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Tdp-43 cryptic exons are highly variable
between cell types
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Abstract

Background: TDP-43 proteinopathy is a prominent pathological feature that occurs in a number of human
diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and inclusion body myositis
(IBM). Our recent finding that TDP-43 represses nonconserved cryptic exons led us to ask whether cell type-specific
cryptic exons could exist to impact unique molecular pathways in brain or muscle.

Methods: In the present work, we investigated TDP-43’s function in various mouse tissues to model disease
pathogenesis. We generated mice to conditionally delete TDP-43 in excitatory neurons or skeletal myocytes and
identified the cell type-specific cryptic exons associated with TDP-43 loss of function.

Results: Comparative analysis of nonconserved cryptic exons in various mouse cell types revealed that only some
cryptic exons were common amongst stem cells, neurons, and myocytes; the majority of these nonconserved
cryptic exons were cell type-specific.

Conclusions: Our results suggest that in human disease, TDP-43 loss of function may impair cell type-specific
pathways.

Keywords: TDP-43 –Nonconserved cryptic exons, Bioinformatics, Amyotrophic lateral sclerosis, Frontotemporal
dementia, Inclusion body myositis

Background
Recent genetic evidence has established the linkage be-
tween the neurological disorders amyotrophic lateral
sclerosis (ALS) and frontotemporal dementia (FTD) [1–5].
The key pathological feature that is shared between ALS
and FTD is the cytoplasmic aggregation and nuclear
clearance of an RNA binding protein called transactive
response DNA binding protein 43 kDa (TDP-43,
TARDBP) [6]. Since the discovery of TDP-43, a number of
other human diseases have also been characterized with
TDP-43 pathology [7–12]. Of particular interest, however,
is the pathogenesis of inclusion body myositis (IBM),
which is believed to be primarily myogenic rather than
neurogenic [13, 14]. To understand the mechanisms of

disease pathogenesis that will inform appropriate thera-
peutic strategies, it will be critical to determine whether
the pathways affected by TDP-43 proteinopathy differ
between neurons and myocytes.
We have recently found that TDP-43 plays a major

role in repressing nonconserved cryptic exons [15].
These cryptic exons are regions of the genome that are
normally skipped by the spliceosome due to the pres-
ence of adjacent UG microsatellite repeats, the consen-
sus binding site of TDP-43. When TDP-43 function is
lost, these cryptic exons become activated and often lead
to nonsense-mediated decay (NMD) of the associated
mRNA. In our previous report [15], we utilized an in
vitro inducible stem cell model of TDP-43 deletion.
However, we have yet to establish the cell type-specific
cryptic exons that arise in vivo. Here, we generated
conditional Tdp-43 knockout mice to specifically delete
Tdp-43 in excitatory neurons and skeletal myocytes. We
found that Tdp-43 cryptic exons are highly variable
between cell types and that many distinct pathways are
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altered—novel findings that have mechanistic and thera-
peutic implications for human diseases exhibiting TDP-
43 proteinopathy.

Methods
Mouse breeding strategy
We crossbred our conditional Tardbp knockout mice
(TardbpF/+) with CamKIIa-Cre transgenic mice to obtain a
cohort of CamKIIa-Cre;TardbpF/+ mice which were subse-
quently crossbred to TardbpF/+ mice to generate the final
cohort: CamKIIa-Cre;Tardbp+/+, CamKIIa-Cre;TardbpF/+

and CamKIIa-Cre;TardbpF/F mice. A similar strategy was
applied when crossbreeding the MLC-Cre driver line to
TardbpF/+ mice. All mouse experiments were approved by
the Johns Hopkins University Animal Care and Use
Committee.

Histology and immunohistochemistry
For the CamKIIa-Cre line, wildtype and floxed mice
were anaesthetized and perfused with 4% paraformalde-
hyde. Brains were embedded into paraffin, cut into
10 μm sections and stained according to standard proto-
cols. For the MLC-Cre line, wildtype and floxed mice
were anaesthetized and sacrificed by decapitation.
Muscle tissue was then rapidly dissected and flash frozen
in liquid nitrogen cooled isopentane. Frozen cryosec-
tions were cut at 10 μm thickness and stained according
to standard protocols. Immunoreactivity was visualized
using the Vectastain ABC Kit and diaminobenzidine per-
oxidase substrate (Vector Laboratories). Images were ob-
tained using Olyumpus BX53 microscope.

