Skip to main content
Fig. 3 | Molecular Neurodegeneration

Fig. 3

From: Pim1 inhibition as a novel therapeutic strategy for Alzheimer’s disease

Fig. 3

Pim1 inhibition reduces spatial reference and working memory deficits in 3xTg-AD mice. NonTg Veh (n = 13), 3xTg-AD Veh (n = 13), NonTg Pim1i (n = 12), 3xTg-AD Pim1i (n = 7) were tested in the radial arm water maze (RAWM). a Average reference memory errors on day 1 and day 2 RAWM task. All groups show a decrease in total errors in day 2 indicating learning (F(1, 42) = 107.868, p < 0.0001). b Average reference memory errors across the 5 blocks of testing of day 2 (1 block = 3 trials). 3xTg-AD Veh mice committed a higher number of reference errors throughout the 5 blocks of testing compared to all the other groups. c Mean total errors of day 2. d Working memory errors on day 1 and day 2. Working memory errors are defined as a reentry into a previously visited arm. 3xTg-AD Veh mice had the same number of working memory errors between day 1 and day 2 (p > 0.05), whereas all the other groups showed significant learning between the two days. e Average working memory errors across the 5 blocks of testing of day 2. 3xTg-AD Veh mice commit a higher number of working memory errors throughout the 5 blocks of testing compared to the other three groups. f. Mean working memory errors during day 2. g Pim1i significantly reduces the percentage of 3xTg-AD mice using a hippocampal-independent default strategy to find the hidden platform, known as chaining. The panel illustrates the percentage of mice committing chaining events between all groups. h The panel illustrates the percentage of animals that committed chaining events between the four groups. Pim 1i significantly reduced the percentage of chaining committed by the 3xTg-AD mice (X 2 = 7.8045, p < 0.01). Error bars represent mean ± SEM

Back to article page