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Modeling Alzheimer’s disease in transgenic rats
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Abstract

Alzheimer’s disease (AD) is the most common form of dementia. At the diagnostic stage, the AD brain is
characterized by the accumulation of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal
loss. Despite the large variety of therapeutic approaches, this condition remains incurable, since at the time of
clinical diagnosis, the brain has already suffered irreversible and extensive damage. In recent years, it has become
evident that AD starts decades prior to its clinical presentation. In this regard, transgenic animal models can shed
much light on the mechanisms underlying this “pre-clinical” stage, enabling the identification and validation of new
therapeutic targets. This paper summarizes the formidable efforts to create models mimicking the various aspects
of AD pathology in the rat. Transgenic rat models offer distinctive advantages over mice. Rats are physiologically,
genetically and morphologically closer to humans. More importantly, the rat has a well-characterized, rich
behavioral display. Consequently, rat models of AD should allow a more sophisticated and accurate assessment of
the impact of pathology and novel therapeutics on cognitive outcomes.
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Introduction
Despite important advances in our understanding of
the molecular basis of Alzheimer’s disease (AD) neuro-
pathology and the large variety of novel therapeutic ap-
proaches attempted, this condition remains incurable.
The recent failure of passive immunotherapy clinical trials
(Bapineuzumab and Solanezeumab) best illustrates the
challenges that lay ahead [1]. It seems that the main
obstacle to an effective therapy is that, at the time of
clinical diagnosis, the brain has already suffered extensive
and perhaps irreparable damage.
At the diagnostic stage, the AD brain is characterized by

abundant senile amyloid plaques, formed by extracellular
aggregates of amyloid-beta (Aβ) peptides, and by neurofib-
rillary tangles (NFTs) consisting of intracellular aggregates
of abnormally phosphorylated tau (p-tau) protein (reviewed
in [2-4]). The neurodegenerative changes in the central ner-
vous system (CNS) neurons and synapses ultimately lead to
the progressive cognitive decline characteristic of AD [5].
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There is also substantive evidence indicating that CNS
pro-inflammatory mechanisms contribute to cognitive
impairment [6,7]. Inflammatory processes in AD have
been classically regarded as an Aβ plaque-induced event,
characterized by activation of microglia and astrocytes
surrounding the plaques [8,9].
In recent years, it has become evident that AD starts

decades prior to its clinical presentation, based on bio-
marker studies in familial and sporadic forms of the
disease [10-12]. Exploring the neuropathology of AD
in such human “pre-clinical” stages is not an easy task.
Transgenic animal models can shed much light on the
many factors impacting or accelerating disease progression.
They can also be of value to identify new biomarkers or
potential new therapeutic targets. Transgenic rat models of
the AD-like pathology offer distinctive advantages, as will
be discussed below.

Transgenic models of AD
Our knowledge of the molecular mechanisms underlying
AD pathogenesis has made a leap forward with the creation
of the first transgenic AD mouse models in the mid 1990s
[13-15]. Based on the identification of the mutations in the
amyloid precursor protein (APP), presenilin 1 (PS1) and
presenilin 2 (PS2) genes involved in the familial forms of
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AD, these models reflect various aspects of AD including
amyloid accumulation, abnormal tau phosphorylation,
inflammation or behavioral deficits [13-17].
Transgenic mouse models have made an important

contribution to testing the so-called “Amyloid Hypothesis”.
Furthermore, they have played a role in assessing a large
variety of disease-modifying compounds. Given the pro-
gressive and predictable evolution of the pathology, the
use of transgenic models also offers the opportunity to
find reliable biomarkers, crucial in detecting the disease
at the early, “silent”, asymptomatic stage, during which
therapeutic interventions would have much greater pos-
sibilities of success.
Although transgenic mouse models have proven highly

valuable in elucidating the mechanisms involved in AD,
the recent failure of AD immunotherapy highlights the
necessity of developing superior models of the AD path-
ology. The ideal transgenic model should mimic multiple
aspects of the disease including its etiology and a time-
dependent progression of the pathology, involving similar
structures and cells similar to the human pathology. Most
importantly, however, the model should provide reliable,
longitudinal readings about the status of higher brain
function by applying suitable learning and memory tests,
analysis of body fluids, such as cerebrospinal fluid, and
imaging. Such models should be free of confounding
factors such as impairments in visual or motor systems,
which can be falsely interpreted as AD deficits provoked
by nonspecific transgene- or strain-effects.

Advantages of using rats: the rat as a model for AD
Historically, mice were preferred over rats for transgenesis
mainly due to technical reasons. Compared to mice, rat
one-cell embryos have less visible pronuclei and more
flexible plasma and pronuclear membranes, making trans-
gene injection in pronuclei more difficult [18]. The low
survival of embryos following injection also contributes
to making rat transgenesis more demanding and time-
consuming [18]. Additionally, tools for manipulation of the
rat genome are less readily available [19]. Until recently,
embryonic stem (ES) cell-based targeting technology, a
powerful tool allowing gene replacement (knock-in) or
loss of function mutations (knock-out), was not available,
as viable rat ES cells had been difficult to obtain [20].
Despite these drawbacks, rats offer numerous advantages

compared to mice. The rat is physiologically, genetically
and morphologically closer to humans than mice [21-23].
Its larger body and brain size facilitates intrathecal ad-
ministration of drugs, microdialysis, multiple sampling
of cerebrospinal fluid, in vivo electrophysiology, as well
as neurosurgical and neuroimaging procedures [19]. Of
relevance for AD modeling, similarly to humans, the rat
contains 6 isoforms of tau [24], although the ratio of 4R/3R
tau isoforms is different (9:1 in rats; 1:1 in humans). In
addition, there is good homology between the rat and
human apoE amino acid sequences (73.5% with human
apoE3, 73.9% with apoE4) [25,26]. However, while its
sequence is more similar to apoE4, rat apoE displays the
biophysical behavior of apoE3 [27].
Another major advantage of this species is that it is

behaviorally well characterized. Rats have finer and more
accurate motor coordination than mice and exhibit a
richer behavioral display. They also display a more complex
social behavior. They display juvenile play fighting and
courtship as well as low levels of aggression [28]. Since the
rat is a terrestrial, aquatic and arboreal mammal, it is more
competent and less stressed in water-based navigation
tasks such as the Morris water maze (MWM) [28]. These
behavioral differences may be accounted for by the fact that
rats, like humans, and opposed to mice, have a post-natal
brain development that would lead to a greater number of
synapses and a more complex synaptic organization [28].
Consequently, rat models of AD should allow a more so-
phisticated characterization at the behavioral level and thus
enable a more accurate assessment of the impact of the
pathology on cognitive outcomes. They should also enable
a better assessment of the effects of potential therapeutics
on cognition in longitudinal studies.
Based on these advantages, rats are increasingly and

successfully used to mimic key pathological hallmarks
of neurodegenerative diseases including Alzheimer’s
(as discussed in this review), Parkinson’s (PD) [29-31],
Huntington’s (HD) [32], amyotrophic lateral sclerosis
[33] and tauopathies [34,35].
Importantly, it has been reported that some transgenic

rat models offer a more accurate representation of the
human disease compared to mice bearing the same
transgene. This has been exemplified in hypertension
[36] and atherosclerosis [37], as well as in models of
neurodegenerative diseases. Thus, mouse models of HD
can only mimic juvenile HD pathological changes whereas
HD transgenic rats allow study of the common adult type
of the disease [32]. Also, no significant loss of dopamin-
ergic neurons is observed in the human alpha-synuclein
transgenic mouse model of PD, but severe loss of the dopa-
minergic integrity is reported in human alpha-synuclein
transgenic rats [31].

