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Abstract

Background: A recently published genome-wide association study (GWAS) of late-onset Alzheimer’s disease
(LOAD) revealed genome-wide significant association of variants in or near MS4A4A, CD2AP, EPHA1 and CD33. Meta-
analyses of this and a previously published GWAS revealed significant association at ABCA7 and MS4A, independent
evidence for association of CD2AP, CD33 and EPHA1 and an opposing yet significant association of a variant near
ARID5B. In this study, we genotyped five variants (in or near CD2AP, EPHA1, ARID5B, and CD33) in a large (2,634
LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We
performed meta-analyses of the association of these variants with LOAD and tested for association using logistic
regression adjusted by age-at-diagnosis, gender, and APOE ε4 dosage.

Results: We found no significant evidence of series heterogeneity. Associations with LOAD were successfully
replicated for EPHA1 (rs11767557; OR = 0.87, p = 5 × 10-4) and CD33 (rs3865444; OR = 0.92, p = 0.049), with odds
ratios comparable to those previously reported. Although the two ARID5B variants (rs2588969 and rs494288)
showed significant association with LOAD in meta-analysis of our dataset (p = 0.046 and 0.008, respectively), the
associations did not survive adjustment for covariates (p = 0.30 and 0.11, respectively). We had insufficient
evidence in our data to support the association of the CD2AP variant (rs9349407, p = 0.56).

Conclusions: Our data overwhelmingly support the association of EPHA1 and CD33 variants with LOAD risk:
addition of our data to the results previously reported (total n > 42,000) increased the strength of evidence for
these variants, providing impressive p-values of 2.1 × 10-15 (EPHA1) and 1.8 × 10-13 (CD33).

Background
Following the identification of the APOE ε4 allele as a
risk factor for late-onset Alzheimer’s disease (LOAD) in
1993 [1], consistent replication of subsequently identi-
fied candidates was not achieved until 2009, when two
genome-wide association studies (GWAS) [2,3] identi-
fied associations of variants in or near CLU, PICALM ,
and CR1 with LOAD, which were consistently replicated
in multiple large, independent case-control studies

[4-17]. Subsequently, a variant near BIN1 was reported
[4] to achieve genome-wide significant association in a
later GWAS published in 2010 that also replicated well
in follow-up studies [14-19]. These results demonstrate
the utility of the hypothesis-free GWAS approach for
identifying loci that associate with LOAD and the neces-
sity of pooling samples and data from multiple centers
to obtain resources with sufficient statistical power
(GWAS typically > 14,000, follow-up typically total >
28,000) to detect the modest ORs (e.g. 0.8/1.2) asso-
ciated with these variants in GWAS and follow-up
studies.
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Two recently published companion studies by Holling-
worth et al. [20] and Naj et al. [17] performed meta-
analysis of two large GWAS datasets (n > 75,000).
Besides APOE, CLU, PICALM, and CR1, the meta-ana-
lyses revealed association at ABCA7 (p = 5 × 10-21),
MS4A6A (p = 1.2 × 10-16), MS4A4E (p = 1.1 × 10-10),
EPHA1 (p = 6 × 10-10), CD2AP (p = 8.6 × 10-9) and
CD33 (p = 1.6 × 10-9). In addition, the two datasets
revealed opposing association (Naj et al. OR = 0.93, p =
0.001; Hollingworth et al. OR = 1.06, p = 0.03) of the
variant near ARID5B (rs2588969) with LOAD, suggest-
ing potential heterogeneity at this locus. In this study,
we genotyped the variants identified at the CD2AP,
EPHA1, and CD33 loci in our independent case-control
dataset comprising six case-control series (n = 6,835).
To assess the opposing associations at the ARID5B
locus, we also genotyped the two ARID5B variants
included in the Hollingworth et al. study. Genotypes
from our follow-up case-control series (Mayo 2) for var-
iants in ABCA7, MS4A6A and MA4A4E were included
in Stage 3 of the Hollingworth et al. study, so we have
not included these three variants in this study. We have
performed meta-analyses of five variants (at CD2AP,
EPHA1, ARID5B and CD33 loci) in our six case-control
series, which showed no significant series heterogeneity.
Furthermore, we have performed logistic regression ana-
lysis of our pooled series adjusting for covariates. Finally,
we have used a Fisher’s combined test to evaluate the
significance of the association of these five variants in
our data combined with the data in the Hollingworth et
al. and Naj et al. studies.