Immunoblot analysis
For the CamKIIa-Cre line, wildtype and floxed mice
were anaesthetized and sacrificed by decapitation. Brain
tissue was then rapidly dissected and manually homoge-
nized in RIPA buffer (Sigma) containing an EDTA-free
protease inhibitor cocktail (Thermo Scientific). For the
MLC-Cre line, wildtype and floxed mice were also
anaesthetized and sacrificed by decapitation. Muscle
tissue was snap frozen in isopentane cooled with liquid
nitrogen, manually ground into a powder, and then
homogenized in RIPA buffer with protease inhibitor
cocktail. Protein concentration was determined using
the BCA assay (Pierce). Proteins were resolved using the
NuPAGE 4-12% Bis-Tris Gel (Novex) with NuPAGE
MES SDS Running Buffer (Novex), and transferred to
PVDF membrane (Millipore) with NuPAGE Transfer
Buffer (Invitrogen).
The following antibodies were used for protein blots,

immunofluorescence, and immunohistochemical analyses:
rabbit anti-TDP-43 (Proteintech 10782-2-AP and 12892-
1-AP), anti-NeuN monoclonal antibody (Chemicon), anti-
GAPDH monoclonal antibody (Sigma), Alexa Fluor 488-

conjugated Donkey anti-Guinea Pig IgG (H + L) antibody
(Jackson ImmunoResearch), Alexa Fluor 594- and 647-
conjugated Donkey anti-goat and anti-rabbit IgG (H + L)
antibodies (Life Tech.).

RNA extraction, RNA-seq analysis
Total RNA was extracted from hippocampi of 3 month
old female CamKIIa-Cre;TardbpF/F (neuronal knockout)
and littermate control mice (CamKIIa-Cre;Tardbp+/+)
using TRIzol (Life Tech.) and RNeasy Mini kits (Qiagen).
Total RNA from 2 month old male MLC-Cre;TardbpF/F

(skeletal muscle knockout) and littermate control mice
(MLC-Cre;Tardbp+/+) was also extracted in a similar
manner. For the CamKIIa-Cre line, 3 control brains and
3 knockout brains were analyzed and all mice were
female. For the MLC-Cre line, 2 control quadriceps and
2 knockout quadriceps were analyzed and all mice were
male. 100-bp paired end RNA-seq libraries were gener-
ated using Illumina Tru-seq kits and then sequenced on
an Illumina HiSeq 2000. For RT-PCR analysis, total
RNA was isolated using RNeasy Mini Kit (Qiagen).
cDNA was synthetized using RevertAid First Strand
cDNA Synthesis Kit (Thermo Scientific) with random
primers. RNA-seq analysis was performed using HISAT
[16] and Cufflinks [17] software suites and visualized on
the UCSC Genome Browser [18]. Cryptic exons were
identified as previously described [14]. To identify com-
mon pathways between species, gene ontology analysis
was performed on cryptic exon targets using manual an-
notation of genes with known functions in combination
with the bioinformatics resource DAVID v6.7 [19].

RT-PCR primers

Results
Selective deletion of Tdp-43 in mouse excitatory neurons
and skeletal myocytes
To identify the cryptic exons repressed by Tdp-43 in
neurons and myocytes, we utilized the Cre recombinase
system to conditionally delete Tdp-43. Mice harboring
floxed Tardbp knockout alleles [20] were crossbred with

Primer Sequence Tissue

Ap3b2-Forward AGCCAGAATATGGCCACGAC Neuron

Ap3b2-Reverse CACTATGATGGGCACACGGA Neuron

Camk1g-Forward CTGGCCAAGATCACAGACTGG Neuron

Camk1g-Reverse CTGTGTAGACACCACGCTCT Neuron

Sh3bgr-Forward GGAGCAGAGGCTTGGATCAC Muscle

Sh3bgr-Reverse AAAGCCCACCACTTCTTGCT Muscle

Tns1-Forward CCTGGTCTATCAGCACTCCG Muscle

Tns1-Reverse GGGCTCCCGATTTCGTTCAT Muscle
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either CaMKIIα-Cre [21] or MLC-Cre [22] driver lines
(Fig. 1a). The promoter of the calcium/calmodulin-
dependent protein kinase II alpha subunit (CaMKIIα) drives
expression primarily in the excitatory neurons of the cortex
and hippocampus whereas the promoter of the myosin light
chain 1/3 locus (MLC) drives expression in type II fast-
twitch skeletal muscle fibers. Efficient deletion of Tdp-43
can be detected by immunoblot in brain (Fig. 1b) and
skeletal muscle (Fig. 1c); residual Tdp-43 in F/F mice reflects
the presence of other cell types that do not express CaM-
KIIα-Cre or MLC-Cre. Neuron specific deletion of Tdp-43
was confirmed by immunofluorescence staining of hippo-
campal sections (Fig. 1d); deletion of Tdp-43 in myocytes
was also verified by immunohistochemistry (Fig. 1e).

