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Abstract

Background: Recent genome-wide association studies linked variants in TREM2 to a strong increase in the odds of
developing Alzheimer’s disease. The mechanism by which TREM2 influences the susceptibility to Alzheimer’s disease
is currently unknown. TREM2 is expressed by microglia and is thought to regulate phagocytic and inflammatory
microglial responses to brain pathology. Given that a single allele of variant TREM2, likely resulting in a loss of
function, conferred an increased risk of developing Alzheimer’s disease, we tested whether loss of one functional
trem2 allele would affect Aβ plaque deposition or the microglial response to Aβ pathology in APPPS1-21 mice.

Results: There was no significant difference in Aβ deposition in 3-month old or 7-month old APPPS1-21 mice
expressing one or two copies of trem2. However, 3-month old mice with one copy of trem2 exhibited a marked
decrease in the number and size of plaque-associated microglia. While there were no statistically significant
differences in cytokine levels or markers of microglial activation in 3- or 7-month old animals, there were trends
towards decreased expression of NOS2, C1qa, and IL1a in 3-month old TREM2+/− vs. TREM2+/+ mice.

Conclusions: Loss of a single copy of trem2 had no effect on Aβ pathology, but altered the morphological
phenotype of plaque-associated microglia. These data suggest that TREM2 is important for the microglial response
to Aβ deposition but that a 50% decrease inTREM2 expression does not affect Aβ plaque burden.
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Background
One of the hallmarks of Alzheimer’s disease (AD) is the
extracellular deposition of amyloid-β (Aβ) peptide in the
brain parenchyma as amyloid plaques. Autosomal dom-
inant Alzheimer’s disease (ADAD) is an early-onset form
of AD which is caused by rare mutations in amyloid β
(A4) precursor protein (APP), presenilin-1 (PSEN1), or
presenilin-2 (PSEN2) that alter Aβ production [1]. Gen-
etic variants also influence the risk of developing the
more common late onset form of AD (LOAD). To date
the two strongest identified LOAD genetic risk factors
are the well-studied apolipoprotein ε4 (APOE4) allele
and several recently identified variants in the triggering
receptor expressed on myeloid cells-2 (TREM2) gene
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[2-4]. While these variants are not common, since
TREM2 variants strongly increase the risk of developing
AD, understanding how TREM2 dysfunction affects AD
pathology could yield novel therapeutic strategies.
TREM2 encodes a transmembrane protein possessing

an extracellular IgG-like ligand binding domain and an
intracellular region that associates with the immunore-
ceptor tyrosine based activating motif (ITAM)-contain-
ing signaling adaptor protein DAP12 [5]. Individuals that
are homozygous for loss of function mutations in either
TREM2 or TYROBP (DAP12) suffer from polycystic
lipomembranous osteodysplasia and sclerosing leukoen-
cephalopathy (PLOSL) which is characterized by early
onset dementia and cystic bone lesions [6]. Within the
brain, TREM2 is expressed by microglia and appears to
regulate microglial-mediated phagocytic clearance of cel-
lular debris and the inflammatory response of microglia
to pathology, however the endogenous ligand(s) for
TREM2 are unknown [7-10]. TREM2 expression is in-
creased in plaque-associated microglia in APP23 and
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TgCRND8 mice suggesting that TREM2 is involved in the
microglial response to Aβ plaque deposition [3,11,12].
The role of microglia in AD is complex and incompletely
understood. Microglia rapidly migrate to Aβ plaque de-
posits and acquire an amoeboid “activated” morphology
[13,14]. Pro-inflammatory M1-like microglial activation is
generally considered neurotoxic, while pro-phagocytic
M2-like activation can lead to microglial clearance of Aβ
in murine AD models [15]. Since TREM2 is implicated in
regulating the phagocytic and inflammatory function of
macrophages, TREM2 dysfunction could conceivably in-
crease Aβ plaque burden through decreased phagocytic
clearance of Aβ and/or promote a neurotoxic, inflamma-
tory microglial phenotype in response to Aβ deposition.
In this study we tested whether loss of a single trem2 al-

lele affected Aβ plaque burden in APPPS1-21 mice[16].
To facilitate analysis of microglia we took advantage of the
CX3CR1-GFP mice which in the CNS express GFP specif-
ically within microglia [17]. Although we did not observe
a significant difference in Aβ plaque deposition between
TREM2+/+ and TREM2+/− mice, there was a substantial
decrease in plaque-associated microglia in TREM2+/−

mice compared to TREM2+/+ mice. These data suggest
that TREM2 function may affect the microglial response
to Aβ pathology.

Results
TREM2 hemizygosity does not affect Aβ deposition in
3-month old APPPS1-21 mice
Individuals that are heterozygous for TREM2 variants pre-
dicted to result in a decrease or loss of TREM2 function
in the affected allele, have increased odds of developing
AD [3,4]. TREM2 expression in microglia is associated
with phagocytic clearance of extracellular debris, such as
apoptotic neurons, raising the possibility that TREM2
could regulate microglial mediated clearance of extracellu-
lar Aβ, and ultimately amyloid plaque deposition [8]. We
compared the amount of cortical Aβ deposition in the
early stages of plaque formation using 3-month old
APPPS1-21 mice expressing two copies (TREM2+/+,
CX3CR1+/GFP, APPPS1-21, referred to as TREM2 WT)
(Figure 1A,C) or one copy of TREM2 (TREM2+/−,
CX3CR1+/GFP, APPPS1-21, referred to as TREM2 Het)
(Figure 1B,D). We observed significantly more Aβ depos-
ition in female mice compared to male mice for both
TREM2 WT and TREM2 Het mice; however, we did not
detect a significant effect of TREM2 copy number on Aβ
deposition (Figure 1E). We further examined whether
TREM2 affected amyloid deposition by staining brain
sections with X-34, a dye that binds to fibrillar Aβ [18].
Again, we observed approximately double the amount
of amyloid staining in female mice compared to male
mice, but no significant difference between TREM2 WT
and TREM2 Het mice (Figure 1F). We also biochemically
assessed Aβ accumulation by measuring the level of PBS
insoluble Aβ40 and Aβ42 from TREM2 WT and TREM2
Het cortical tissue. As expected given the immunohistologi-
cal data, female mice had significantly higher amounts of
insoluble Aβ40 and Aβ42 than male mice. However, there
was no genotype-dependent difference in the levels of insol-
uble Aβ40 or Aβ42 (Figure 2). Taken together, these data
suggest that TREM2 hemizygosity has no effect on Aβ
plaque burden during the early stages of Aβ deposition.

Altered microglial response to Aβ plaque deposits in
TREM2 Het mice
Microglia migrate to sites of plaque deposition and ac-
quire an activated state that may restrict plaque growth or
produce a neurotoxic inflammatory response [13,14]. We
hypothesized that TREM2 could regulate the microglial
localization around amyloid plaques. To test this hypoth-
esis we compared the percentage of area covered by GFP-
expressing microglia within a 20 μm radius of the edge of
Aβ plaques in 3-month old TREM2 WT and TREM2 Het
mice. Since female mice exhibited more robust Aβ depos-
ition than male mice, we chose to analyze the microglial
response in female mice. TREM2 Het mice exhibited a de-
crease in the density of plaque-associated microglia com-
pared to TREM2 WT mice (Figure 3G). Microglial soma
were also smaller in TREM2 Het compared to TREM2
WT mice (Figure 3H). The overall effect of the reduced
number and size of plaque-associated microglia in
TREM2 Het mice was very strong; there was a ~40% re-
duction in microglial coverage around Aβ plaques in
TREM2 Het mice compared to TREM2 WT mice
(Figure 3I). Thus, although TREM2 WT and TREM2 Het
mice exhibited similar levels of Aβ deposition, there was a
significant decrease in microglial localization near Aβ
plaques.

No significant alterations in gene expression or cytokine
levels in 3-month old TREM2 Het mice
Given the decreased localization of microglia to Aβ pla-
ques and altered morphology of plaque-associated micro-
glia, we next tested whether there were alterations in the
expression levels of microglial markers associated with
AD, or in the inflammatory milieu of the brain, of TREM2
Het compared to TREM2 WT mice. We first compared
the mRNA levels in cortical tissue of the microglial
markers TREM2, C1qa, Aif1, Itgam (CD11b/CR3), and
CX3CR1. Predictably, the relative level of TREM2 mRNA
in TREM2 Het mice was ~50% that of TREM2 WT mice
(Figure 4A). The expression levels of the other microglial
markers were not significantly different following correc-
tion for multiple comparisons. Interestingly though, there
was a trend towards an approximately 35% decrease in
C1qa levels in TREM2 Het compared to TREM2 WT
mice (corrected p-value 0.091) (Figure 4A). We also



Figure 2 TREM2 heterozygosity does not affect PBS-insoluble Aβ levels in 3-month old APPPS1-21 mice. (A) Mean concentrations of
PBS-insoluble Aβ40 in cortical tissue from TREM2 WT (male, n = 13; female, n = 12) and TREM2 Het (male, n = 8; female n = 10) mice were
determined by ELISA. Two-way ANOVA analysis found a significant effect of gender (F1,38 = 5.49, p = 0.02), but not genotype (F1,38 = 0.55, p = 0.46).
(B) Mean concentrations of PBS-insoluble Aβ42 in cortical tissue from TREM2 WT (male, n = 13; female, n = 12) and TREM2 Het (male, n = 8; female
n = 10) mice were determined by ELISA. Two-way ANOVA analysis found a significant effect of gender (F1,38 = 5.96, p = 0.02), but not genotype
(F1,38 = 0.07, p = 0.79). Data are presented as mean ± SEM.

Figure 1 TREM2 heterozygosity does not affect Aβ plaque deposition in 3-month old APPPS1-21 mice. (A-D) Representative coronal
brain sections from 3-month old from male TREM2 WT (A), male TREM2 Het (B), female TREM2 WT (C) and female TREM2 Het (D). Sections were
immunostained with a biotinylated anti-Aβ antibody HJ3.4. (E) Quantification of the percentage of cortical area occupied by Aβ immunostaining.
Two-way ANOVA analysis found a significant effect of gender (F1,39 = 13.63, p = 0.0007), but not genotype (F1,39 = 0.25, p = 0.62). (F) Quantification
of the percentage of cortical area occupied by X-34 staining. Two-way ANOVA analysis found a significant effect of gender (F1,39 = 14.33,
p = 0.0005), but not genotype (F1,39 = 0.08, p = 0.78; TREM2 WT (male, n = 12; female, n = 12) TREM2 Het (male, n = 9; female, n = 10)). Data are
presented as mean ± SEM.
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Figure 3 Decreased plaque-associated microglia in TREM2 Het mice. (A-F) Representative images of Alexa568-HJ3.4-stained plaque and
GFP-expressing microglia from TREM2 WT (A-C) and TREM2 Het (D-F) mice. (G) The number of microglia per 100 μm2 within a 20 μm2 radius
of an Aβ plaque in TREM2 WT mice (25.1 ± 2.25, n = 10) and TREM2 Het mice (18.3 ± 1.24, n = 9) was compared using a Mann–Whitney test
(p = 0.03). (H) The mean soma size off plaque-associated microglia in TREM2 WT mice (45.0 ± 2.23 μm2, n = 10) and TREM2 Het mice (37.9 ±
1.57 μm2, n = 9) was compared using a Mann–Whitney test (p = 0.03). (I) The percent area covered by plaque-associated microglia in TREM2
WT mice (14.1 ± 1.4%, n = 10) and TREM2 Het mice (8.8 ± 0.71%, n = 9) was compared using a Mann–Whitney test (p = 0.01).
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compared the expression level of NOS2 which can be up-
regulated during pro-inflammatory microglial responses
[19]. Although not statistically significant, there was a 33%
decrease in NOS2 expression in TREM2 Het mice as
compared to WT (corrected p-value 0.090) (Figure 4A).
To more broadly characterize the effects of reduced
TREM2 expression on the inflammatory milieu of the
brain in response to Aβ pathology we measured the levels
of cytokines from cortical tissue lysates of TREM2 WT
and TREM2 Het mice (Figure 4B-D). Many inflammatory
cytokines, such as TNFα and IL1β, fell below the limit of
detection, possibly due to the early stage of Aβ pathology
detected in 3-month old APPPS1-21 mice. While we did
not detect any significant differences in cytokine levels be-
tween TREM2 WT and TREM2 Het mice, there was a
trend towards lower levels of the pro-inflammatory cyto-
kine IL1α in TREM2 Het (24.0 pg/mL ± 1.3, n = 6) com-
pared to TREM2 WT (29.7 pg/mL ± 1.3, n = 6) mice
(corrected p-value 0.12) (Figure 4B). Overall, the qRT-
PCR and cytokine data suggest a trend towards lower in-
flammation in TREM2 Het compared to TREM2 WT
mice, consistent with the decreased microglial localization
to Aβ plaque deposits in TREM2 Het mice.
No difference in Aβ deposition or microglial activation
marker expression in 7-month old TREM2 WT and TREM2
Het mice
We next assessed whether TREM2 hemizygosity would
alter Aβ plaque burden in more advanced stages of path-
ology by comparing the level of cortical Aβ plaque de-
position in 7-month old TREM2 WT and TREM2 Het
mice. At 7-months of age both TREM2 WT and TREM2
Het mice exhibited robust cortical Aβ plaque deposition
(Figure 5A-B). However, as in 3-month old mice, there
was no significant difference in the level of cortical Aβ
plaque between TREM2 WT and TREM2 Het mice
(Figure 5C).



Figure 4 TREM2 heterozygosity does not significantly affect the inflammatory milieu in 3-month old APPPS1-21 mice. (A) Quantification
of relative gene expression of microglial markers and NOS2 in TREM2 WT and TREM2 Het mice (n = 4-6 mice/genotype). For each mRNA analyzed
TREM2 Het values were normalized and compared to TREM2 WT values using a t-test followed by a Benjamini-Hochberg p-value correction
for multiple comparisons. (B-D) Levels of inflammatory cytokines in cortical tissue from TREM2 WT (n = 6) and TREM2 Het (n = 6) mice were
compared using a t-test followed by Benjamini-Hochberg p-value correction for multiple comparisons. Cytokine levels are plotted on different
axis for clarity of presentation. All data are presented as mean ± SEM, *corrected p < 0.05.

Figure 5 TREM2 hemizygosity does not significantly affect Aβ plaque burden or expression of M1/M2 microglial markers in 7-month
old APPPS1-21 mice. (A and B) Representative coronal brain sections from 7-month old female TREM2 WT (A) and TREM2 Het (B) mice.
Sections were immunostained with the biotinylated anti-Aβ antibody, HJ3.4. (C) Quantification of the cortical area occupied by Aβ immunostaining.
TREM2 WT (5.85 ± 0.69%, n = 9) and TREM2 Het (4.60 ± 0.66%, n = 7) were statistically compared using a Mann Whitney test (p = 0.25). (D)
Quantification of microglial mRNA expression in TREM2 WT and TREM2 Het mice. For each mRNA examined TREM2 Het were normalized
and compared to TREM2 WT mice using a t-test followed by Benamini-Hochberg p-value correction for multiple comparisons. All data are
presented as mean ± SEM (n = 3-7 mice per group), *p < 0.05.
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To determine if there were differences in the micro-
glial activation state at a more advanced stage of Aβ
pathology we isolated microglia from 7-month old
TREM2 WT and TREM2 Het mice and performed qRT-
PCR to measure the expression level of genes associated
with M1 or M2 polarization. As expected we observed
a ~50% reduction in TREM2 mRNA levels in TREM2
Het mice (Figure 5D). However, we observed no differ-
ence in the expression level of M1 markers IL1β, IL6,
TNFα, CCL2, or CXCL2, or in the level of M2 markers
IL10 and Lgals3 (Figure 5D). We also observed no statis-
tically significant difference in the expression level of
C1qa or Aif1 between 7-month old TREM2 WT and
TREM2 Het mice. These data indicate that there is no
effect of TREM2 hemizygosity on Aβ plaque deposition
or microglial gene expression that we assessed during
later stages of Aβ pathology.

Discussion
TREM2 variants, particularly the R47H mutation,
strongly increase the risk of developing AD, however
how TREM2 affects AD and AD pathology is unknown
[3,4]. Here, we report a decrease in the number and size
of plaque-associated microglia in 3-month old TREM2
Het mice as compared to TREM2 WT mice, suggesting
that TREM2 regulates the microglial response to Aβ
plaque deposition. To the best of our knowledge this is
the first report of an observable microglial phenotype in
hemizygous TREM2 mice. As the resident macrophages
in the brain, microglia are hypothesized to mediate both
a beneficial phagocytic clearance of Aβ from the brain,
and a detrimental chronic inflammatory phenotype
resulting in neurotoxicity [20]. Longitudinal in vivo im-
aging studies demonstrate that microglia rapidly form
clusters around Aβ deposits, although the molecular de-
terminants of microglial migration to Aβ deposits are
poorly understood [13,14]. Plaque-associated microglia
also assume an amoeboid morphology with larger cell
somas than non-plaque associated microglia [21]. Our
data indicates that plaque-associated microglia in
TREM2 Het mice are smaller than in TREM2 WT mice,
which may indicate a defect in microglial activation.
We observed a reduced number of plaque-associated

microglia in TREM2 Het mice compared to TREM2
WT mice. The reduced microglial response in TREM2
Het mice could result from defective microglial activa-
tion, migration, survival, or proliferation. Genetic net-
work analysis of TREM2 expressed in the brain linked
TREM2 to genes involved in regulating cytoskeletal rear-
rangements required for phagocytosis and migration
[22]. In the periphery TREM2-DAP12 signaling is im-
portant for chemotaxic macrophage migration to the
lungs following exposure to cigarette smoke, supporting
the hypothesis that TREM2 can regulate macrophage
migration to sites of injury [23]. Microglial proliferation
also contributes to the population of plaque associated
microglia [21,24]. TREM2 regulates macrophage-colony
stimulating factor (M-CSF)-induced osteoclast precursor
cell proliferation [25]. Microglia express colony-stimulating
factor 1 receptor (CSF1R) which is regulates both micro-
glial proliferation and viability [26-28]. Therefore, one
potential explanation is that TREM2 is important for
CSF1R-dependent responses to pathology. Further studies
will be needed to characterize the mechanistic basis for
how TREM2 regulates the number of plaque-associated
microglia.
Despite the reduction in plaque-associated microglia,

we did not observe any statistically significant difference
in the expression of inflammatory cytokines or genes as-
sociated with microglial activation in TREM2 Het and
TREM2 WT mice in either 3-month or 7-month old an-
imals. TREM2-DAP12 signaling inhibits Toll-like recep-
tor (TLR)-dependent cytokine production and bone
marrow derived macrophages from TREM2 KO mice
exhibit increased expressed inflammatory cytokine pro-
duction in response to microbial stimulation [29]. Simi-
larly, knockdown of TREM2 expression in microglia
co-cultured with apoptotic neurons resulted in increased
production of TNFα and NOS2 [8]. In contrast, TREM2
KO mice exhibited decreased inflammatory cytokine
production compared to TREM2 WT mice in the mid-
dle cerebral artery occlusion model of stroke concomi-
tant with decreased localization of activated microglia
within the glial scar [10]. Thus the overall effect of
TREM2 dysfunction on inflammatory signaling may de-
pend upon the precise pathological context. It is also im-
portant to note that the effects of TREM2 on cytokine
production were described in the context of a complete
loss of TREM2 function, such as occurs in PLOSL.
TREM2 Het mice may retain sufficient TREM2 function
to properly regulate cytokine production. One caveat to
our study is that although we did not detect a compen-
satory upregulation of TREM2 at the mRNA level, we
were unable to quantify TREM2 protein expression in
brain lysate by western blot using currently available re-
agents. Therefore, we cannot exclude the possibility that
TREM2 protein expression is post-transcriptionally
modified to compensate for loss of TREM2 expression.
Although we did not detect a TREM2-dependent dif-

ference in Aβ plaque burden, another microglial-
associated protein genetically associated with AD, CD33,
appears to substantially influence Aβ deposition [30-33].
CD33 appears to inhibit microglial uptake of Aβ in vitro
and genetic deletion of CD33 in APPSWE/PS1ΔE9 mice
reduces Aβ plaque burden [30]. Furthermore, individuals
possessing CD33 variants that were associated with in-
creased odds of developing AD exhibited higher CD33
expression and protective CD33 variants resulted in
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lower CD33 expression [30,34]. Taken together, the ef-
fects of CD33 on microglial clearance of Aβ and the
TREM2-dependent effects on plaque-associated micro-
glia reported in this study, suggest that alterations in
microglial function may impact different stages of AD
pathogenesis.
Although we observed a strong decrease in microglial

localization near Aβ plaques at 3 months, we did not ob-
serve a significant difference in Aβ plaque burden between
TREM2 WTand TREM2 Het mice at either 3 or 7 months.
One hypothesized function of plaque-associated microglia
is to restrict the growth of Aβ plaque, which would imply
that a decrease in plaque-associated microglia could result
in larger Aβ plaques [14]. However, a previous study dem-
onstrated that a four-week ablation of microglia had no ef-
fect on Aβ plaque burden in APPPS1-21 or APP23 mice,
suggesting that, over the short term, Aβ plaque growth was
not significantly impacted by microglia [35]. TREM2 is
thought to promote microglial phagocytic activity, and
therefore decreased functional TREM2 expression could re-
sult in reduced clearance of Aβ and a subsequent increase
in plaque deposition [8]. Although in this study we did not
test the phagocytic function of TREM2, the lack of signifi-
cant effect of TREM2 hemizygosity on Aβ plaque burden
does not support the hypothesis that TREM2 regulates Aβ
deposition. The discovery that variants in TREM2 strongly
increase the odds of developing not only AD, but also Par-
kinson’s disease, amyotrophic lateral sclerosis, and fronto-
temporal dementia underscores the important role that the
innate immune system plays in neurodegenerative disease
and suggests that TREM2 subserves a beneficial microglial
response in a variety of pathologies [36,37].

Conclusions
Here, we report that loss of a single TREM2 allele de-
creases the number and size of plaque-associated micro-
glia in 3-month old APPPS1-21 mice, but has no effect on
total amyloid burden in either 3- or 7-month old
APPPS1-21 mice. Individuals possessing a single variant
TREM2 allele have substantially increased odds of devel-
oping AD, however, the role of TREM2 in AD pathology
is unknown. To the best of our knowledge, this is the first
report linking loss of a functional TREM2 allele to an ob-
servable phenotype in the presence of Aβ pathology.

Methods
Animals
APPPS1-21 transgenic mice (APP (KM670/671NL)/PS1
(L166P), gift of Mathias Jucker) were crossed with
TREM2−/− x CX3CR1GFP/GFP mice or TREM2+/+x

CX3CR1GFP/GFP mice to generate APPPS1-21 x TREM2+/−

CX3CR1+/GFP (TREM2 Het) and APPPS1-21 x
TREM2+/+ x CX3CR1+/GFP (TREM2 WT) mice. All mice
were maintained on a C57BL/6 background and all animal
work was in accordance with guidelines established by the
Animals Studies Committee at Washington University.

Amyloid plaque analysis
Mice underwent transcardial perfusion with PBS
(pH 7.4) followed by removal of the brain. Half the brain
was fixed in 4% paraformaldehyde for 24 hours (4°C)
and half was either frozen on dry ice and stored at −80°C
for biochemical and qPCR analysis or processed to isolate
microglial cells. Fixed hemibrains were cryoprotected in
30% sucrose in PBS (pH 7.4), frozen in dry ice, and serial
coronal sections (50 μm thick) from the rostral anterior
commissure to the caudal hippocampus were collected
using a freezing sliding microtome. Three sections,
300 μm apart, were stained for Aβ using biotinylated
HJ3.4 (anti-N-terminal Aβ antibody) and developed
with DAB using a VECTASTAIN ABC Elite kit (Vector
Labs) per manufacturer’s directions. To stain amyloid,
three sections, 300 μm apart, were stained with X-34
dye (10 μM). HJ3.4 and X-34 stained sections were im-
aged using a NanoZoomer slide scanner (Hamamatsu
Photonics) and the percent cortical area covered by
HJ3.4 or X-34 staining was quantified by an experi-
menter blinded to the genotype and gender of the
animal.

Microglial isolation
A single cell suspension was generated from mouse
hemibrains using a neural tissue dissociation kit (Milte-
nyi Biotec, 130-093-231) and gentleMACS Dissociator
(Miltenyi Biotec) according to manufacturer recom-
mended protocols. Microglia cells were then enriched by
labeling the cells with mouse CD45 MicroBeads (MIlte-
nyi Biotec, 130-052-301) and subsequent purification
using a magnetic column. Microglia cells were then
FACS sorted based on the surface markers of CD45lo,
CD11bhigh and GFP expression.

Real-time qPCR analysis
RNA was extracted from frozen cortical tissue using the
RNeasy kit (Qiagen) or from adult microglia using the
RNeasy Micro kit (Qiagen). Reverse transcription was
performed using a High-Capacity cDNA Reverse Tran-
scription Kit (Life Technologies). Real-time qPCR was
conducted with TaqMan primers (Life Technologies)[19]
and the TaqMan Universal PCR Master Mix (Life Tech-
nologies) using an ABI Prizm 7500 thermocycler. Rela-
tive gene expression levels in TREM2 WT and TREM2
Het mice were compared using the ΔΔCt method with
β-actin used as a reference.

Biochemical analysis of insoluble Aβ levels
Cortical tissue was sequentially homogenized in PBS
(pH 7.4) and 5 M guanidine-Tris buffer (pH 8.0) in the
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presence of protease inhibitors (Roche). Aβ40 and Aβ42
levels were quantitatively measured by sandwich ELISA
using either HJ2 (anti-Aβ35–40) or HJ7.4 (anti-Aβ37–42)
as capture antibodies and biotinylated HJ5.1 (anti-Aβ13–28)
as the detection antibody. Following incubation with
poly-horseradish peroxidase-20 (Fitzgerald) ELISAs were
developed using Super Slow ELISA TMB (Sigma).

Microglia quantification
Alexa568-HJ3.4-stained brain sections were imaged using
a 40x water-immersion objective (Zeiss, NA = 1.2) on a
Zeiss LSM5 confocal microscope. All images were ac-
quired and analyzed by an experimenter blinded to the
genotype of the animal. Z-series stack images of randomly
selected plaques within the lateral half of the cortex lo-
cated above the hippocampus were then sequentially ac-
quired for Alexa568 and GFP fluorescence (~12 optical
sections, 3 μm apart). All images were acquired using
identical acquisition parameters as 8-bit, 1024 × 1024 ar-
rays. Z-series stacks were then converted to maximum in-
tensity projections and threshold adjusted to isolate
specific GFP fluorescence. Plaque-associated microglial
coverage was assessed by measuring the percent area cov-
ered by GFP fluorescence within 20 μm of the edge of the
plaque, including the area of the plaque itself. To assess
the number and size of plaque-associated microglia, thre-
sholded images were segmented using a watershed func-
tion and the number and area of microglia assessed in
ImageJ using a minimum size cut-off of 16 μm2.

Cytokine analysis
Cortical tissue from 3-month old APPPS1-21 x TREM2+/+x

CX3CR1+/GFP and APPPS1-21 x TREM2+/− CX3CR1+/GFP

was homogenized in 9x volumes lysis buffer (50 mM Tris–
HCl (pH7.4), 2 mM EDTA, protease inhibitors). Lysates
were centrifuged for 2 min at 13,000xg and analyzed using
the Rodent Cytokine Multi-Analyte Profile (Myriad RBM).

Statistics
Amyloid plaque immunohistochemistry and insoluble
Aβ levels between male and female TREM2 WT and
TREM2 Het mice were statistically analyzed using 2-way
ANOVA (α = 0.05). The number, soma size, and percent-
area covered by plaque-associated microglia were com-
pared using a Mann Whitney test. RT-qPCR results from
TREM2 WT and TREM2 Het groups were compared by
t-test using a Benjamini-Hochberg correction for mul-
tiple comparisons. P-values less than 0.05 were consid-
ered statistically significant.
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