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Leucine-rich repeat kinase 2 and alpha-synuclein:
intersecting pathways in the pathogenesis of
Parkinson’s disease?
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Abstract

Although Parkinson’s disease (PD) is generally a sporadic neurological disorder, the discovery of monogenic,
hereditable forms of the disease has been crucial in delineating the molecular pathways that lead to this
pathology. Genes responsible for familial PD can be ascribed to two categories based both on their mode of
inheritance and their suggested biological function. Mutations in parkin, PINK1 and DJ-1 cause of recessive
Parkinsonism, with a variable pathology often lacking the characteristic Lewy bodies (LBs) in the surviving neurons.
Intriguingly, recent findings highlight a converging role of all these genes in mitochondria function, suggesting a
common molecular pathway for recessive Parkinsonism. Mutations in a second group of genes, encoding alpha-
synuclein (a-syn) and LRRK2, are transmitted in a dominant fashion and generally lead to LB pathology, with a-syn
being the major component of these proteinaceous aggregates. In experimental systems, overexpression of mutant
proteins is toxic, as predicted for dominant mutations, but the normal function of both proteins is still elusive. The
fact that a-syn is heavily phosphorylated in LBs and that LRRK2 is a protein kinase, suggests that a link, not
necessarily direct, exists between the two. What are the experimental data supporting a common molecular
pathway for dominant PD genes? Do a-syn and LRRK2 target common molecules? Does LRRK2 act upstream of a-
syn? In this review we will try to address these of questions based on the recent findings available in the literature.

Introduction
Parkinson’s disease (PD) is a common neurodegenera-
tive disease historically classified as a sporadic disorder.
The clinical phenotype of PD consists of motor dysfunc-
tions including resting tremors, postural instability and
bradykinesia. Non-motor manifestations such as auto-
nomic and cognitive dysfunction are also recognized as
part of the syndrome. Two histopathological features
define the disease. First, there is a progressive degenera-
tion of dopaminergic projections from the substantia
nigra pars compacta (SNpc) to the striatum. These neu-
rons are pigmented as they contain cytoplasmic neuro-
melanin, which accumulates in an age-dependent
manner. When the first motor symptoms appear, the
SNpc is already severely depigmented with over 70% of
dopamine-producing cells lost. A second neuropatholo-
gical event is the deposition of proteinaceous inclusions

termed Lewy bodies (LBs) in the surviving neurons. LBs
are predominantly made up of the small presynaptic
protein a-syn [1], which is used as a marker for the pro-
gression of the disease.
The discovery of monogenic forms of PD marked a

revolution in our understanding of the molecular
mechanisms underlying this pathology. The big advan-
tage of studying a genetic disorder compared to a spora-
dic syndrome is that we can use engineered cellular and
animal models carrying the mutant gene to define
pathological pathways. In 1997, mutations in the gene
SNCA, encoding a-syn, were identified as cause of dom-
inantly inherited PD [2]. Beta-sheet-rich fibrillar forms
of a-syn aggregates represent the main constituents of
LBs in PD and several other LB diseases [1]. Recently,
polymorphisms around SNCA have been associated with
increased risk of sporadic PD, indicating that the gene is
also an important risk factor for the disease [3,4]. After
SNCA, a number of additional genes have been linked
to PD. Mutations in three genes, coding for parkin, DJ-1
and PINK1, are the cause of recessive forms of
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parkinsonism [5-7]. Interestingly, the major common
functional effects of all three genes relate to mitochon-
drial function and oxidative damage, suggesting a com-
mon pathway for recessive parkinsonism. In 2004,
mutations in the gene coding for the protein Leucine-
rich repeat kinase 2 (LRRK2) were shown to cause an
autosomal dominant form of PD [8,9] with a clinical
presentation and disease onset very similar to the spora-
dic disorder. Leucine-rich repeat kinase 2 mutations
account for 1-40% of total PD cases depending on the
population under study [10], suggesting that they are
also a risk factor for the disease.
Because a-syn and LRRK2 are implicated in both

genetic and sporadic PD, understanding the physio-
logical and pathological functions of these proteins
may provide an excellent opportunity to gain insights
into the sporadic disease, with obvious therapeutic
implications.
In this review we will discuss some of the recent lit-

erature on the two genes that are known to cause domi-
nantly inherited PD, namely Leucine-rich repeat kinase 2
and SNCA, focusing on the possible intersecting path-
ways between these two players.