Identification of cryptic exons associated with Tdp-43 loss
of function in neurons and myocytes
To identify the cryptic exons of mouse neurons, RNA-
sequencing (RNA-seq) analysis was performed using
RNA extracted from hippocampi of 3 month old CaM-
KIIα-Cre;TardbpF/F mice and controls. Similar to our in

vitro stem cell culture model of Tdp-43 deletion [15], we
also found cryptic exons in the brains of CaMKIIα-Cre;-
TardbpF/F knockout mice (Fig. 2a). Neuron-specific
cryptic exons were still flanked by UG microsatellite
repeats (Fig. 2b) and could be classified as standard
cryptic exons, transcriptional start sites, exon extensions
or premature polyadenylation sites (Additional file 1:
Table S4, Additional file 1: Figure S1). Previously pub-
lished CLIP data was also able to confirm the presence
of a direct interaction with Tdp-43 (Additional file 1:
Figure S2) [23]. Finally, to further validate our RNA-seq
data, RT-PCR analysis was able to confirm the presence
of cryptic exons in the genes Camk1g and Ap3b2.
Longer PCR products, indicating cryptic exon inclusion,
were detected in CaMKIIα-Cre;TardbpF/F knockout but
not control mice (Fig. 2c-e).
To determine whether cryptic exons of mouse myo-

cytes would differ from those found in stem cells and
neurons, we also performed RNA-seq analysis on quad-
riceps muscle from MLC-Cre;TardbpF/F knockout mice
and controls. Indeed, numerous muscle-specific cryptic

Fig. 1 Generation of CaMKIIα-Cre;TardbpF/F and MLC-Cre;TardbpF/F knockout mice. (a) Breeding strategy to cross floxed Tardbp knockout mice with
CaMKIIα-Cre or MLC-Cre mouse lines to conditionally delete Tdp-43 in excitatory neuron or skeletal muscle, respectively. Hippocampal protein extracts
from CaMKIIα-Cre;TardbpF/F knockout mice were taken from p25 and 3-month old mice, as indicated. Protein extracts from various muscle groups, as
indicated, were taken from 2-month old MLC-Cre;TardbpF/F mice. Immunoblotting confirms deletion of Tdp-43 in the hippocampi of CaMKIIα-Cre;-
TardbpF/F knockout mice (b) and the quadriceps of MLC-Cre;TardbpF/F knockout mice (c); biological replicates of immunoblotting were performed in
excess of n = 3 to validate knockdown. (d) Immunofluorescence staining of hippocampal sections from 3 month old CaMKIIα-Cre;TardbpF/F knockout
mice demonstrate specific deletion of Tdp-43 from neurons (CA region, scale bar = 50 μm). (e) Immunohistochemical staining of Tdp-43 in quadriceps
from 3 month old MLC-Cre;TardbpF/F knockout mice also reveals loss of Tdp-43, as indicated by asterisks (scale bar = 50 μm)
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exons could be identified (Fig. 3a). Furthermore,
myocyte-specific cryptic exons were also flanked by UG
microsatellite repeats (Fig. 3b); the presence of cryptic
exons was confirmed by RT-PCR as shown for two
genes, Sh3bgr and Tns1 (Fig. 3c).

Unique Tdp-43 cryptic exons occur in stem cells, neurons,
and myocytes
Having identified two new sets of cryptic exons belong-
ing to mouse neurons and myocytes, we compared these
sites with the cryptic exons previously identified in
mouse stem cells [15]. Interestingly, only 66/221 (~30%)
total cryptic exons showed any overlap between at least
two cell types and only 32/221 (~14%) were common
among all three cell types (Fig. 4a). Although the ratios
varied, the majority of cryptic exons were unique to each
individual cell type (155/221; ~70%). When normalized
to the total number of cryptic exons in stem cells (74),

neurons (109) and myocytes (136), the number of cell
type-specific cryptic exons was lower in stem cells (18;
~24%) as compared to neurons (58; ~53%) and myocytes
(79; ~58%). These results indicate that a large proportion
of Tdp-43’s cryptic exons are cell type-specific
(Additional file 1: Table S1 and S2).
Differential levels of cryptic exon incorporation,

however, increase the complexity of these cryptic exon
datasets. While certain cryptic exons, such as those in
Synj2bp and Adnp2, can be observed at high levels in all
three cell types (Fig. 4b), it is more common to see
differential usage of cryptic exons amongst stem cells,
neurons, and myocytes despite abundant transcription of
the associated mRNA (Fig. 4c-g). For example, the cryp-
tic exon in Ube2d1 is highly incorporated in stem cells,
moderately incorporated in myocytes, and absent in
neurons (Fig. 4c). Conversely, the cryptic exon in Rrp36
is high in neurons but low in stem cells and myocytes

Fig. 2 Neuron-specific cryptic exons (CaMKIIα-Cre;TardbpF/F knockout mice). (a) Visual examples of neuron-specific cryptic exons (Ap3b2, Camk1g).
(b) Neuron-specific cryptic exons are flanked by UG repeats that are present upstream, downstream or within the cryptic exon sequence itself.
(c to e) RT-PCR validation of cryptic exons (red arrows) in RNA extracted from hippocampi of 3 month old CaMKIIα-Cre;TardbpF/F mice. