with an equal amount of lysate from cells transfected with vector, dynamin
wild type, or dynamin dominant-negative K44A mutant. C. N2A cells were transiently transfected with dynamin wild type or dominant-negative
K44A mutant expression plasmids. 48 hours post-transfection, cells were treated with 10 uM 0AB42 for 30 minutes, and stained for AB with AB42
specific antibody (Invitrogen, green). Transfected cells were identified by anti-myc antibody (Abcam, red). Nuclei appear blue as detected by
DAPI staining. Cells were individually outlined and mean fluorescence intensity of AB signals were quantified with NIH image software.
Significant difference in AB levels (p < 0.01) between cells with dynamin wild type and K44A mutant is indicated by an asterisk (¥).
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Figure 3 RhoA mediates oligomeric AB42-induced neurotoxicity. A. N2A cells were transiently transfected with RhoA wild type, dominant-
negative T19N mutant, or vector control; treated with 0AB42 for 24 hours; and assayed for neurotoxicity as described in Figure Legend 1.
Significant difference (p < 0.01) between cells £ RhoA dominant-negative T19N mutant are indicated by an asterisk (*). Inset, expression levels of
HA-taged RhoA were characterized by anti-HA antibody (Roche) with Western blot analysis with an equal amount of lysate from cells transfected
vector, RhoA wild type or RhoA dominant-negative T19N mutant. B. N2A cells were transiently trasfected with RhoA wild type or dominant-
negative T19N mutant expression plasmids. 48 hours post-transfection, cells were treated with 10 pM 0AB42 for 30 minutes, fixed and stained
for AB with AB42 specific antibody (Invitrogen, green). RhoA wild type or TI9N mutant transfected cells were identified by anti-HA antibody
(red). Nuclei appear blue as detected by DAPI staining. Cells were individually outlined and mean fluorescence intensity of AR signals were
quantified with NIH image software. Significant difference (p < 0.01) between cells transfected with RhoA wild type and T19N mutant is
indicated by an asterisk (¥).
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(Figure 3A). To confirm that RhoA is involved in 0AB42
endocytosis, we assessed accumulation of intracellular
AP by treating these transfected cells 0AB42. Signifi-
cantly less Ap was detected in RhoA mutant positive
cells compared to RhoA wild type cells (Figure 3B).
These results suggest that RhoA is involved in 0AB42
endocytosis and neurotoxicity.

Taken together, these data strongly suggest that endo-
cytosis is critical for 0AB42-induced neurotoxicity. This
process is dependent on dynamin, but not clathrin, and
further regulated by RhoA (Figure 4).

Discussion

In recent years, it has become increasingly clear that
soluble 0AB plays an essential role in the neuronal loss
characteristic of AD pathology. Soluble 0AB could med-
iate neuronal dysfunction extracellularly by binding to
cell surface receptors and disturbing downstream signal-
ing pathways, leading to disruption of LTP and LTD,
and eventual neuronal death. Alternatively, soluble 0AB
toxicity could arise from intraneuronal accumulation as
a result of impaired exocytosis or failed clearance fol-
lowing endocytosis. The importance of endocytosis in
AD is underscored by a recent report identifying genetic
variances in phosphatidylinositol-binding clathrin assem-
bly protein (PICALM) associated with late onset AD
[81]. PICALM facilitates endocytosis in hippocampal
neurons and thus could play a role in AB clearance in
the brain [82]. However, the mechanisms underlying
binding and subsequent signalling pathways or endocy-
tosis leading to AP intracellular accumulation remain
poorly understood.

Although a major endocytic pathway in neurons is
clathrin-dependent [83], we show by three complemen-
tary approaches that inhibition of this pathway did not
inhibit 0AB42 neurotoxicity (Figure 1). A reduced level
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of AP180 has been reported in AD patient brains [84].
Our data that AP180 did not mediate AP toxicity sug-
gests that AP180 could potentially regulate trafficking of
proteins/enzymes involved in AR production [85].

There is increasing evidence of clathrin- and caveolin-
independent pathways mediating ligand-induced endocy-
tosis [76,86]. The large GTPase dynamin is involved in
both clathrin-dependent and -independent pathways
[76]. Our results suggest an important role for dynamin
in 0AB42-induced neurotoxicity and intraneuronal Af
accumulation. Interestingly, clathrin-independent but
dynamin-dependent endocytosis was required for A
internalization in sympathetic neurons in vitro [87]. The
small monomeric GTPase RhoA regulates other cla-
thrin-independent pathways, such as IL2-receptor endo-
cytosis, [88]. Our data show RhoA regulates 0AP42
endocytosis and neurotoxicity. The role of RhoA in
0AB42-induced neurotoxicity is further supported by
recent reports of potential roles for this GTPase in AD.
For example, RhoA had an altered subcellular localiza-
tion in both AD and APP transgenic Tg2576 mouse
brains [89]. Further, RhoA levels increased specifically
around amyloid plaques in these models [90].