a-Syn: physiological and pathological role
The discovery of mutations in SNCA were the first evi-
dence of a genetic cause for PD [2]. Three point muta-
tions [2,11,12] as well as gene triplication [12] and
duplication [13] have been linked to a form of

parkinsonism similar to the sporadic syndrome. a-Syn is
a 140-amino acid protein enriched in the presynaptic
terminals of neurons in the central nervous system [14],
where it has been associated with a specific subpopula-
tion of synaptic vesicles [15] and with the lipid rafts of
the plasma membrane [16]. The N-terminal region of
the protein contains a number of imperfect repeats,
with the consensus motif KTKEGV, which strongly
resembles that found in the amphipathic helices of the
exchangeable apolipoproteins [17]. The central hydro-
phobic region of a-syn, called NAC (non-amyloid com-
ponent), has been suggested to be responsible for the
aggregation process [18] while the acidic C-terminal
region has been shown to regulate fibril formation [19]
(figure 1A). Several studies suggest that a-syn exists in
equilibrium between a cytosolic unfolded conformation
and a membrane-bound, alpha-helical structure [20,21].
Interaction of a-syn with membranes has been exten-
sively characterized in vitro using micelles and small
unilamellar vescicles made of different phospholipids
(see [22] for a review).
Although its precise function is still elusive, its subcel-

lular localization within the nerve terminal and its abil-
ity to interact with membranes, suggest that a-syn may
play a role in regulating vesicle dynamics and trafficking
at the presynaptic terminal and in brain lipid metabo-
lism [23,24]. A recent study by Burrè and co-workers
nicely demonstrated that a-syn regulates the release of
neurotrasmitters at the pre-synaptic terminal by

Figure 1 (A) Schematic of a-syn domains (NAC, non-amyloid b component). (B) Schematic of LRRK2 domains (LRRs, Leucine-rich repeats;
ROC, Ras Of Complex proteins; COR, C-terminus Of ROC).
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promoting the assembly of the SNARE complex [25]. In
addition, a-syn seems to modulate intracellular DA
concentration through interactions with proteins that
regulate DA synthesis and uptake, such as tyrosine
hydroxylase [26], the aromatic amino acid decarboxylase
[27] and plasma membrane dopamine transporter [28].
Interestingly, a-syn knock-out mice lack an obvious
phenotype, suggesting that the protein does not play a
crucial role in the development or neuronal mainte-
nance [29-31]. Only a triple transgenic mouse lacking
a-, b-, and g-syn shows alterations in synaptic structure
and transmission, age-dependent neuronal dysfunction
and diminished survival [32]. These observations indi-
cate that a-syn-induced neurodegeneration may not be
due to a loss of function of the protein. In contrast to
the minimal phenotype of a-syn knockout mice, recent
works have shown that the overexpression of a-syn pro-
duces considerable toxicity by affecting synaptic trans-
mission. The available evidence strongly suggests that
inhibition of neurotransmitter release is the overall
pathologic mechanism induced by excessive a-syn
[33-35]. Then how does mutant a-syn cause PD? A
dose-dependent toxicity of a-syn seen in duplication/tri-
plication cases with an additional effect of homozygosity
[36] plus the presence of the protein in LBs support the
idea that the pathological mechanism of mutant a-syn is
through a gain of function. In support of this notion, it
has been widely demonstrated that a-syn is prone to
aggregate into amyloid-like, beta-sheet fibrils [22] and
fibrillisation is augmented in the presence of mutations
or elevated protein levels [37-39].
Increasing evidence also suggests that phosphorylation