Results
We genotyped five variants (CD2AP; rs9349407, EPHA1;
rs11767557, ARID5B; rs2588969 and rs4948288, CD33;
rs3865444) in our independent follow-up case-control
series (Mayo2) from three North American and three
European Caucasian series. Detailed information about
these samples is shown in Table 1 and genotype counts

are shown in Table 2. Samples used in this study do not
overlap with those included in the Naj et al. study and
have not been included in any of the published LOAD
GWAS. The Mayo2 dataset included in the Holling-
worth et al. publication only included genotypes for
ABCA7, MS4A6A and MA4A4E.
Meta-analyses of allelic association in the six Mayo2

series performed using a DerSimonian-Laird random
effects model (Figure 1) revealed a significant pooled
OR for the EPHA1 variant (Figure 1b; OR = 0.88, p =
0.008) comparable to that previously published by Naj et
al. (OR = 0.87) and by Hollingworth et al. (OR = 0.90).
As shown in Figure 1c and 1d, we also observed signifi-
cant association for both ARID5B variants (rs2588969,
OR = 1.08, p = 0.046; rs4948288, OR = 1.11, p = 0.008)
with ORs comparable to those reported by Hollingworth
et al. (OR = 1.06 and 1.07, respectively) and in the
opposing direction to those reported by Naj et al. for
rs2588969 (Stage 1+2 OR = 0.93, p = 7.7 × 10-4). As
shown in Figure 1a and 1e, we did not observe signifi-
cant association for CD2AP (OR = 0.98, p = 0.76) or
CD33 (OR = 0.96, p = 0.32) in our meta-analyses. Bre-
slow-Day tests provided no significant evidence that the
ORs for any of these variants were heterogeneous
among our series (all p > 0.25), as shown in Figure 1.
The variant with the most heterogeneity was CD2AP
(rs9349407) where the estimated percentage of variation
due to heterogeneity across studies (I2) was 25.1% (95%
CI 0%-70%) suggesting the presence of some heteroge-
neity for that variant.
To adjust for important covariates, we included age-

at-diagnosis/entry, sex and APOE ε 4 dosage in logistic
regression analyses of all five variants in each of the six
Mayo2 series; in our analysis of all Mayo2 series com-
bined, series was included as an additional covariate.
Table 3 shows the results for the six Mayo2 series com-
bined (Mayo follow-up) as well as for each of the six
individual Mayo2 series. For the purpose of comparison,
we have also included in Table 3 the published GWAS