As neurons do not express caveolin-1, the principal
structural protein in caveolae, and do not have caveolae
structure [91], we did not pursue this pathway. Another
possible route for AP uptake is pinocytosis. AB40
directly conjugated with fluorescein was taken up by
neurons via diffusion in a non-saturable, energy-inde-
pendent process [92]. In our experiments, ATP levels
were used as a measurement of neurotoxicity, preclud-
ing results based on energy independence. More impor-
tantly, while we have been able to consistently label
oligomers with Alexa-488 after formation and maintain
conformational stability, we are unable to prepare con-
sistent oligomeric conformations using pre-labeled
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fluorescein-APB42 [65]. In addition, comparison between
AB40 and 42 is problematic.

Our data (summarized in the schematic shown in
Figure 4) show RhoA and dynamin-dependent steps
involved in 0AB42 neurotoxicity and intracellular AB
accumulation.

Conclusions

Our experiments identify the initial steps of endocytosis
required for 0AB42-induced neurotoxicity and intracel-
lular AB accumulation. Specifically, AB-induced neuro-
toxicity is dynamin-dependent and RhoA-regulated, but
clathrin-independent. Further studies will be needed to
identify potential steps in the endocytic pathways as
therapeutic targets in AD.

Methods

Materials

Recombinant AB42 was purchased from rPeptide
(Bogart, GA). Hexafluoroisopropanol (HFIP) and anhy-
drous dimethyl sulfoxide (DMSO) were purchased from
Sigma-Aldrich. Phenol-red free Ham’s F12 media was
obtained from Promocell (Heidelberg, Germany) and
supplemented with L-glutamine (146 mg/L) prior to use.
Genistein and chlorpromazine were purchased from
Sigma. PP2 was purchased from EMD Biosciences.

Oligomer formation conditions

Oligomer preparations of AB42 were formed according
to our previously established protocols [18,19]. Briefly,
following evaporation of HFIP in a fume hood over-
night, the resulting AB42 peptide film was stored desic-
cated at -20°C. Immediately prior to use, the films were
allowed to come to room temperature, solubilized to
5 mM in anhydrous DMSO, sonicated in a bath sonica-
tor (Branson) for 10 minutes, diluted to 100 uM in phe-
nol-red free Hams F12, and stored at 4°C for 24 hours.
Oligomeric AB42 morphology was routinely confirmed
by atomic force microscope [19].

Cell culture and cell viability assay

Mouse neuroblastoma, N2A cells (ATCC) were main-
tained in MEM (ATCC) supplemented with 10% FBS, 2
mM L-glutamine, 100 U/ml of penicillin, 100 ug/ml of
streptomycin, as previously described [18,69]. 5000 cells
per well were plated on to 96-well plates 24 hours prior
to treatment to allow attachment. Cells were then trea-
ted 10 mM 0AB42 in DMEM medium without phenol
red and with 1% N2 supplement (Invitrogen). At the
end of the experiment (24 hours post-treatment), cell
viability was assessed by relative cellular ATP levels
using CellTiter-Glo assay kit (Promega) according to the
manufacture’s instruction. Statistical significance was
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established at p < 0.01 by One-way ANOVA with Tukey
test for comparison in different groups.

Pharmacological inhibition of endocytosis

N2A cells were treated with pharmacological inhibitors
that block specific steps during endocytosis. Pilot experi-
ments were performed to find inhibitor concentrations
that did not significantly compromise cell viability as
inhibitors for cellular endocytosis could adversely affect
cell viability. For example, as has been reported, chlor-
promazine at higher concentration (10*-10"> M) killed
cells, while at lower concentration (10°-10"> M) inhib-
ited Ca*"-mediated toxicity in a neuroblastoma cell line
[93]. Genistein substantially inhibited the growth of
N2A cells in a dose-dependent manner with an 1C50
value of 18 mM, and PP2 at 3 mM was lethal to the
N2A cells [94]. Chlorpromazine (2 mM), genistein
(10 mM), PP2 (1 mM) were added to cell cultures at
indicated concentrations 1 hr before 0AB42 treatment
in DMEM with 1% N2 supplement. The final concentra-
tion of vehicle (DMSQO) was 0.05% in all cultures.

Genetic manipulation of selected endocytic pathway
proteins

To block specific routes in the endocytic pathways, we
blocked the function of key proteins in the endocytic path-
way by either expressing dominant-negative proteins, or
knock-down of endogenous proteins. N2A cells were tran-
siently transfected with expression plasmids or siRNA
using LipofeactAmine 2000 (Invitrogen). The following
endocytic proteins were transfected for expression: Rat
wild type (WT) Dynamin and the dominant-negative
dynamin mutant K44A (myc-tag), the dominant-negative
AP180 mutant AP180-CT (Flag-tag), and RhoA WT and
dominant-negative mutant T19N (HA-tag). These plas-
mids were kindly provided by Dr. R. Minshall (UIC, dyna-
min) and Dr. L. Greene (NIH, AP180), or purchased from
Missouri S&T (RhoA). To achieve highest possible trans-
fection efficiency, we tested several transfection reagents
(such as LipofectAmine and PLUS reagent, GenJet, and
LipofectAmine 2000) and transfection conditions (cell
density, pH of the medium and transfection incubation
duration) with EGFP expression plasmid. We obtained the
highest transfection efficiency with LipofectAmine 2000 at
cell density of 90-100% confluence.

Small interfering RNA (siRNA) for the clathrin heavy
chain (CLTC, SMARTpool L-004001-00-0005) and
control Non-Targeting siRNA were purchased from
Dharmacon. Cells were transfected at 20 pmol siRNA in
24-well culture plates using LipofectAmine 2000 accord-
ing to vendor’s recommended transfection protocol. A
second transfection was done the next day. These trans-
fected cells were then split and seeded on to 96-well
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plate in MEM with 10% FBS. 48 hours post-transfection,
these cells were treated with 0AB42 for 24 hours.

SDS-PAGE/Western blot characterization of targeted
endocytic proteins

Transfected cells treated in parallel to those used for cell
viability assays were lysed by 15-minute incubation in
RIPA buffer (50 mM Tris-HCI, pH 8.0, with 150 mM
sodium chloride, 1.0% Igepal CA-630 (NP-40), 0.5%
sodium deoxycholate, and 0.1% SDS, Sigma-Aldrich)
containing protease inhibitors (Protease Inhibitor Cock-
tail Set I, Calbiochem), followed by centrifugation. Equal
amounts of total protein were analyzed for levels of
indicated proteins by Western blot analysis following
SDS-PAGE using 4-12% Bis-Tris 1.5 mm NuPAGE pre-
cast gels (Invitrogen). Supernatants were mixed with
LDS sample buffer (Invitrogen) and electrophoresed at
90-100 V for 80-90 minutes. Proteins were transferred
to 0.2 um polyvinylidene difluoride membranes. Mem-
branes were blocked for 1 hour in a solution of 5% non-
fat dry milk in Tris-buffered saline containing 0.0625%
Tween-20 prior to incubation with primary antibody
solutions. Molecular mass was estimated using pre-
stained molecular weight markers (Invitrogen). CLTC
was detected using a mouse anti-CLTC monoclonal
antibody (C1860, Sigma; 1:1,000), myc tagged dynamin
with anti-myc antibody 9E10 (Sigma; 1:5000), Flag-
tagged AP180-CT with Flag antibody M2 (Sigma,
1:5000), HA tagged RhoA with rat HA antibody 3F10
(Roche Applied Science; 1:2500), and appropriate horse
radish peroxidase conjugated secondary antibody. Actin,
as detected with rabbit anti-actin antibody (Sigma;
1:5000), was used as total lysate loading control. Pro-
teins were visualized with enhanced chemiluminescence
Western blotting substrate (Pierce) on the Kodak 4000R
imaging system.

Cellular uptake of oligomeric Ap42

Intracellular AR was detected by immunofluorescence
analysis using a rabbit polyclonal anti-AB42 specific
antibody (Invitrogen). N2A cells or transiently trans-
fected N2A cells (24 hours post transfection) were
seeded at 20,000 cells/well on poly-D-lysine glass cover-
slips in phenol-red free DMEM + 10% FBS overnight.
Recombinant 0AB42 was added to cells in DMEM med-
ium and incubated for 30 min at 37°C. At the end of
the treatment, cells were washed with PBS. Cell surface
bound oA was striped off in a solution of 0.2 M acetic
acid and 0.5 M NaCl. Cells were fixed in 4% paraformal-
dehyde for 20 minutes at room temperature. Cells were
permeablized with 0.3% Triton X-100 in 1xPBS for 5
minutes, and blocked for 15 minutes with 3% BSA,
incubated overnight with rabbit anti-AB42 (1:100) at
4°C, followed by 1 hour incubation at room temperature
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with Alexa488-labeled donkey-anti-rabbit IgG (1:500,
Invitrogen). Transfected cells were identified by co-
staining with anti-Flag antibody (M2, 1:250, Sigma) for
AP180, rat anti-HA (3F10, Roche) for RhoA, or mouse
anti-myc antibody 9E10 (1:200, Abcam) for dynamin,
and appropriate 2" antibody conjugated with Alexa594
(all from Invitrogen). Coverslips were mounted with
Prolong Gold antifade reagent with DAPI (Invitrogen)
fluorescence mounting medium on glass slides. Confocal
laser scanning microscopy images were acquired on a
Zeiss LSM 510 META, Axiovert 200 M laser scanning
confocal microscope using a Plan-Apochromate Zeiss
40x/1.3 oil immersion objective. Mean brightness of Af
signals were quantified with NIH image software.
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