Skip to main content
Fig. 3 | Molecular Neurodegeneration

Fig. 3

From: Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans

Fig. 3

Alterations in protein control pathways that regulate α-synuclein accumulation affect coiling. (a) Left: Immunoblot of immunoprecipitated α-synuclein from syn C. elegans lysates. No α-synuclein was immunoprecipitated from GFP C. elegans lysates. The asterisk indicates the light chain of the immunoprecipitating antibody. Proteins co-immunoprecipitated with the anti-α-synuclein antibody were identified by mass spectrometry. Right: Proteins that were specifically co-immunoprecipitated from syn C. elegans lysates were analysed using gene ontology enrichment for biological process. Over-representation of proteins < 0.05 FDR was ranked according to fold enrichment. (b) Left: Coiler scores of syn animals treated with 50 μM 17-AAG (N = 21 populations of n = 10 animals) or vehicle (N = 17 populations of n = 10 animals), normalized to vehicle treated control GFP animals (two-tailed t-test, *p < 0.05). Right: Representative immunoblot for α-synuclein protein in lysates of treated animals (α-tubulin used as a loading control). (c) Left: Coiler scores of syn animals crossed with the mutant strain chn-1(by155). CHN-1 is the homolog of the human co-chaperone protein, carboxyl-terminus of HSP70 interacting protein (CHIP). Coiler scores are normalized to control GFP animals (N = 10 populations of n = 10 animals for each strain) (one-way ANOVA with Tukey’s multiple comparisons test, *p < 0.05, ****p < 0.0001). Right: Representative immunoblot for α-synuclein protein in lysates of syn animals and syn animals crossed with chn-1(by155) (α-tubulin used as a loading control). Each data point represents an individual population

Back to article page