Table 1 Details of the Mayo2 samples used in this study and genotype counts

Number of samples Mean Age (SD) % Female % ε4+

Series AD CON Total AD CON AD CON AD CON

Jacksonville 507 967 1,474 80.0 (6.7) 81.7 (7.6) 61.9 56.3 60.2 21.8

Rochester 317 1,638 1,955 85.8 (4.5) 80.3 (5.2) 62.1 54.6 42.3 22.4

Autopsy 312 102 414 87.4 (4.8) 86.0 (4.3) 67.6 52.0 61.2 14.7

Norway 346 555 901 80.2 (7.3) 75.3 (6.8) 69.9 59.8 63.0 24.1

Poland 483 188 671 76.7 (4.8) 73.0 (5.9) 66.3 76.6 56.4 19.0

ARUK 669 751 1,420 75.6 (8.2) 76.2 (7.3) 55.6 49.9 58.0 24.4

The number of LOAD patients (AD) and controls (CON), mean age-at-diagnosis, percentage that are female and percentage that possess at least one copy of the
APOE ε 4 allele are given for each individual series. Mean age is given as age at diagnosis/entry with the standard deviation (SD) from the mean in parentheses.
None of the samples comprising the Jacksonville, Rochester and autopsy-confirmed Mayo Clinic or ARUK series (comprising Bristol, Leeds, Manchester,
Nottingham, Oxford and Southampton), which were included in this follow-up study overlap with those used in the Naj et al. study and have not been included
in any of the published LOAD GWAS. The Mayo2 dataset included in the Hollingworth et al. publication only included genotypes for ABCA7, MS4A6A and
MA4A4E.
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results for the same variants. Adjustment for covariates
revealed comparable ORs to those obtained in the meta-
analyses, with improved p-values for the EPHA1 (OR =
0.87, p = 5 × 10-4), CD33 (OR = 0.92, p = 0.049) and
CD2AP (OR = 0.97, p = 0.56) loci. However, the asso-
ciations of the ARID5B variants were no longer signifi-
cant following adjustment for covariates (rs2588969: OR
= 1.05, p = 0.30, rs4948288: OR = 1.07, p = 0.11) sug-
gesting that these associations may be dependent upon
the series, age-at-diagnosis/entry, sex and/or APOE ε 4
dosage of the individual.
In order to estimate the overall association of these

five variants in our data combined with the previously
published associations, we used Fisher’s method to com-
bine the p-values for all associations (Table 3; Mayo2/
ADGC/Hollingworth). We found that adding our data
to those previously reported, increased the strength of
evidence for all variants as LOAD risk modifiers
(CD2AP: p = 6.5 × 10-11, EPHA1: p = 2.1 × 10-15,
ARID5B rs2588969: p = 2.3 × 10-9, ARID5B rs4948288:
p = 4.0 × 10-4, CD33: p = 1.8 × 10-13).

Discussion
We report here successful replication of the association
of two variants with LOAD in a large (n = 6,835), inde-
pendent case-control study; rs11767557, which is
located 3 kb upstream of EPHA1 (p = 5 × 10-4) and
rs3865444, which is located 373 bp upstream of CD33
(p = 0.049). The ORs we observed in our meta-analyses
(EPHA1 = 0.88, CD33 = 0.96) were comparable to those
reported by both Naj et al. (EPHA1 = 0.87, CD33 =
0.89) and by Hollingworth et al. (EPHA1 = 0.90, CD33
= 0.89) such that the estimated p-values for association
of these variants in all data (n > 42,000) were an
impressive 2.1 × 10-15 for EPHA1 and 1.8 × 10-13 for
CD33.

Although our meta-analyses showed successful repli-
cation of the association of the ARID5B variants
rs2588969 (OR = 1.08, p = 0.046) and rs4948288 (OR =
1.11, p = 0.008) with a direction of association consis-
tent with that reported by Hollingworth et al. (OR =
1.06 and 1.07, respectively), the associations did not sur-
vive adjustment for age-at-diagnosis/entry, sex and
APOE ε 4 status (p = 0.30 and 0.11, respectively). This
covariate-dependent association could explain the
opposing association reported by Naj et al. in their dis-
covery (OR = 0.88) and replication (OR = 1.05) datasets
for rs2588969; the only ARID5B variant they tested.
Therefore, while estimation of the p-values for associa-
tion of the ARID5B variants in all datasets combined
were highly significant (rs2588969; p = 2.3 × 10-9 and
rs4948288; p = 4.0 × 10-4), interpretation of these asso-
ciations should be treated with caution and should take
into account the age-at-diagnosis/entry, sex and APOE ε
4 dosage of the populations. Finally, although the esti-
mated p-value for association of rs9349407 (located in
intron 1of CD2AP) in all datasets was 6.5 × 10-11, there
was no evidence for association of this variant in our
dataset alone (OR = 0.97, p = 0.56).
Our Mayo2 collection of case-control series studies

provided a total of 2,634 LOAD and 4,201 controls.
Combining across studies to perform global tests of sig-
nificance for additive genotypic trend tests gave us 80%
power to detect ORs ranging from 1.17 (or 0.855) for
variants with a minor allele frequency (MAF) of 0.2 to
1.13 (or 0.883) for variants with a MAF of 0.45 in con-
trols. The study provided approximately 60% power to
detect the OR of 1.11 that we report for CD2AP (MAF
= 0.27).
Case-control studies such as this are not designed to

ascertain whether the variants with reported associa-
tion with LOAD risk are the functional variant but