Early rat models of AD
Rats have played a prominent role in the modeling of
AD, well before the advent of transgenesis. However,
most of the models summarized in this section do not
represent accurate model systems for AD as they do not
exhibit neuritic plaques, NFTs or neuron loss. This is the
case, for example, in aged rats, which reflect only some
aspects of human aging, such as learning and memory
impairments and moderate deficits in cortical cholinergic
and dopaminergic function [38-40].
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Chemical and lesion-induced rat models have been
extensively used, particularly to test the cholinergic hypoth-
esis of AD. This hypothesis states that CNS cholinergic
deficits in elderly adults and demented patients are the
main factors responsible for their cognitive impairments
[41-43], and has led to the well-established, symptomatic,
anticholinesterase therapies (for review see [44]).
A large variety of compounds have been used to induce

AD-like cortical cholinergic neuronal loss with varying
degrees of specificity. These include the relatively non-
specific scopolamine [45,46] and the p75NTR-specific
immunotoxin for cholinergic neurons, 192-IgG-saporin
[47,48]. Several rat lesion models have been used, and
include models of brain trauma [49], bilateral transection
of the hippocampal fimbria-fornix [50], ovariectomy [51]
and hyperthermia on the post-ischemic brain [52], the last
creating AD-like pathology [52].
The finding that Aβ is central to the development of

plaques [53] and is neurotoxic [54] has led to studies
investigating the impact of Aβ on brain function in vivo.
However, although cerebral infusion of Aβ in naïve rats
can recapitulate some key features of human AD including
cholinergic dysfunction, Aβ deposits, ventricular en-
largement, neuron loss and behavior deficits, it can not
simulate the progressive neurodegeneration characteristic
of AD [55-58]. In addition, there is great inconsistency
between Aβ infusion models, likely due to differences in
methodology such as identity, type (fresh, presumably
oligomeric, versus fibrillar forms) and the concentration
of peptide administered, duration of the treatment and site
of infusion. Therefore, while such models might be of
value to examine specific aspects of the amyloid path-
ology, they fail to reproduce the full spectrum of AD
neuropathological hallmarks.

Virus-mediated rat models of AD
More recently, the advance of virus-mediated gene trans-
fer technology has allowed for the expression of human
APP (hAPP)695 bearing the Swedish mutation in the adult
rat hippocampus. This induced Aβ42 immunoreactivity
and learning deficits in the MWM up to 12 months post-
injection. However, the injection did not lead to Aβ plaque
deposition, gliosis or neural loss [59]. Virally-mediated
gene transfer of human Aβ42 and Aβ40 peptides bearing
the British mutation into the hippocampus of adult Wistar
rats has also helped to establish the contribution of each
Aβ species in AD [60].

Transgenic rat models of AD
Since the early 2000s, a wide array of transgenic rats has
been created based on the expression of human genes
relevant for early-onset familial AD such as wild-type or
mutated APP and mutated PS1. These models offer a
large heterogeneity in their phenotype, which arises from
several factors. First, the expression of these transgenes
is controlled by different neuronal promoters resulting
in varying expression strengths and patterns. In addition,
these models were produced and stabilized in both inbred
(Lewis and Fischer-344) or outbred (Sprague Dawley and
Wistar) genetic backgrounds [18]. It is now well established
that genetic background has a great influence on pathogen-
esis. For example, it was demonstrated that rat strain
SHR72 expressing human truncated tau (151–391, 4R)
under the control of the Thy1 promoter (Table 1) displayed
different NFT load and neuroinflammation markers de-
pending on the background in which it was stabilized [61].
Differences in expression strength can also result from the
method used to introduce the transgene in fertilized eggs
(pronuclear injection of DNA or lentiviral delivery). Most
importantly, differences in phenotypes may be explained
by the introduction of single, double or triple transgenes.

Rat models of amyloid pathology devoid of plaques
The earliest transgenic rat models of AD showed accumu-
lation of intracellular Aβ (iAβ) but no senile plaques. It was
suggested that this was due to inadequate Aβ levels, since
higher concentrations are required to initiate the deposition
process. Some of these models however, did display synap-
tic dysfunction (LTP and behavior) supporting the view that
cognitive deficits are independent of plaque formation but
correlate better with Aβ oligomers and other Aβ species.
Our first attempts to generate rat models of AD failed

to reproduce the classical AD pathological hallmarks
(Table 1) [62-65]. This can be attributed to moderate
levels of APP gene expression. However, UKUR25 and
UKUR28 transgenic rat strains showed an important ac-
cumulation of intracellular Aβ (iAβ)-immunoreactive
material in pyramidal neurons of the neocortex and in
CA2 and CA3 regions of the hippocampus. These models
significantly contributed in supporting the role of iAβ in
the amyloid cascade at the early, pre-plaque phase of the
amyloid pathology. Indeed, they confirmed in vivo that the
accumulation of iAβ material, in the absence of plaques,
induces deregulated ERK2 activation [62,63] as previously
demonstrated in vitro [66,67]. Furthermore, they also
demonstrate that iAβ is sufficient to trigger the initial
steps of the tau-phosphorylation cascade, learning impair-
ments in the MWM task [62,63], significant changes in
the hippocampal proteome, particularly in synaptic proteins
implicated in learning and memory formation [65] and
morphological alterations in the Golgi apparatus, lysosomes
and lipofuscin bodies [64].
Intracellular iAβ accumulation was observed in other

rat models of amyloid pathology. Similarly to our model,
TgAPPswe rats do not develop extracellular plaques or
NFTs up to 18 months of age [68]. These rats show a mild
increase in APP mRNA (56.8% at 12 months). In contrast
with UKUR25, these rats perform better at 6 and 12



Table 1 Transgenic rat models of Alzheimer’s disease

Name Transgene Background Amyloid pathology Tau pathology Other References

UKUR28 hAPP751 Swe, IndPDGF
promoter

Wistar (outbred) iAβ in cortex and hippocampus
from 6 moNo plaques

N/A Increased pERK2 [62,63]

UKUR25 hAPP751 Swe, Ind Human
PS1 (M146L) PDGF promoter

Wistar (outbred) iAβ in cortex and hippocampus
from 6 moNo plaques

Increased ptau (PHF-1) at
9 mo, no tangles

Increased pERK2, decreased
p- p90RSKAltered proteome
(SELDI-TOFF MS) Altered
subcellular compartments

[62-65]

TgAPPswe hAPP751 Swe, PDGF promoter Fisher-344 (inbred) Increased APP mRNA (56%) and
Aβ-40 and Aβ-42 peptides, no
plaques

N/A Better cognitive performance in
MWM and STFP

[68]

Tg6590 hAPP695 Swe, UbiquitinC
promoter

Sprague-Dawley
(outbred)

Increased APP products
Cerebrovascular deposits
at 15 moFew diffuse plaques

Increased ptau (PHF-1) at
15 mo, no tangles.

Impairment in MWM and
open-field

[75,76]

hAPP695 hAPP695 wild-type, UbiquitinC
promoter

Wistar (outbred) Increased APP/ Aβ levels (2 fold)
in cortex and hippocampus no
plaques

N/A Smaller infarct volume impairment
in MWM and BWT after MCAO

[72]

APP21APP31 hAPP695 Swe, Ind, UbiquitinC
promoter Lentiviral delivery

Fisher-344 (inbred) Increased APP products and
APP mRNA in brain (2.9 fold),
kidneys and lungs Increased
Aβ-40 and Aβ-42 in serum
No plaques

N/A [73,74]

PSAPPTg478/
Tg1116/ Tg11587

hAPP695 Swe, Rat synapsin I
promoterhAPP695 Swe,
Lon, PDGFβ promoter Human
PS1 (M146V), Rat synapsin I
promoter

Sprague-Dawley
(inbred)

Mostly diffuse plaques Few
compact plaques in
hippocampus. No vascular
Aβ depositsAβ load confirmed
with (F-18) FDDNP microPET

Increased ptau (AT8, PHF-1),
no tangles

Impairment in LTP and in MWM
performance Activation of
astrocytes and few microglia
particularly around plaquesNo
neuronal loss

[77-79]

McGill-R-Thy1-APP hAPP751 Swe, Ind, Mouse
Thy1.2 promoter

Wistar (outbred) Progressive accumulation of
iAβ in cortex and hippocampus
from 1 week post-natalAβ
plaques starting at 6-9 mo

N/A Dystrophic neurites and
astrogliosis around
plaques Progressive learning
deficits (MWM) Altered
metabolites (MRS)

[81,85]

TgF344-AD hAPP695 Swe, Human
PS1ΔE9 Mouse PrP
promoter

Fisher-344 (inbred) Progressive accumulation of
iAβ, Aβ-40 and Aβ-42 and Aβ
plaques

Increased ptau (CP-13,
pTau-PADRE and others)
and Gallyas-positive NFT

Deficits in open-field, NOR, BM
Presence of dystrophic neurites,
activated astrocytes and microglia
around plaques. Neuronal loss

[91]

SHR72 and SHR318 Human tau truncated
(151-391, 4R) Mouse
Thy1 promoter

SHR (inbred) N/A Increased ptau (AT8)Tangles
in brainstem

Deficits in MWM and BWT Impaired
reflex responses no neuronal loss
in brain, axonal damage in the
brain stem and spinal cord,
decreased lifespan

[35,95,96]

SHR24 Human tau truncated
(151-391, 3R) Mouse
Thy1 promoter

SHR (inbred) N/A Increased ptau (DC11 and others)
Tangles in cortex

No neuronal loss in cortex and
hippocampus, decreased lifespan

[97]

BM Barnes maze, BWT beam walking test, IHC immunohistochemistry, MCAO middle cerebral artery occlusion, mo months-old, MRS magnetic resonance spectroscopy, MWM Morris water maze, N/A information not
available, NFT neurofibrillary tangles, NOR novel object recognition, PET positron emission tomography, STFP social transmission of food preference.
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months old in two hippocampus-dependent tasks, the
MWM and the social transmission of food preference task
when compared with non-transgenic animals. This dis-
crepancy can be explained by differences in the genetic
background and the transgene expressed (Table 1), as
TgAPPswe rats do not carry the APP Indiana and the
PS1 Finn mutations, which could result in lower iAβ levels.
Accordingly, the authors suggest a dose-dependent effect
of APP, which would play a role in normal learning and
memory processes at low doses but would lead to neurode-
generation and cognitive decline at higher doses [68].
Models expressing wild-type or mutated hAPP isoform

695 (hAPP695) have also been attempted. This choice is
justified, as it is regarded as the isoform preferentially
expressed by neurons. In addition, it was reported that
there is a selective loss of APP695 transcripts in the brain
of AD-affected patients [69]. However, it has been shown
in vitro and in transgenic mouse models that overexpres-
sion of hAPP751 causes more AD-like pathology and
cognitive impairments than hAPP695 [70,71].
Trangenesis with wild-type hAPP695 results in a

two-fold increase of APP/Aβ fragments in cortex and
hippocampus compared to non-transgenic animals, lead-
ing to behavioral impairments after middle cerebral artery
occlusion [72]. Higher levels of APP expression (2.9 fold
more APP mRNA) were first achieved in the brain of
APP21 and APP31 inbred models which were created by
injecting recombinant lentivirus carrying the hAPP695
with the Swedish and Indiana mutations into zygotes
(Table 1) [73]. These models have substantial quantities of
Aβ40 and 42 in serum, and especially so in homozygous
animals. Circulating Aβ most likely does not arise from
the brain, as the models also express high levels of APP
mRNA in the kidneys, heart and lungs. Desspite of the
high levels of human APP in neurons of the cortex and
hippocampus, they do not develop extracellular deposits
of Aβ [74]. However, senile plaques and cerebral Aβ
angiopathy can be observed 9 months after the cerebral
injection of dilute brain extracts from AD patients into
APP21 animals, suggesting that Aβ deposition can be
exogenously seeded if the host expresses human Aβ [74].
A third rat model expressing hAPP695 with the Swedish

mutation (Table 1) has shown an accumulation of iAβ
in neurons of the cortex, hippocampus and cerebellum
and an increased amount of soluble Aβ material. At 9
months old, Tg6590 exhibits impaired spatial learning
in the MWM and altered spontaneous activity in the open-
field [75]. In addition, magnetic resonance imaging (MRI)
suggests a tendency towards enlargement of the lateral
ventricles at 11 months old [75]. At 15 months of age,
these rats show Aβ cerebrovascular deposits, rare diffuse
plaques, and tau hyperphosphorylation at PHF-1 site
without the formation of mature plaques or NFTs even
by the age of 22 months [75,76].
Rat models of amyloid pathology with mature plaques
The first model to develop amyloid plaques was achieved
in homozygous double transgenic rats Tg478/Tg1116
expressing hAPP695 carrying the Swedish and Swedish/
London mutations. These rats show increased APP, Aβ40
and Aβ42 load and developed diffuse plaques by 17–18
months of age [77]. The age of plaque onset was acceler-
ated to 9 months by introducing a third transgene carrying
a human mutated presenilin gene [77,78]. From the age of
9 months-old, PSAPP rats (also named Tg478/Tg1116/
Tg11587) display abundant diffuse plaques in the cortex,
hippocampus, olfactory bulb, thalamus and hypothalamus
but not in the cerebellum or brain-stem (Table 1). How-
ever, only few compact plaques are detectable in the
hippocampus even at 22 months-old and no vascular
Aβ deposits are observed. The progressive accumulation of
Aβ plaques was confirmed with the use of [F-18]FDDNP
micro positron emission tomography [79]. Astrocytic and
light microglial activation and tau hyperphosphorylation is
present around compact plaques. These rats also show
impaired LTP accompanied by progressive behavior defi-
cits in the MWM task, detectable at 7 months of age, in
the absence of plaques. Behavior deficits correlate with
Aβ42 load in the hippocampus. However, these rats lack
neurofibrillary pathology or neuronal loss [78]. Its use as an
efficient AD model is also hampered by a tendency towards
premature death related to kidney disease, hypertension
and immunosuppression, which are likely a consequence of
the genetic disturbance caused by the presence of the triple
transgenes [80].
The McGill-R-Thy1-APP rat model is the only model

able to reproduce extensive AD-like amyloid pathology
with a single transgene (Figure 1) [81]. This model ex-
presses the hAPP751, bearing the Swedish and Indiana
mutations under the control of the murine Thy1.2 pro-
moter. In the McGill-R-Thy1-APP transgenic rat, a single
transgene is able to produce human APP expression specif-
ically in AD-relevant areas of the brain without cerebellar
and peripheral tissue expression. The presence of a single
transgene with a low copy number makes of this rat the
least genetically aggressive AD transgenic model developed
so far.
McGill-R-Thy1-APP rats display iAβ as soon as one

week post natal in the cortex and hippocampus in both
hemi and homozygous animals. The oligomeric nature of
the iAβ material was confirmed using the NU-1 monoclo-
nal antibody that specifically recognizes soluble aggregates
of Aβ [82]. The pathology is dose-dependent as, in homo-
zygous animals, iAβ accumulation leads to progressive
neuritic plaque deposition starting from 6–9 months old.
Hemizygous rats develop no or very few plaques at much
later stages. The anatomical spreading of plaques coin-
cides with that observed in human AD, starting from the
subiculum and expanding to the entorhinal cortex and
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Figure 1 The McGill-R-Thy1-APP transgenic rat phenotype. (A) The McGill-R-Thy1-APP transgenic rat expresses the human APP751, bearing
the Swedish and Indiana mutations under the control of the murine Thy1.2 promoter. Its phenotype is fairly similar to the human pathology
reported in AD and MCI. (B) We observe intraneuronal Aβ accumulation starting at 1 week post-natal, as determined with our murine
monoclonal antibody (McSA1) against the N-terminus of the Aβ peptide. The development of plaques follows the same anatomical sequence as
in humans. Mature amyloid plaques are Thioflavin S-positive (C) and are surrounded by activated microglia as observed with MHCII- (brown) and
Aβ-specific antibodies (McSA1-blue) and also with Iba-1(blue) and McSA1(blue) (D). Plaques are also accompanied by dystrophic neurites (E) and
astrogliosis (GFAP-blue, McSA1-green) (F). (G) These rats already show learning deficits in the Morris water maze task at the pre-plaque stage
(3 months old) and these deficits progress with amyloid accumulation. Images adapted from [81] with the publisher’s permission and from [83].
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hippocampus. The AD-like pathological phenotype also
includes the presence of transmitter-specific dystrophic
neurites (Figure 1) [81]. Moreover, we have recently
observed a recruitment of microglia towards iAβ-
burdened hippocampal neurons and a remarkable pre-
plaque astrogliosis [83]. It is of significance that the
McGill-R-Thy1-APP rat presents progressive behavior
impairments in the MWM starting at 3 months of age
while no amyloid plaques are yet present. The deficits
are transgene-dose-dependent and they correlate with
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the abundance of the 12kDa 6E10-immureactive band
likely corresponding to a combination of Aβ trimers and
the APP C-terminal fragment, C99 [81]. This observation
reinforces the hypothesis on the impact of oligomeric iAβ
in cognition [84].
These rats were also used to study metabolite levels

by magnetic resonance spectroscopy in the dorsal hippo-
campus and frontal cortex. The findings demonstrate
complex metabolite alterations during the progression
of the amyloid pathology, different from those observed
during normal aging [85]. MRI imaging on these rats
also showed marked brain shrinkage, which is more evident
for the hippocampal complex and resting-state connectivity
impairment [86-88]. Consistent with these observations,
McGill-R-Thy1-APP rats display impairments in firing rates
for place discrimination of spatial context [89] and a
very compelling in vivo impairment in hippocampal
LTP formation at preplaque stages [90].
More recently, a bigenic TgF344-AD rat has been

reported (Table 1) [91]. These rats express hAPP695,
with the Swedish mutation, and PS1ΔE9 under the control
of the strong murine PrP promoter. These rats demon-
strate strong age-dependent accumulation of iAβ, soluble
and insoluble Aβ40 and Aβ42 peptides and thioflavin-
positive amyloid plaques. The amyloidosis is associated
with hyperactivity in the open-field as well as age-
dependent deficits in spatial learning and memory as
assessed with the novel object recognition and the
Barnes maze tasks. Surprisingly, as it was never seen
before in other transgenic rat models of AD and even
in transgenic AD mouse models expressing APP and
PS1 mutations, by 16 months of age these rats present
Gallyas-positive structures resembling NFTs seen in
human AD. These structures contain p-tau as detected
with several p-tau antibodies. The observed amyloidosis
and tauopathy are accompanied by neuronal loss. These
rats also present glial activation as early as 6 months old,
before appreciable extracellular Aβ deposition [91].

Rat models of tau pathology
Several transgenic mouse models expressing mutated
forms of human tau develop neurofibrillary degeneration
[92,93]. Because the rat contains 6 tau isoforms, as do
humans, rat models of tau pathology were also created
(Table 1) [35,94-97]. Overexpression of human non-
mutated truncated tau encompassing 4 repeat domains
(151–391, 4R) in neurons leads to a hyperphosphorylation
of tau and the development of neurofibrillary degeneration
similar to that reported in AD [35]. Behavior analysis
highlighted a progressive cognitive decline in spatial navi-
gation in MWM, as well as disturbances in sensorimotor
and reflex responses [95]. These impairments correlate
with the progressive accumulation of argyrophilic NFTs
and mature sarcosyl-insoluble tau complexes and extensive
axonal damage in the brain stem and spinal cord. However,
although hyperphosphorylated tau was observed in cortex
and hippocampus, no neuronal loss or tangles were ob-
served in the brain [95]. These impairments lead to de-
creased lifespan [35,96]. The first rat model developing
progressive NFTs in the cortex expresses a human non-
mutated truncated tau encompassing 3 repeat domains
(151–391, 3R). These rats develop progressive cortical
neurofibrillary degeneration as early as 9 months of age
[97]. Surprisingly, this rat does not show neuronal death
in the cortex, the region with the largest accumulation of
tangles, or the hippocampus, the region presenting the
highest expression of human tau. However, the neurofi-
brillar pathology leads to decreased lifespan. More models
of tau transgenesis are likely to appear in coming years.

Comparison of transgenic rat and mouse models of AD
It has been more complicated to achieve AD-like amyloid
deposition in the brain of transgenic rats than mice. The
elevation of soluble Aβ or the extent of plaque accumula-
tion is often less in rat (Table 1) than in mouse models
expressing similar constructs, resulting in less aggressive
phenotypes. Accordingly, Tg6590 [75,76] (Table 1), fail to
develop mature plaques despite displaying some cognitive
impairments. Conversely, its equivalent in mice, Tg2576,
which expresses hAPP695 bearing the Swedish mutations
under the control of the PrP promoter, presents cognitive
decline accompanied by numerous Aβ plaques [98]. Simi-
larly, TgAPPswe rats show very slight increases in Aβ pep-
tide production with no plaque development [68] while
TgAPP23 mice expressing hAPP751 with the Swedish
mutations under the control of the Thy-1 promoter show
typical plaques by 6 months of age accompanied by
neuritic and synaptic degeneration [99]. Furthermore,
TgCRND8 mice [100] expressing hAPP695 with the
Swedish and Indiana mutations under the control of
the PrP promoter develop early and extensive plaque
deposition by 3 months of age while APP21 and APP31
rats [73,74] never accumulate extracellular amyloid. In
these cases, differences in phenotype might arise from
differences in the promoters used in mice and rats. In sup-
port to this, TgAPP(Sw,V717F) mice [101] and UKUR28
rats [62,63] expressing hAPP751with the Swedish and
Indiana mutations driven by the PDGF promoter have
similar phenotypes despite an absence of Aβ42 and plaque
accumulation.
However, there are other cases where the exact same

construct used in the two species resulted in different
phenotypes indicating that species-specific factors likely
contribute to these phenotype differences. For example,
McGill-Thy1-APP mice [102] and McGill-Thy1-APP rats
[81] expressing exactly the same construct containing
hAPP751 with the Swedish and Indiana mutations under
the control of the Thy1 promoter develop a similar
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phenotype. However, it is far more aggressive in mice
(plaques at 4 months) than in the rat (plaques at 6–9
months), the latter needing to be homozygous to develop
plaques. This might be explained by the number of copies
of the transgene inserted in the host DNA. While few
transgene copies are present in McGill rats [81], McGill
mice [102] contain more than 20 copies of the transgene.
Phenotypic differences were also observed in TgF344-AD
rats [91] and Tg-APPswe/PS1dE9 mice [103,104], both
expressing hAPP695 with the Swedish mutations under
PrP regulatory control. These models show extensive and
progressive amyloid pathology accompanied by cognitive
deficits and some tau pathology. However, TgF344-AD
rats have greater abundance of soluble oligomeric Aβ
species. Also, while TgF344-AD rats display NFT-like
structures and frank neuronal loss, these are not observed
in Tg-APPswe/PS1dE9 mice.

Concluding remarks and future directions
Transgenesis in rats offers great potential to decipher
subtle and early aspects of AD pathology. The rat is, in
many aspects, closer to humans than mice. Because of
its predictable and multi-faceted behavioral display, this
species is of great value for accurate cognitive assessment.
The current rat transgenic models, while replicating all as-
pects of the amyloid pathology including inflammation and
the presence of dystrophic neurites, remain incomplete
models as it does not develop “bona fide” human-like
neurofibrillary tangles. Despite these weaknesses, current
transgenic rat models of AD are contributing significantly
to our understanding of processes and mechanisms in-
volved in the disease progression. However, as the available
AD rat models display varying degrees of competence in
recapitulating the characteristics and severity of the
pathology, the choice of the model is crucial for the
investigative objectives. Also, although the CNS of rats
is closer to humans than that of the mouse, the extrapo-
lation of conclusions from rat to humans would require a
measure of caution. These transgenic models are closer to
the pathology elicited in familial AD (both genetically
driven), however, models with a minimal genetic invasive-
ness, such as the McGill-R-Thy1-APP, offer the closest
available analogy to the human sporadic AD pathology.
Despite their obvious limitations, transgenic rat models
will be of great assistance in the search of potential bio-
markers signaling an early, preclinical, pathology and in
the search and validation of novel therapies. From the
experimental point of view, they have already shown to
be of significant advantage for in vivo electrophysiology,
imaging, proteomics, epigenetics and in the future for
optogenetic studies.

Abbreviations
AD: Alzheimer’s disease; Aβ: Amyloid-β peptide; APP: Amyloid precursor
protein; CNS: Central nervous system; ERK: Extracellular-signal-regulated
kinases; HD: Huntington’s disease; MWM: Morris water maze; MRI: Magnetic
resonance imaging; NFTs: Neurofibrillary tangles; PD: Parkinson’s disease;
PHF: Paired helical filaments; PS1: Presenilin 1; PS2: Presenilin 2.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SDC and ACC contributed to the writing and revising of the manuscript.
Both authors read and approved the final manuscript.

Acknowledgements
This research is supported by the Canadian Institute for Health and Research
grant MOP102752 to AC Cuello. AC Cuello is the holder of the McGill
University Charles E. Frosst-Merck Chair in Pharmacology. S Do Carmo is the
holder of the Charles E. Frosst-Merck Post-Doctoral Fellowship. The authors
also acknowledge the support from Dr Alan C. Frosst and the Frosst family.

Author details
1Department of Pharmacology and Therapeutics, McGill University, 3655
Promenade Sir-William-Osler, Room 1325, Montreal, Quebec H3G 1Y6,
Canada. 2Department of Anatomy and Cell Biology, McGill University,
Montreal, Quebec H3A 2B2, Canada. 3Department of Neurology and
Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada.

Received: 5 July 2013 Accepted: 28 September 2013
Published: 25 October 2013

References
1. Callaway E: Alzheimer’s drugs take a new tack. Nature 2012, 489:13–14.
2. Cuello AC: Overview of the Alzheimer’s Disease Pathology and Potential

Therapeutic Targets. In Pharmacological Mechanisms in Alzheimer's Therapeutics.
Edited by Cuello AC. New York: Springer Science and Business Media; 2007:1–27.

3. Hardy JA, Mann DM, Wester P, Winblad B: An integrative hypothesis
concerning the pathogenesis and progression of Alzheimer’s disease.
Neurobiol Aging 1986, 7:489–502.

4. Selkoe DJ: The molecular pathology of Alzheimer’s disease. Neuron 1991,
6:487–698.

5. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA,
Katzman R: Physical basis of cognitive alterations in Alzheimer’s disease:
synapse loss is the major correlate of cognitive impairment. Ann Neurol
1991, 30:572–580.

6. Barrientos RM, Higgins EA, Sprunger DB, Watkins LR, Rudy JW, Maier SF:Memory
for context is impaired by a post context exposure injection of interleukin-1
beta into dorsal hippocampus. Behav Brain Res 2002, 134:291–298.

7. Yaffe K, Lindquist K, Penninx BW, Simonsick EM, Pahor M, Kritchevsky S, Launer
L, Kuller L, Rubin S, Harris T: Inflammatory markers and cognition in well-
functioning African-American and white elders. Neurology 2003, 61:76–80.

8. Dandrea MR, Reiser PA, Gumula NA, Hertzog BM, Andrade-Gordon P:
Application of triple immunohistochemistry to characterize amyloid
plaque-associated inflammation in brains with Alzheimer’s disease.
Biotech Histochem 2001, 76:97–106.

9. Mehlhorn G, Hollborn M, Schliebs R: Induction of cytokines in glial cells
surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice
with Alzheimer pathology. Int J Dev Neurosci 2000, 18:423–431.

10. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS,
Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A,
Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL,
Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris
JC: Dominantly Inherited Alzheimer Network. Clinical and biomarker changes
in dominantly inherited Alzheimer’s disease. N Engl J Med 2012, 367:795–804.

11. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW,
Petersen RC, Trojanowski JQ: Hypothetical model of dynamic biomarkers
of the Alzheimer’s pathological cascade. Lancet Neurol 2010, 9:119–128.

12. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo
T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E,
Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV,
Phelps CH: Toward defining the preclinical stages of Alzheimer’s disease:
recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement 2011, 7:280–892.



Do Carmo and Cuello Molecular Neurodegeneration 2013, 8:37 Page 9 of 11
http://www.molecularneurodegeneration.com/content/8/1/37
13. Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C, Yunis W, Xu S, Eckman
C, Younkin S, Price D, Iadecola C, Brent Clark H, Carlson G: Age-related CNS
disorder and early death in transgenic FVB/N mice overexpressing
Alzheimer amyloid precursor proteins. Neuron 1995, 15:1203–1218.

14. Quon D, Wang Y, Catalano R, Scardina JM, Murakami K, Cordell B:
Formation of beta-amyloid protein deposits in brains of transgenic mice.
Nature 1991, 352:239–241.

15. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C,
Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S,
Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah F,
McConologue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M,
Schenk D, Seubert P, Snyder B, Soriano F, Tan H, et al:
Alzheimer-type neuropathology in transgenic mice overexpressing V717F
beta-amyloid precursor protein. Nature 1995, 373:523–527.

16. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K,
Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada
CM, Eckman C, Younkin S, Hsiao K, Duff K: Accelerated Alzheimer-type
phenotype in transgenic mice carrying both mutant amyloid precursor
protein and presenilin 1 transgenes. Nat Med 1998, 4:97–100.

17. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst
M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A,
Lin WL, Yen SH, Dickson DW, Davies P, Hutton M: Neurofibrillary tangles,
amyotrophy and progressive motor disturbance in mice expressing
mutant (P301L) tau protein. Nat Genet 2000, 25:402–405.

18. Charreau B, Tesson L, Soulillou JP, Pourcel C, Anegon I: Transgenesis in rats:
technical aspects and models. Transgenic Res 1996, 5:223–234.

19. Tesson L, Cozzi J, Ménoret S, Rémy S, Usal C, Fraichard A, Anegon I: Transgenic
modifications of the rat genome. Transgenic Res 2005, 14:531–546.

20. Tong C, Li P, Wu NL, Yan Y, Ying QL: Production of p53 gene knockout
rats by homologous recombination in embryonic stem cells. Nature 2010,
467:211–213.

21. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S,
Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L,
DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A,
Gill R, Celera Holt RA, Adams MD, Amanatides PG, Baden-Tillson H,
Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, et al: Genome sequence
of the Brown Norway rat yields insights into mammalian evolution.
Nature 2004, 428:493–521.

22. Jacob HJ, Kwitek AE: Rat genetics: attaching physiology and
pharmacology to the genome. Nat Rev Genet 2002, 3:33–42.

23. Lin JH: Species similarities and differences in pharmacokinetics.
Drug Metab Dispos 1995, 23:1008–1021.

24. Hanes J, Zilka N, Bartkova M, Caletkova M, Dobrota D, Novak M: Rat tau
proteome consists of six tau isoforms: implication for animal models of
human tauopathies. J Neurochem 2009, 108:1167–1176.

25. McLean JW, Fukazawa C, Taylor JM: Rat apolipoprotein E mRNA. Cloning and
sequencing of double-stranded cDNA. J Biol Chem 1983, 258:8993–9000.

26. Rajavashisth TB, Kaptein JS, Reue KL, Lusis AJ: Evolution of apolipoprotein
E: mouse sequence and evidence for an 11-nucleotide ancestral unit.
Proc Natl Acad Sci U S A 1985, 82:8085–8089.

27. Tran TN, Kim SH, Gallo C, Amaya M, Kyees J, Narayanaswami V: Biochemical
and biophysical characterization of recombinant rat apolipoprotein E:
similarities to human apolipoprotein E3. Arch Biochem Biophys 2013,
529:18–25.

28. Whishaw IQ, Metz GA, Kolb B, Pellis SM: Accelerated nervous system
development contributes to behavioral efficiency in the laboratory
mouse: a behavioral review and theoretical proposal. Dev Psychobiol
2001, 39:151–170.

29. Taravini IR, Chertoff M, Cafferata EG, Courty J, Murer MG, Pitossi FJ,
Gershanik OS: Pleiotrophin over-expression provides trophic support to
dopaminergic neurons in parkinsonian rats. Mol Neurodegener 2011, 6:40.

30. Kitamura Y, Watanabe S, Taguchi M, Takagi K, Kawata T, Takahashi-Niki K,
Yasui H, Maita H, Iguchi-Ariga SM, Ariga H: Neuroprotective effect of a new
DJ-1-binding compound against neurodegeneration in Parkinson’s
disease and stroke model rats. Mol Neurodegener 2011, 6:48.

31. Nuber S, Harmuth F, Kohl Z, Adame A, Trejo M, Schönig K, Zimmermann F,
Bauer C, Casadei N, Giel C, Calaminus C, Pichler BJ, Jensen PH, Müller CP,
Amato D, Kornhuber J, Teismann P, Yamakado H, Takahashi R, Winkler J,
Masliah E, Riess O: A progressive dopaminergic phenotype associated
with neurotoxic conversion of α-synuclein in BAC-transgenic rats.
Brain 2013, 136:412–432.
32. von Hörsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, Walther T, Bader
M, Pabst R, Kobbe P, Krotova J, Stiller D, Kask A, Vaarmann A, Rathke-Hartlieb S,
Schulz JB, Grasshoff U, Bauer I, Vieira-Saecker AM, Paul M, Jones L, Lindenberg
KS, Landwehrmeyer B, Bauer A, Li XJ, Riess O: Transgenic rat model of
Huntington’s disease. Hum Mol Genet 2003, 12:617–624.

33. Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J,
DeVito L, Psaltis G, DeGennaro LJ, Cleveland DW, Rothstein JD: Focal loss of
the glutamate transporter EAAT2 in a transgenic rat model of SOD1
mutantmediated amyotrophic lateral sclerosis. Proc Natl Acad Sci USA
2002, 99:1604–1609.

34. Klein RL, Dayton RD, Tatom JB, Diaczynsky CG, Salvatore MF: Tau
expression levels from various adeno-associated virus vector serotypes
produce graded neurodegenerative disease states. Eur J Neurosci 2008,
27:1615–1625.

35. Zilka N, Filipcik P, Koson P, Fialova L, Skrabana R, Zilkova M, Rolkova G,
Kontsekova E, Novak M: Truncated tau from sporadic Alzheimer’s disease
suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 2006,
580:3582–3588.

36. Mullins JJ, Peters J, Ganten D: Fulminant hypertension in transgenic rats
harbouring the mouse Ren-2 gene. Nature 1990, 344:541–544.

37. Herrera VL, Makrides SC, Xie HX, Adari H, Krauss RM, Ryan US, Ruiz-Opazo N:
Spontaneous combined hyperlipidemia, coronary heart disease and
decreased survival in Dahl salt-sensitive hypertensive rats transgenic for
human choles-teryl ester transfer protein. Nat Med 1999, 5:1383–1389.

38. Gilad GM, Gilad VH: Age-related reductions in brain cholinergic and
dopaminergic indices in two rat strains differing in longevity. Brain Res
1987, 408:247–250.

39. Greene E, Naranjo JN: Degeneration of hippocampal fibers and spatial
memory deficits in the aged rat. Neurobiol Aging 1987, 8:35–43.

40. Anderson JJ, Holtz G, Baskin PP, Wang R, Mazzarelli L, Wagner SL, Menzaghi F:
Reduced cerebrospinal fluid levels of alpha-secretase-cleaved amyloid
precursor protein in aged rats: correlation with spatial memory deficits.
Neuroscience 1999, 93:1409–1420.

41. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR:
Alzheimer’s disease and senile dementia: loss of neurons in the basal
forebrain. Science 1982, 215:1237–1239.

42. Quirion R, Martel JC, Robitaille Y, Etienne P, Wood P, Nair NP, Gauthier S:
Neurotransmitter and receptor deficits in senile dementia of the
Alzheimer type. Can J Neurol Sci 1986, 13(Suppl 4):503–510.

43. Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP,
Schmeidler J, Kanof P, Davis KL: Neurochemical correlates of dementia
severity in Alzheimer’s disease: relative importance of the cholinergic
deficits. J Neurochem 1995, 64:749–760.

44. Giacobini E: Cholinesterase inhibitors: new roles and therapeutic
alternatives. Pharmacol Res 2004, 50:433–440.

45. Pazzagli A, Pepeu G: Amnesic properties of scopolamine and brain
acetylcholine in the rat. Int J Neuropharmacol 1965, 4:291–299.

46. Nitta A, Katono Y, Itoh A, Hasegawa T, Nabeshima T: Nicotine reverses
scopolamine-induced impairment of performance in passive avoidance
task in rats through its action on the dopaminergic neuronal system.
Pharmacol Biochem Behav 1994, 49:807–812.

47. McGaughy J, Everitt BJ, Robbins TW, Sarter M: The role of cortical
cholinergic afferent projections in cognition: impact of new selective
immunotoxins. Behav Brain Res 2000, 115:251–263.

48. Rossner S, Wörtwein G, Gu Z, Yu J, Schliebs R, Bigl V, Perez-Polo JR:
Cholinergic control of nerve growth factor in adult rats: evidence from
cortical cholinergic deafferentation and chronic drug treatment.
J Neurochem 1997, 69:947–953.

49. Iwata A, Chen XH, McIntosh TK, Browne KD, Smith DH: Long-term
accumulation of amyloid-beta in axons following brain trauma without
persistent upregulation of amyloid precursor protein genes.
J Neuropathol Exp Neurol 2002, 61:1056–1068.

50. Liu J, Zhang Z, Li JT, Zhu YH, Zhou HL, Liu S, Wang TH: Effects of NT-4
gene modified fibroblasts transplanted into AD rats. Neurosci Lett 2009,
466:1–5.

51. Feng Z, Cheng Y, Zhang JT: Long-term effects of melatonin or 17
beta-estradiol on improving spatial memory performance in cognitively
impaired, ovariectomized adult rats. J Pineal Res 2004, 37:198–206.

52. Sinigaglia-Coimbra R, Cavalheiro EA, Coimbra CG: Postischemic
hyperthermia induces Alzheimer-like pathology in the rat brain.
Acta Neuropathol 2002, 103:444–452.



Do Carmo and Cuello Molecular Neurodegeneration 2013, 8:37 Page 10 of 11
http://www.molecularneurodegeneration.com/content/8/1/37
53. Glenner GG, Wong CW: Alzheimer’s disease: initial report of the
purification and characterization of a novel cerebrovascular amyloid
protein. Biochem Biophys Res Commun 1984, 120:885–890.

54. Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW: Aggregation-related
toxicity of synthetic beta-amyloid protein in hippocampal cultures.
Eur J Pharmacol 1991, 207:367–368.

55. Harkany T, O’Mahony S, Keijser J, Kelly JP, Kónya C, Borostyánkoi ZA, Görcs TJ,
Zarándi M, Penke B, Leonard BE, Luiten PG: Beta-amyloid(1–42)-induced
cholinergic lesions in rat nucleus basalis bidirectionally modulate
serotonergic innervation of the basal forebrain and cerebral cortex.
Neurobiol Dis 2001, 8:667–678.

56. Li DB, Tang J, Fan XT, Song M, Xu HW, Bai Y: Comparative study of
histopathology changes between the PS1/APP double transgenic mouse
model and Abeta1-40 -injected rat model of Alzheimer disease.
Neurosci Bull 2006, 22:52–57.

57. Nag S, Yee BK, Tang F: Chronic intracerebroventricular infusion of
beta-amyloid (1–40) results in a selective loss of neuropeptides in
addition to a reduction in choline acetyltransferase activity in the
cortical mantle and hippocampus in the rat. Ann N Y Acad Sci 1999,
897:420–422.

58. Nakamura S, Murayama N, Noshita T, Annoura H, Ohno T: Progressive brain
dysfunction following intracerebroventricular infusion of beta(1–42)-amyloid
peptide. Brain Res 2001, 912:128–136.

59. Gong Y, Meyer EM, Meyers CA, Klein RL, King MA, Hughes JA: Memory-related
deficits following selective hippocampal expression of Swedish mutation
amyloid precursor protein in the rat. Exp Neurol 2006, 200:371–377.

60. Lawlor PA, Bland RJ, Das P, Price RW, Holloway V, Smithson L, Dicker BL,
During MJ, Young D, Golde TE: Novel rat Alzheimer’s disease models
based on AAV-mediated gene transfer to selectively increase
hippocampal Abeta levels. Mol Neurodegener 2007, 2:11.

61. Stozicka Z, Zilka N, Novak P, Kovacech B, Bugos O, Novak M: Genetic
background modifies neurodegeneration and neuroinflammation driven
by misfolded human tau protein in rat model of tauopathy: implication
for immunomodulatory approach to Alzheimer’s disease.
J Neuroinflammation 2010, 7:64.

62. Echeverria V, Ducatenzeiler A, Alhonen L, Janne J, Grant SM, Wandosell F,
Muro A, Baralle F, Li H, Duff K, Szyf M, Cuello AC: Rat transgenic models
with a phenotype of intracellular Abeta accumulation in hippocampus
and cortex. J Alzheimers Dis 2004, 6:209–219.

63. Echeverria V, Ducatenzeiler A, Dowd E, Jänne J, Grant SM, Szyf M, Wandosell F,
Avila J, Grimm H, Dunnett SB, Hartmann T, Alhonen L, Cuello AC: Altered
mitogen-activated protein kinase signaling, tau hyperphosphorylation and
mild spatial learning dysfunction in transgenic rats expressing the
beta-amyloid peptide intracellularly in hippocampal and cortical neurons.
Neuroscience 2004, 29:583–592.

64. Lopez EM, Bell KF, Ribeiro-da-Silva A, Cuello AC: Early changes in neurons
of the hippocampus and neocortex in transgenic rats expressing
intracellular human a-beta. J Alzheimers Dis 2004, 6:421–431.

65. Vercauteren FG, Clerens S, Roy L, Hamel N, Arckens L, Vandesande F,
Alhonen L, Janne J, Szyf M, Cuello AC: Early dysregulation of hippocampal
proteins in transgenic rats with Alzheimer’s disease-linked mutations in
amyloid precursor protein and presenilin 1. Brain Res Mol Brain Res 2004,
132:241–259.

66. Echeverria V, Ducatenzeiler A, Chen CH, Cuello AC: Endogenous beta-amyloid
peptide synthesis modulates cAMP response element-regulated gene
expression in PC12 cells. Neuroscience 2005, 135:1193–1202.

67. Grant SM, Morinville A, Maysinger D, Szyf M, Cuello AC: Phosphorylation of
mitogen-activated protein kinase is altered in neuroectodermal cells
overexpressing the human amyloid precursor protein 751 isoform.
Brain Res Mol Brain Res 1999, 72:115–120.

68. Ruiz-Opazo N, Kosik KS, Lopez LV, Bagamasbad P, Ponce LR,
Herrera VL: Attenuated hippocampus-dependent learning and
memory decline in transgenic TgAPPswe Fischer-344 rats.
Mol Med 2004, 10:36–44.

69. Johnson SA, Rogers J, Finch CE: APP-695 transcript prevalence is
selectively reduced during Alzheimer’s disease in cortex and
hippocampus but not in cerebellum. Neurobiol Aging 1989, 10:755–760.

70. Higgins LS, Catalano R, Quon D, Cordell B: Transgenic mice expressing
human beta-APP751, but not mice expressing beta-APP695, display
early Alzheimer’s disease-like histopathology. Ann N Y Acad Sci 1993,
695:224–227.
71. Ho L, Fukuchi K, Younkin SG: The alternatively spliced Kunitz protease
inhibitor domain alters amyloid beta protein precursor processing and
amyloid beta protein production in cultured cells. J Biol Chem 1996,
271:30929–30934.

72. Clarke J, Thornell A, Corbett D, Soininen H, Hiltunen M, Jolkkonen J:
Overexpression of APP provides neuroprotection in the absence of
functional benefit following middle cerebral artery occlusion in rats.
Eur J Neurosci 2007, 26:1845–1852.

73. Agca C, Fritz JJ, Walker LC, Levey AI, Chan AW, Lah JJ, Agca Y: Development of
transgenic rats producing human beta-amyloid precursor protein as a
model for Alzheimer’s disease: transgene and endogenous APP genes are
regulated tissue-specifically. BMC Neurosci 2008, 9:28.

74. Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T, Lah JJ, LeVine H
3rd, Jucker M, Walker LC: Exogenous seeding of cerebral β-amyloid
deposition in βAPP-transgenic rats. J Neurochem 2012, 120:660–666.

75. Kloskowska E, Pham TM, Nilsson T, Zhu S, Oberg J, Codita A, Pedersen LA,
Pedersen JT, Malkiewicz K, Winblad B, Folkesson R, Benedikz E: Cognitive
impairment in the Tg6590 transgenic rat model of Alzheimer’s disease.
J Cell Mol Med 2010, 14:1816–1823.

76. Folkesson R, Malkiewicz K, Kloskowska E, Nilsson T, Popova E, Bogdanovic N,
Ganten U, Ganten D, Bader M, Winblad B, Benedikz E: A transgenic rat
expressing human APP with the Swedish Alzheimer’s disease mutation.
Biochem Biophys Res Commun 2007, 358:777–782.

77. Flood DG, Lin YG, Lang DM, Trusko SP, Hirsch JD, Savage MJ, Scott RW,
Howland DS: A transgenic rat model of Alzheimer’s disease with
extracellular Abeta deposition. Neurobiol Aging 2009, 30:1078–1090.

78. Liu L, Orozco IJ, Planel E, Wen Y, Bretteville A, Krishnamurthy P, Wang L,
Herman M, Figueroa H, Yu WH, Arancio O, Duff K: A transgenic rat that
develops Alzheimer’s disease-like amyloid pathology, deficits in synaptic
plasticity and cognitive impairment. Neurobiol Dis 2008, 31:46–57.

79. Teng E, Kepe V, Frautschy SA, Liu J, Satyamurthy N, Yang F, Chen PP, Cole GB,
Jones MR, Huang SC, Flood DG, Trusko SP, Small GW, Cole GM, Barrio JR:
[F-18]FDDNP microPET imaging correlates with brain Aβ burden in a
transgenic rat model of Alzheimer disease: effects of aging, in vivo blockade,
and anti-Aβ antibody treatment. Neurobiol Dis 2011, 43:565–575.

80. Zahorsky-Reeves J, Lawson G, Chu DK, Schimmel A, Ezell PC, Dang M,
Couto M: Maintaining longevity in a triple transgenic rat model of
Alzheimer’s disease. J Am Assoc Lab Anim Sci 2007, 46:124.

81. Leon WC, Canneva F, Partridge V, Allard S, Ferretti MT, DeWilde A,
Vercauteren F, Atifeh R, Ducatenzeiler A, Klein W, Szyf M, Alhonen L,
Cuello AC: A novel transgenic rat model with a full Alzheimer’s-like amyloid
pathology displays pre-plaque intracellular amyloid-beta-associated
cognitive impairment. J Alzheimers Dis 2010, 20:113–126.

82. Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, Khuon D,
Gong Y, Bigio EH, Shaw P, De Felice FG, Krafft GA, Klein WL: Monoclonal
antibodies that target pathological assemblies of Abeta. J Neurochem
2007, 100:23–35.

83. Hanzel CE, Pichet-Binette A, Cuello AC: Early inflammatory process in a novel
transgenic rat model of Alzheimer’s disease. New Orleans, USA: Society for
Neuroscience 2012; 2012.

84. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I,
Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL,
Selkoe DJ: Amyloid-beta protein dimers isolated directly from Alzheimer’s
brains impair synaptic plasticity and memory. Nat Med 2008, 14:837–842.

85. Nilsen LH, Melø TM, Saether O, Witter MP, Sonnewald U: Altered neurochemical
profile in the McGill-R-Thy1-APP rat model of Alzheimer’s disease: a
longitudinal in vivo 1 H MRS study. J Neurochem 2012, 123:532–541.

86. Parent M, Do Carmo S, Aliaga A, Cuello AC, Gauthier S, Rosa-Neto P:
Amyloid accumulation and neurodegeneration in a rat model of Alzheimer’s
disease. Miami, USA: 7th Human Amyloid Imaging meeting; 2013.

87. Shin M, Gauthier S, Wang S, Parent M, Fonov V, Allard S, Kang MS, Do Carmo S,
Cuello AC, Rosa-Neto P: Assessment of hippocampal volumetry in transgenic AD
rat. Boston, USA: Alzheimer’s Association International Conference; 2013.

88. Parent M, Shin M, Do Carmo S, Aliaga A, Gauthier S, Cuello AC, Rosa-Neto P:
Amyloid-induced fMRI resting-state connectivity impairment in a rat model of
Alzheimer’s disease. Boston, USA: Alzheimer’s Association International
Conference; 2013.

89. Blackshear AL, Goetz A, Slayyeh B, Wagner S, Leutgeb JK, Cuello AC,
Leutgeb S: Changes in place fields in a transgenic rat model of Alzheimer’s
disease precede mnemonic behavioral deficits in the Barnes maze. New
Orleans, LA: Society for Neuroscience; 2012.



Do Carmo and Cuello Molecular Neurodegeneration 2013, 8:37 Page 11 of 11
http://www.molecularneurodegeneration.com/content/8/1/37
90. Qi Y, Klyubin I, Steffen J, Cuello AC, Fuhrmann M, Rowan MJ: Transgenic Rats
Overexpressing Human Amyloid Precursor Protein Show Early-life Impairment
of Long-term Potentiation in vivo. Florence, Italy: 11th International
Conference on Alzheimer’s and Parkinson’s Diseases; 2013.

91. Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I,
Bholat Y, Vasilevko V, Glabe CG, Breunig JJ, Rakic P, Davtyan H, Agadjanyan MG,
Kepe V, Barrio JR, Bannykh S, Szekely CA, Pechnick RN, Town T: A transgenic
Alzheimer rat with plaques, tau pathology, behavioral impairment,
oligomeric aβ, and frank neuronal loss. J Neurosci 2013, 33:6245–6256.

92. Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D,
Petrova O, Schönig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow
EM: The potential for beta-structure in the repeat domain of tau protein
determines aggregation, synaptic decay, neuronal loss, and coassembly
with endogenous Tau in inducible mouse models of tauopathy.
J Neurosci 2008, 28:737–748.

93. Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K,
Guimaraes A, Yue M, Lewis J, Carlson G, Hutton M, Ashe KH:
Age-dependent neurofibrillary tangle formation, neuron loss, and
memory impairment in a mouse model of human tauopathy (P301L).
J Neurosci 2005, 25:10637–10647.

94. Cente M, Filipcik P, Pevalova M, Novak M: Expression of a truncated tau
protein induces oxidative stress in a rodent model of tauopathy.
Eur J Neurosci 2006, 24:1085–1090.

95. Hrnkova M, Zilka N, Minichova Z, Koson P, Novak M: Neurodegeneration caused
by expression of human truncated tau leads to progressive neurobehavioural
impairment in transgenic rats. Brain Res 2007, 1130:206–213.

96. Koson P, Zilka N, Kovac A, Kovacech B, Korenova M, Filipcik P, Novak M:
Truncated tau expression levels determine life span of a rat model of
tauopathy without causing neuronal loss or correlating with terminal
neurofibrillary tangle load. Eur J Neurosci 2008, 28:239–246.

97. Filipcik P, Zilka N, Bugos O, Kucerak J, Koson P, Novak P, Novak M: First
transgenic rat model developing progressive cortical neurofibrillary
tangles. Neurobiol Aging 2012, 33:1448–1456.

98. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F,
Cole G: Correlative memory deficits, Abeta elevation, and amyloid
plaques in transgenic mice. Science 1996, 274:99–102.

99. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C,
Rothacher S, Ledermann B, Bürki K, Frey P, Paganetti PA, Waridel C, Calhoun
ME, Jucker M, Probst A, Staufenbiel M, Sommer B: Two amyloid precursor
protein transgenic mouse models with Alzheimer disease-like pathology.
Proc Natl Acad Sci U S A 1997, 94:13287–13292.

100. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R,
Zuker N, Loukides J, French J, Turner S, Lozza G, Grilli M, Kunicki S,
Morissette C, Paquette J, Gervais F, Bergeron C, Fraser PE, Carlson GA,
George-Hyslop PS, Westaway D: Early-onset amyloid deposition and
cognitive deficits in transgenic mice expressing a double mutant form
of amyloid precursor protein 695. J Biol Chem 2001, 276:21562–21570.

101. Lee KW, Lee SH, Kim H, Song JS, Yang SD, Paik SG, Han PL: Progressive
cognitive impairment and anxiety induction in the absence of plaque
deposition in C57BL/6inbred mice expressing transgenic amyloid
precursor protein. J Neurosci Res 2004, 76:572–580.

102. Ferretti MT, Partridge V, Leon WC, Canneva F, Allard S, Arvanitis DN,
Vercauteren F, Houle D, Ducatenzeiler A, Klein WL, Glabe CG, Szyf M, Cuello
AC: Transgenic mice as a model of pre-clinical Alzheimer’s disease.
Curr Alzheimer Res 2011, 8:4–23.

103. Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR:
Co-expression of multiple transgenes in mouse CNS: a comparison of
strategies. Biomol Eng 2001, 17:157–165.

104. Liu Y, Yoo MJ, Savonenko A, Stirling W, Price DL, Borchelt DR, Mamounas L,
Lyons WE, Blue ME, Lee MK: Amyloid pathology is associated with
progressive monoaminergic neurodegeneration in a transgenic mouse
model of Alzheimer’s disease. J Neurosci 2008, 28:13805–13814.

doi:10.1186/1750-1326-8-37
Cite this article as: Do Carmo and Cuello: Modeling Alzheimer’s disease
in transgenic rats. Molecular Neurodegeneration 2013 8:37.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Introduction
	Transgenic models of AD
	Advantages of using rats: the rat as a model for AD
	Early rat models of AD
	Virus-mediated rat models of AD
	Transgenic rat models of AD
	Rat models of amyloid pathology devoid of plaques
	Rat models of amyloid pathology with mature plaques
	Rat models of tau pathology
	Comparison of transgenic rat and mouse models of AD
	Concluding remarks and future directions
	Abbreviations

	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

