Skip to main content
Fig. 13 | Molecular Neurodegeneration

Fig. 13

From: Affinity of Tau antibodies for solubilized pathological Tau species but not their immunogen or insoluble Tau aggregates predicts in vivo and ex vivo efficacy

Fig. 13

4E6 reduced the spread of tau between neurons. a, b Schematic of microfluidic chambers, showing the reservoirs that the cells were added to. Panel B is a magnification of the box in panel A showing the microgrooves which connect the two reservoirs. c Confocal image showing axons growing through the microgrooves. Cell is stained with pan-tau antibody. (scale bar = 150 μm) df Fluorescently labeled PHF material (1 μg/ml) was added to the chamber containing JNPL3 cells. Coverslips were fixed and stained with an antibody recognizing total tau. Stained wild-type neurons from the opposite chamber are visualized in d, and one of them has prominent PHF puncta in the cell body as seen in E. Merged image of d and e is depicted in F (scale bar = 50). g Neurons in the first chamber were treated with PHF and 4E6 in combination as described in Fig. 4b. Following addition of the antibody, cells were incubated for a further 72 h. Number of cells in the opposite side containing PHF puncta was recorded. Botulinum toxin was used as a negative control. In the PHF alone condition, 24 % of cells were PHF positive. Incubation with botulinum toxin reduced this percentage to 4 % (p < 0.01). In the PHF + Ab group this was reduced to 14.6 % (p < 0.05), and 17.6 % in the PHF → Ab condition. *: p < 0.05, **: p < 0.01

Back to article page
\