Table 2 Genotype counts for each of the six Mayo2 series

CD2AP (rs9349407) EPHA1 (rs11767557) ARID5B (rs2588969) ARID5B (rs4948288) CD33 (rs3865444)

GG/GC/CC GG/GC/CC TT/TC/CC TT/TC/CC CC/CA/AA CC/CA/AA GG/GA/AA GG/GA/AA CC/CA/AA CC/CA/AA

Series AD CON AD CON AD CON AD CON AD CON

Jacksonville 254/197/41 497/369/56 339/143/
19

612/301/44 188/226/81 379/400/149 164/233/99 351/426/148 251/200/41 446/386/88

Rochester 170/126/17 843/640/117 198/102/9 985/518/69 100/159/48 623/755/226 92/172/50 581/748/250 148/134/30 715/692/170

Autopsy 156/110/19 49/44/7 205/97/5 61/28/10 118/148/42 50/38/14 115/142/43 38/43/17 141/125/32 42/44/11

Norway 177/131/16 273/205/41 212/113/
13

337/185/26 129/165/44 215/250/78 115/156/53 184/268/88 153/139/35 248/236/57

Poland 235/193/40 100/70/11 297/140/
20

108/52/9 153/243/77 65/91/29 160/222/84 62/96/26 224/204/39 96/83/8

ARUK 341/243/55 363/317/53 386/191/
20

439/234/37 236/313/
101

271/367/102 208/326/
122

259/351/122 289/286/67 329/307/94

Total 1333/1000/
188

2125/1645/
285

1637/786/
86

2542/1318/
195

924/1254/
393

1603/1901/
598

854/1251/
451

1475/1932/
651

1206/1088/
244

1876/1748/
428

The genotype counts (major allele homozygotes/heterozygotes/minor allele homozygotes) for CD2AP (rs9349407), EPHA1 (rs11767557), ARID5B (rs2588969 and
rs4948288) and CD33 (rs3865444) variants are given for each individual series.
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they can identify a linkage disequilibrium (LD) block
within which a truly functional variant may reside. Our
results indicate that the EPHA1 and CD33 variants
represent excellent candidates for targeted deep
sequencing or high density genotyping in order to
define the locus further, followed by subsequent func-
tional studies of nearby genes to elucidate the mechan-
ism behind these associations. With the exception of
rs9349407, which lies within intron 1of CD2AP, all of
these variants lie within intergenic regions but for ease
of the reader, we have thus far only referred to the
nearest gene for each variant. This by no means sig-
nifies that these variants (or the functional variants in
LD with them) are assumed to affect the expression or
function of the nearest gene but may affect other
nearby genes. Until it is known which gene underlies
these associations, all nearby genes should be included
in follow-up functional investigation (all genes that
reside within 100 kb of these variants are listed in
Additional file 1, Table S1).

Conclusions
Taken along with our previous publications [5,18,20,21],
we have now performed follow-up association studies of
25 of the top GWAS-identified candidate LOAD genes
and successfully replicated the association of eleven var-
iants (in or near ABCA7, BIN1, CD33, CLU, CR1,
EPHA1, GAB2, LOC651924, MS4A6A/4E and PICALM),
eight of which are currently ranked in the top ten (after
APOE) on AlzGene. This recent success in replicating
genetic association highlights the utility of multiple,
large case-control follow-up studies to confirm the
novel associations reported by large GWAS, thus con-
firming them as good candidate genes for functional fol-
low-up studies.

Methods
Ethics statement
Approval was obtained from the ethics committee or
institutional review board of each institution responsible
for the ascertainment and collection of samples. Written
informed consent was obtained for all individuals that
participated in this study.

Case-control subjects
The Mayo2 case-control series consisted of Caucasian
subjects from the United States ascertained at the
Mayo Clinic Jacksonville, Mayo Clinic Rochester, or
through the Mayo Clinic Brain Bank. Additional Cau-
casian subjects from Europe were obtained from Nor-
way [22], Poland [23], and from six research institutes
in the United Kingdom that are part of the Alzheimer’s
Research UK (ARUK) Network. Although the ARUK
samples used in this follow-up do not overlap with

Figure 1 Forest plots for meta-analysis of CD2AP, EPHA1,
ARID5B, and CD33 variants in our six Mayo2 case-control
series. ORs (boxes) and 95% CI (whiskers) are plotted for each
population and shown on the right of each plot. Combined OR is
the overall OR calculated by the meta-analysis using a random
effects model. P-values are provided for the combined ORs and
Breslow-Day tests of heterogeneity. I2 gives an estimate of between
studies variance.

Carrasquillo et al. Molecular Neurodegeneration 2011, 6:54
http://www.molecularneurodegeneration.com/content/6/1/54

Page 4 of 9



Table 3 Association of CD2AP, EPHA1, ARID5B, and CD33 variants with LOAD in the initial studies (ADGC and GERAD+)
and Mayo2 follow-up series

Na MAFb Association test

Study Cases Controls Cases Controls OR (95% CI) p-value

CD2AP-rs9349407-C (minor) allele

ADGC Discovery (Stage 1) 8,309 7,366 1.14 (1.08-1.21) 1.2 × 10-6

ADGC Replication (Stage 2) 3,531 3,565 1.07 (0.98-1.17) 0.12

ADGC combined analysis (Stages 1+2) 11,840 10,931 1.12 (1.07-1.18) 1.0 × 10-6

Hollingworth et al. (GERAD + Consortia) 6,283 7,165 1.11 (1.04-1.18) 8 × 10-4

Mayo2c 2,521 4,055 0.27 0.27 0.97 (0.89-1.07) 0.56

Jacksonville 492 922 0.28 0.26 1.10 (0.91-1.33) 0.34

Rochester 313 1,600 0.26 0.27 0.88 (0.70-1.09) 0.24

Autopsy 285 100 0.26 0.29 0.98 (0.65-1.47) 0.92

Norway 324 519 0.25 0.28 0.81 (0.62-1.06) 0.13

Poland 468 181 0.29 0.25 1.04 (0.77-1.42) 0.79

ARUK 639 733 0.28 0.29 0.97 (0.81-1.16) 0.72

ADGC/Hollingworthd 18,123 18,096 1.2 × 10-10

Mayo2/ADGC/Hollingworthe 20,644 22,151 6.5 × 10-11

EPHA1-rs11767557-C (minor) allele

ADGC Discovery (Stage 1) 8,309 7,366 0.85 (0.80-0.90) 7.3 × 10-8

ADGC Replication (Stage 2) 3,531 3,565 0.94 (0.86-1.03) 0.17

ADGC combined analysis (Stages 1+2) 11,840 10,931 0.87 (0.83-0.92) 2.4 × 10-7

Hollingworth et al (GERAD + Consortia) 6,283 12,935 0.90 (0.85-0.95) 3.4 × 10-4

Mayo2c 2,509 4,055 0.19 0.21 0.87 (0.78-0.96) 5.5 × 10-4

Jacksonville 501 957 0.18 0.20 0.86 (0.70-1.06) 0.17

Rochester 309 1,572 0.19 0.21 0.89 (0.69-1.13) 0.33

Autopsy 307 99 0.17 0.24 0.66 (0.43-1.02) 0.06

Norway 338 548 0.21 0.22 0.94 (0.71-1.24) 0.67

Poland 457 169 0.20 0.21 0.93 (0.66-1.31) 0.67

ARUK 597 710 0.19 0.22 0.85 (0.69-1.04) 0.12

ADGC/Hollingworthd 18,123 18,096 4.2 × 10-12

Mayo2/ADGC/Hollingworthe 20,632 27,921 2.1 × 10-15

ARID5B-rs2588969-A (minor) allele

ADGC Discovery (Stage 1) 8,309 7,366 0.88 (0.84-0.93) 1.1 × 10-6

ADGC Replication (Stage 2) 3,531 3,565 1.05 (0.97-1.13) 0.23