may play an important role in modulating a-syn aggre-
gation, LB formation, and toxicity [40]. It has been
shown that a-syn deposited in LBs is highly phosphory-
lated at serine 129 [41,42] and serine 87 [43]. However,
it is still unclear whether phosphorylation enhances or
protects against a-syn toxicity in vivo. The role of phos-
phorylation in promoting or inhibiting fibril formation
remains controversial. Phosphorylation at serine 129 has
been reported to promote fibril formation more readily
than unmodified protein, in vitro [41], but inhibition of
oligomerization and fibril formation has been also
described for serine 87 or serine 129 phosphorylated a-
syn. An additional study utilizing an in vivo model sug-
gests a lack of correlation between phosphorylation at
Ser-129 and the level of a-syn fibrillation [44]. Clearly,
more research is needed for a coherent view of how
phosphorylation alters the physiochemical properties of
a-syn to emerge.
One interesting property of a-syn is its ability to pro-

pagate from cell to cell. It has been shown that a pro-
portion of a-syn and its aggregates are secreted from
neuronal cells via exocytosis [45]. In addition, two

studies showed host-to-graft propagation of a-syn-posi-
tive LB pathology in long-term embryonic nigral trans-
plants in PD [46,47]. In vitro, cultured cells and neurons
are capable of taking up a-syn aggregates via endocyto-
sis [48] and this observation led to the development of
cellular models of a-syn aggregation [49,50]. It is
thought that exogenous fibrillar a-syn seeds the forma-
tion of LB-like inclusions by incorporating soluble
monomeric proteins, in a process possibly analogous to
the infectious propagation of prions [49]. Taken
together, all these observations strongly support the
notion that the presence of fibrils of a-syn represents a
noxious event that leads to the pathological conse-
quences observed in PD.

LRRK2: a signaling protein that is toxic when
mutated
In 2002 Funayama and collaborators reported a new
genetic linkage to dominant inherited PD [51]. Two
years later, independent groups not only described addi-
tional families with linkage at the same chromosomal
locus but also found that the gene responsible for this
familial form of PD was Leucine-rich repeat kinase 2
[8,9]. In particular one mutation, the glycine to serine
substitution at position 2019, was soon recognized to be
a very common cause of PD being present in 1 to 40%
(depending on the population) of all PD cases, familial
and sporadic. Pathological information of LRRK2 cases
is available and suggests a quite variable pathology ran-
ging from typical sporadic pathology with LBs, to ubi-
quitin, tau and/or TDP-43-positive inclusions, to pure
nigral degeneration (reviewed in [52]). Although the
majority of cases present with pathological and clinical
features undistinguishable from idiopathic PD, a recog-
nized variability in different LRRK2 mutation carriers
may suggest that LRRK2 acts upstream of a-syn and
other proteins implicated in the neurodegeneration asso-
ciated with protein deposition. Therefore, understanding
LRRK2 function might illuminate the pathological path-
ways that lead to a-syn deposition and on mechanisms
at work in other LB disorders.
While the pathogenic impact of mutant a-syn is, at

least in part, understood, the mechanism by which
mutant LRRK2 causes PD is less clear. LRRK2 is a large,
multidomain GTPase/kinase protein (figure 1B) that
undergoes autophosphorylation in vitro [53-56]. Inter-
estingly, pathological mutations cluster within the two
enzymatic domains [57], suggesting the possibility that
altered signaling is implicated in the disease. Kinase
activity is required for mutant proteins to be toxic, at
least in neuronal cell models [55,58], further supporting
the notion that alteration of LRRK2 signaling might
have pathological implications. Clues should come from
the effects of pathological mutations on protein activity.
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Only one mutation, the G2019S located in the activation
loop of the kinase domain, clearly increases kinase activ-
ity (reviewed in [57]), while other mutations do not con-
vincingly do so [57]. Since blocking kinase function
rescues the toxicity observed in primary neurons, it is
not clear why toxicity is prevented for mutants with
unaltered kinase activity. One possible interpretation is
that the kinase domain regulates the GTPase/ROC (Ras
Of Complex proteins) domain and ROC is the signal
output of LRRK2 involved in the pathogenic process. In
support of this hypothesis, we and others have shown
that the kinase phosphorylates its own ROC domain
[59-61], opening the possibility of an intramolecular
mechanism of regulation. As mutations in the ROC/
GTPase domain decrease the ability of LRRK2 to hydro-
lyze GTP [62,63], it can be speculated that the G2019S
mutation indirectly affects the catalytic properties of
ROC through increased phosphorylation. However, the
only experimental measurement of the GTPase activity
for the G2019S mutant suggests that there is no signifi-
cant change compared to the wild-type [64], indicating
that different mutations might act in different ways and
ultimately converge to a common pathological pheno-
type. This is also supported by the different pathologies
observed among different mutants. Interestingly, patho-
logical mutations associated with PD have not been
described in the paralogous protein LRRK1 [65] and
analogous LRRK2 mutations are innocuous when artifi-
cially introduced in LRRK1 [65].
What is LRRK2’s physiological function? LRRK2 has

been suggested to play a role in the control and mainte-
nance of neurite length [66-69], in vesicle endocytosis
through interaction with Rab5a [70] and vesicle sorting
between axons and dendrites [71], in activation of apop-
tosis through interaction with death adaptor Fas-asso-
ciated protein with death domain (FADD) [72], and in
controlling protein translation through phosphorylation
of 4E-BP1 [73] and interaction with the microRNA
pathway to regulate protein synthesis [74]. Several
groups also reported that LRRK2 interacts with alpha
and beta tubulins, the microtubule’s building blocks
[75-77], suggesting that LRRK2 may play a role in cytos-
keleton dynamics. Interestingly, LRRK2 localization with
microtubules is enhanced in the presence of the potent
LRRK2 inhibitor H-1152 [78], indicating that this inter-
action is dependent on kinase activity.
What do we know about the mechanism of LRRK2

mediated neurodegeneration? The observation that
homozygous cases with G2019S mutation have a clinical
presentation undistinguishable from the heterozygotes
[79] suggests that the mechanism of LRRK2 pathogeni-
city may not be a consequence of increased protein
activity. This is in apparent contrast with the observa-
tion that mutations cause differential effects on protein

activity, as discussed above. It is possible that the
amount of altered activity is no longer important above
a certain threshold (i.e. downstream targets are limiting
factors) and therefore having 50% or 100% of mutant
molecules does not make any difference in terms of cel-
lular effect. This important but still unresolved issue will
become more clear when robust physiological substrates
of LRRK2 are identified. Although a few LRRK2 sub-
strates have been described [73,77,80-83], we are still
awaiting reproducible and physiologically relevant
substrates.
Could mutant LRRK2 act with a dominant negative

mechanism? A requirement for a mutant protein to
operate as dominant negative is that the protein exerts
its biological function within a homo or hetero-complex.
Several independent groups have now demonstrated that
LRRK2 is predominantly a dimer under native condi-
tions [56,84-87]. Interestingly, a recent paper by Tong
and collaborators [88] shows that loss of LRRK2 causes
accumulation of a-syn, increased autophagy and cell
death in kidneys of aged mice. These data may indicate
that mutations cause loss of function through a domi-
nant negative mechanism. However, why the effect was
seen specifically in the kidneys and not in the brain,
which is the relevant tissue for the neurodegenerative
process, needs to be further elucidated. One explanation
suggested by the authors is that the renal tissue has
almost undetectable levels of LRRK1 mRNA expression
and therefore LRRK1 may not compensate loss of
LRRK2 function. What happens when both LRRK1 and
LRRK2 are lost? Double-knockout mice for LRRKs have
not been reported in the literature and one possibility is
that these mice are not viable. In another study, Sheng
et al. [89] observed that LRRK2 knock-out in zebrafish
by morpholinos is embryonically lethal while deletion of
the C-terminal WD40 domain induces a parkinsonism-
like loss of neurons and locomotive defects, indicating
that LRRK2 function is essential for neuronal survival.
This observation supports the notion that LRRK2 muta-
tions cause a loss of protein function.
Interestingly, a few studies reported a number of PD