ADGC combined analysis (Stages 1+2) 11,840 10,931 0.93 (0.89-0.97) 0.001

Hollingworth et al (GERAD + Consortia) 6,283 7,165 1.06 (1.01-1.13) 0.03

Mayo2c 2,571 4,102 0.40 0.38 1.05 (0.96-1.14) 0.30

Jacksonville 495 928 0.39 0.38 1.04 (0.88-1.23) 0.63

Rochester 307 1,604 0.42 0.38 1.12 (0.92-1.37) 0.26

Autopsy 308 102 0.38 0.32 1.24 (0.86-1.79) 0.24

Norway 338 543 0.37 0.37 1.05 (0.83-1.33) 0.69

Poland 473 185 0.42 0.40 0.91 (0.68-1.20) 0.49

ARUK 650 740 0.40 0.39 1.05 (0.88-1.24) 0.61

ADGC/Hollingworthd 18,123 18,096 7.6 × 10-9

Mayo2/ADGC/Hollingworthe 20,694 22,198 2.3 × 10-9

ARID5B-rs4948288-A (minor) allele

ADGC Discovery (Stage 1) 8,309 7,366

ADGC Replication (Stage 2) 3,531 3,565

ADGC combined analysis (Stages 1+2) 11,840 10,931

Hollingworth et al (GERAD + Consortia) 6,992 13,472 1.07 (1.03-1.15) 3.6 × 10-3

Mayo2c 2,556 4,058 0.42 0.40 1.07 (0.99-1.16) 0.11

Jacksonville 496 925 0.43 0.39 1.13 (0.96-1.34) 0.14
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those employed in the original GWAS publication by
Hollingworth et al., the same subject/sample ascertain-
ment methodology was followed. The ARUK series
included here are from Bristol, Leeds, Manchester,
Nottingham, Oxford and Southampton. Since the Man-
chester cohort only consisted of LOAD cases, the
Manchester cases were combined with subjects in the
Nottingham series.

Genotyping
All genotyping was performed at the Mayo Clinic in
Jacksonville using TaqMan® SNP Genotyping Assays in
an ABI PRISM® 7900HT Sequence Detection System
with 384-Well Block Module from Applied Biosystems,
California, USA. The genotype data was analyzed using
the SDS software version 2.2.3 (Applied Biosystems,
California, USA).

Statistical Analyses
Meta-analysis of allelic association and Breslow-Day
tests were performed using StatsDirect v2.5.8 software.

Meta-analyses were performed using the results from
each individual case-control series. Summary ORs and
95% CI were calculated using the DerSimonian and
Laird (1986) random-effects model [24]. Breslow-Day
tests were used to test for heterogeneity between
populations. PLINK software [25] (http://pngu.mgh.
harvard.edu/purcell/plink/) was used to perform logis-
tic regression analysis under an additive model adjust-
ing for age-at-diagnosis, sex and APOE ε 4 dose as
covariates. In our analysis of all series combined, series
was included as an additional covariate. Since genotype
counts were not reported for series included in the Naj
et al. or Hollingworth et al. studies, we employed a
Fisher combined test to combine p-values across series.
Power calculations, based on a Mantel-Haenszel chi-
square test that pooled across six different study
groups, were obtained to estimate the detectable odds
ratios for an ordinal effect using a range of minor
allele frequencies spanning those expected from the
candidate variants.

Table 3 Association of CD2AP, EPHA1, ARID5B, and CD33 variants with LOAD in the initial studies (ADGC and GERAD+)
and Mayo2 follow-up series (Continued)

Rochester 314 1,579 0.43 0.40 1.08 (0.89-1.32) 0.43

Autopsy 300 98 0.38 0.39 0.91 (0.63-1.32) 0.61

Norway 324 540 0.40 0.41 1.06 (0.83-1.34) 0.64

Poland 466 184 0.42 0.40 0.90 (0.68-1.20) 0.48

ARUK 656 732 0.43 0.41 1.13 (0.96-1.33) 0.14

Mayo2/ADGC/Hollingworthe 9,548 17,530 4.0 × 10-4

CD33 -rs3865444-A (minor) allele

ADGC Discovery (Stage 1) 8,309 7,366 0.88 (0.84-0.93) 8.2 × 10-7

ADGC Replication (Stage 2) 3,531 3,565 0.91 (0.85-0.99) 0.02

ADGC combined analysis (Stages 1+2) 11,840 10,931 0.89 (0.86-0.93) 1.1 × 10-7

Hollingworth et al (GERAD + Consortia) 6,283 7,165 0.89 (0.84-0.95) 2.2 × 10-4

Mayo2c 2538 4052 0.31 0.32 0.92 (0.84-1.00) 4.9 × 10-2

Jacksonville 492 920 0.29 0.31 0.82 (0.68-0.98) 0.03

Rochester 312 1,577 0.31 0.33 0.88 (0.72-1.08) 0.23

Autopsy 298 97 0.32 0.34 0.84 (0.57-1.24) 0.39

Norway 327 541 0.32 0.32 0.89 (0.70-1.14) 0.37

Poland 467 187 0.30 0.26 1.00 (0.72-1.37) 0.99

ARUK 642 730 0.33 0.34 0.98 (0.83-1.17) 0.85

ADGC/Hollingworthd 18,123 18,096 3.6 × 10-12

Mayo2/ADGC/Hollingworthe 20,661 22,148 1.8 × 10-13

Abbreviations: MAF, minor allele frequency; OR, odds ratio for the minor allele; 95% CI, 95% confidence interval
aThe numbers shown for the series in the Naj et al. and Hollingworth et al. studies refer to the complete set analyzed. The numbers for the Mayo follow-up data
refer to the number of samples successfully genotyped.
bMAFs were not reported for LOAD and control groups in the Naj et al. or Hollingworth et al. studies.
cThe results shown here for the Mayo2 follow-up dataset combined and for the subseries were obtained using logistic regression adjusted for age, sex and APOE
ε 4 dosage. The Mayo2 follow-up dataset reported here is independent of that which was incorporated in the GWAS reported by Hollingworth et al. The results
for each of the Mayo follow-up subseries (Jacksonville, Rochester, Autopsy-confirmed, Norway, Poland and ARUK) are listed immediately below the results for the
Mayo2 follow-up dataset combined.
dIndicates Fisher’s combined p-value for each individual GWAS in the Naj et al. study (Combined) and the Hollingworth et al. study.
eIndicates Fisher’s combined p-value for each individual GWAS in the Naj et al. study (Combined), the Hollingworth et al. study and Mayo2 independent follow-
up series.
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Additional material

Additional file 1: Table S1. Genes located within 100 kb of the five
variants tested in this study. Chr, chromosome. Base pair positions (bp)
are relative to the NCBI Human Genome build 36.1. The position of the
variant relative to the gene is given as 5’ (upstream from the gene’s
transcription start site) or 3’ (downstream from the gene’s last exon).
Distance indicates the number of base pairs from the variant position to
the gene’s nearest exon.

Abbreviations
ABCA7: ATP-binding cassette, sub-family A (ABC1), member 7; AD:
Alzheimer’s disease; ADGC: Alzheimer’s disease Genetic Consortium; APOE:
apolipoprotein E; ARID5B: AT rich interactive domain 5B (MRF1-like); ARUK:
Alzheimer’s Research United Kingdom; BIN1: bridging integrator 1; Bp: base
pair; CD2AP: CD2-associated protein; CD33: CD33 molecule; CI: confidence
interval; CLU: clusterin; CR1: complement component (3 b/4 b) receptor 1
(Knops blood group); EPHA1: EPH receptor A1; GAB2: GRB2-associated
binding protein 2; GERAD: Genetic and Environmental Risk in Alzheimer’s
Disease Consortium; GWAS: genome-wide association study; kb: kilobases;
LD: linkage disequibrium; LOAD: late-onset Alzheimer’s disease; MAF: minor
allele frequency; MS4A4A: membrane-spanning 4-domains, subfamily A,
member 4; OR: odds ratio; PICALM: phosphatidylinositol binding clathrin
assembly protein; SD: standard deviation.
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