cases with LRRK2 positive staining in LBs of post-mor-
tem sections using different antibodies against LRRK2
[55,90-94]. However, some inconsistency between differ-
ent studies [95,96] makes the data difficult to interpret,
although the lack of reliable immunological tools to
detect LRRK2 within cells or tissues is currently a major
limitation in the field. Furthermore, different groups
reported a mutant-specific tendency of LRRK2 to accu-
mulate into inclusion bodies when overexpressed in cell
lines and primary neuronal cultures [55,66,96,97].
Sequestration of mutant proteins into inclusion bodies
could lead to a loss or a gain of function depending if
these aggregates are toxic for the cells. Although the
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main criticism to this observation is that protein overex-
pression could be a misleading approach as non-physio-
logical levels of a given protein my cause artefactual
aggregation, the clear-cut phenotype observed between
wild-type and mutant LRRK2 highlights the importance
of further investigating LRRK2 aggregation properties
and products. Waxman and collaborators observed that
LRRK2 inclusions do not recruit a-syn when both pro-
teins are co-overexpressed in cell systems [96], hinting
that LRRK2 and a-syn deposition might be two inde-
pendent processes.
Although LRRK2 pathological function is still unclear,

a unifying theme of altered dopaminergic neurotrans-
mission is emerging, based on two transgenic mouse
models carrying different pathological LRRK2 mutations,
suggesting that LRRK2 normal function is crucial at the
synaptic level, as proposed by Lee et al., [98].

LRRK2 and a-syn: intersecting pathways?
As discussed above, understanding LRRK2 and a-syn
pathways may shed light on the mechanisms that under-
lie sporadic PD. Is there any evidence that suggests a
functional link between a-syn and LRRK2? a-Syn
deposited in LBs is highly phosphorylated at serine 129
[41] and phosphorylated proteins seem to be more
prone to aggregation in vitro [41], suggesting that
abnormally high levels of phosphorylated proteins may
trigger the neurodegenerative process. A simple scenario
is that LRRK2 is the kinase that mediates phosphoryla-
tion of a-syn. However, only one report showed that
recombinant a-syn is directly phosphorylated by cell
lysates overexpressing LRRK2 from HEK293 cells [99],
while there is no evidence that LRRK2 causes increased
a-syn phosphorylation in cell or animal systems. It
would be of particular interest to investigate whether
pathological brain tissue from LRRK2 cases display
increased levels of phosphorylated a-syn. One study
reported that LRRK2 induces a-syn expression via the
extracellular signal-regulated kinase pathway, although
the effect is modest [100]. Qing and collaborators [101]
successfully co-immunoprecipitated LRRK2 and a-syn
from pathological tissue of diffuse LB cases or from
HEK293 cells when exposed to oxidative stress. These
data are quite interesting as they hint the possibility that
the two proteins localize upon stress to the same cellular
compartment where they participate in a common biolo-
gical process and LRRK2 kinase activity might, directly or
indirectly, influence a-syn phosphorylation state.
Another possibility is that LRRK2 accelerates the toxi-

city of a-syn via a different mechanism other than
phosphorylation. For instance, the role of the GTPase
activity of LRRK2 is still a relatively unexplored field
and, to date, no LRRK2 partners specific for the GTP-
bound state of the protein have been reported.

Important clues on the a-syn/LRRK2 interplay come
from a recent work by Cai and collaborators [102].
Using the tetracycline-controlled transactivator system,
they generated a number of inducible transgenic mice
overexpressing the human A53T mutant form of a-syn,
which they crossed with mice transgenic for human
LRRK2, including wild-type, G2019S, or kinase domain-
deletion mutant in the adult forebrain. They found that
co-expression of LRRK2 with A53T a-syn dramatically
accelerates the neurodegenerative process in a dose
dependent manner and independently from the LRRK2
genotype, suggesting the kinase activity is not important
for the observed phenotypes. LRRK2 expression led to
impairment of microtubule dynamic, Golgi and mito-
chondria defects. Strikingly, they observed an age-
dependent accumulation of a-syn in double transgenic
mice, suggesting that LRRK2 acts upstream of a-syn
depositions. Interestingly, loss of LRRK2 (by transgenic
knockout) alleviates these phenotypes. Although these
data are quite illuminating in establishing a functional
link between LRRK2 and a-syn, whether this also hap-
pens in the DA neurons of the midbrain, is an impor-
tant question that needs to be addressed.
Are LRRK2 and a-syn physically found in the same

compartments? We have already discussed that a-syn
interacts with membranes where it acquires an alpha-
helical conformation. LRRK2 is also found in association
with membranous structures [82,87,103,104]. It is asso-
ciated with small vesicles and it interacts with Rab5
playing a possible role in vesicle endocytosis at the
synaptic terminal [70]. This is an interesting aspect as it
links LRRK2 and a-syn, which is also thought to play a
role in synaptic vesicle recycling, as discussed above.
Both LRRK2 and a-syn have also been proposed to
interact with lipid rafts [16,105]. Lipid rafts are orga-
nized membrane microdomains that serve as platforms
for intracellular signaling. These domains are organized
by specialized scaffold proteins and one hypothesis is
that LRRK2 could function as a scaffolding molecule
mediating heterologous interactions through its pre-
dicted protein-protein interaction domains (i.e. Leucine-
rich repeats and WD40 domain). Mutations could
impair LRRK2 ability to properly organize the lipid raft
with direct consequence on a-syn interactions with
these domains.
In another study, Sakaguchi-Nakashima et al. [71]

investigated the function of LRK-1, the C. elegans
homolog of LRRK1/2. They proposed that LRK-1 con-
trols a polarized sorting of synaptic vesicle proteins to
the axons, excluding them from the dendrite-specific
transport. It can be speculated that an altered axonal-
transport due to the presence of pathological LRRK2
mutations, could lead to an over-accumulation of toxic
proteins, like a-syn, in dopaminergic neurons.
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Another set of observations linking LRRK2 and a-syn
converge to microtubule dynamics and axonal transport.
In the process of organelle transport along the axons,
for example synaptic vesicles, binding of kinesin to
microtubules requires the presence of JIPs (JNK inter-
acting proteins) - a family of scaffolding molecules that
adapt the binding of cargoes to kinesin [106]. Interest-
ingly, JIPs have been proposed to interact with LRRK2
[107]. Furthermore, as JIPs bind to the protein kinase
MKK7, also LRRK2 is capable to interact with MKK7
[82]. By binding to tubulins, LRRK2 stabilizes microtu-
bules in vitro [77]. A possible readout is that LRRK2 is
upstream of a-syn and acts as a scaffolding signaling
molecule required for organelle transport and microtu-
bule assembly and stability. On the other hand, several
experimental evidences indicate that LRRK2 causes tau
hyperphosphorylation, an event that is believed to induce
destabilization of microtubules [66,108-110]. Altered
LRRK2 function by mutations may lead to increased
microtubule destabilization and, as a result, improper
transport of vesicle bound-a-syn with consequent pro-
tein accumulation and, in turn, cell death (Figure 2).
What is LRRK2 role in signal transduction? There is

mounting evidence that LRRK2 might be involved in a
mitogen-activated protein kinase (MAPK)-related path-
way. Overexpression of LRRK2 increases ERK1/2 phos-
phorylation [100,111] and LRRK2 interacts with and
phosphorylates in vitro the MAPKKs MKK3, 6 and 7
[81,82]. Also, LRRK2 is involved in the regulation of
neurite outgrowth and mutant LRRK2 causes neurite
shrinkage [66,67]. Since MAPK pathway may play a role
in neurite outgrowth [112], it is possible that LRRK2

modulates neurite morphology and length through
MEK/ERK phosphorylation. Interestingly, a recent study
uncovered that LRRK1, the close LRRK2 homologue, is
part of a complex including Grb2/Gab2/Shc1 (adaptor
proteins for Ras activation) and that this signal integra-
tor complex is involved in the balance of cellular stress
responses (influencing both ERK and JNK) only if
LRRK1 is functional [113]. Based on these observations,
one could speculate that unbalanced phosphorylation of
downstream components of a MAPK-related pathway,
as a consequence LRRK2 mutations, could in turn affect
the phosphorylation state of a-syn.
An interesting work by Sancho and collaborators [114]

places LRRK2 in the Wnt (Wingless/Int) signaling path-
way by a direct interaction with Dishevelled (DVL) pro-
teins through the ROC-COR domain. Interestingly,
LRRK2 enhances tau phosphorylation through the
downstream target of DVLs GSK-3beta [110] while (i)
tau phosphorylation by GSK3-beta is a-syn-dependent
[115] and (ii) the phosphorylation of the a-syn interact-
ing protein synphilin-1 is mediated by GSK3-beta [116].
Furthermore, Li and co-workers observed increased
phosphorylation of Tau in a mouse model of mutant
LRRK2 [108]. Taken together, these observations further
expand an emerging link between PD and tau, as varia-
tions in the MAPT gene are associated with increased
risk of PD [3] and LRRK2 and tau, which, as discussed
earlier, is deposited in a number of LRRK2 cases.
Another set of interesting data links the chaperone

proteins 14-3-3 with both LRRK2 and a-syn. 14-3-3
proteins, a highly conserved chaperone family consisting
of seven known mammalian isoforms, regulate a variety
of cellular processes including intracellular trafficking
and protein interaction [117]. They have been shown to
form a complex with a-syn [118] and to co-localize
with LBs in PD and diffuse LB disease [119]. Further-
more, 14-3-3 proteins protect against neurotoxicity and
aggregation of a-syn in a number of cellular and animal
models [120]. Two recent papers have reported that 14-
3-3 also interacts with LRRK2 by binding two phos-
phorylated serine residues (S910 and S935) [78,97].
Interestingly, site-specific mutagenesis of the two serine
residues or pharmacological inhibition of LRRK2 with
H-1152, not only abolished the binding of LRRK2 with
14-3-3, but also caused the proteins to accumulate into
aggresome-like structure in HEK293T cells. This aggre-
gation phenotype was also observed in a number of
pathological LRRK2 mutants (unable to bind to 14-3-3),
strongly suggesting that 14-3-3 binding prevents LRRK2
aggregation. Collectively, these observations suggest that
mutations in a-syn and LRRK2 or high dose of a-syn
may disrupt or alter the ability of 14-3-3 to keep both
proteins properly soluble with consequent increase in
protein aggregation and, in turn, neurotoxicity.

Figure 2 Possible pathological pathways connecting LRRK2
and a-syn.
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Another potential mechanism by which mutant
LRRK2 could promote a-syn aggregation is through
impairment of autophagy. There are few studies high-
lighting a role of LRRK2 in the autophagic pathway.
LRRK2 null mice display impaired autophagy function,
accumulation of a-syn in the kidneys and consequent
cell death [88], suggesting that LRRK2 function is impli-
cated in the autophagic pathway and, if mutations cause
loss of function, they may impair autophagy. In HEK293
cells, expression of R1441C mutant causes impairment
of autophagy by accumulation of autophagic vacuoles
containing incompletely degraded material and
increased levels of p62 [121]. Furthermore, overexpres-
sion of G2019S mutant in the neuroblastoma line SH-
SY5Y not only resulted in increased autophagic vacuoles
but also caused neurite shrinkage [68], perhaps suggest-
ing that the two events are related. Interestingly, wild-
type a-syn is selectively translocated into lysosomes for
degradation by the chaperone-mediated autophagy
(CMA) pathway in isolated liver lysosomes. The patho-
genic A53T and A30P mutants bound to the receptor
for this pathway on the lysosomal membrane, but
appeared to act as uptake blockers, inhibiting both their
own degradation and that of other substrates [122].
Moreover, CMA inhibition leads to an accumulation of
soluble high molecular weight and detergent-insoluble
species of a-syn, suggesting that CMA dysfunction may
play a role in the generation of such aberrant species in
PD [123]. Autophagy impairment caused by mutant
LRRK2 may result in accumulation of misfolded a-syn
similarly to the effect of a-syn mutations (Figure 2).

Conclusions
The future key steps in the field will be the acquisition
of a clearer picture of LRRK2 signaling, including speci-
fic substrates, the GTPase activating proteins (GAPs)
and the guanine-exchange factors (GEFs), and the
kinases and phosphatases that finely tune its function.
This will also allow to better understand how LRRK2
signaling influences a-syn function, with important ther-
apeutic implications being LRRK2 a protein kinase and
therefore an excellent pharmacological target.
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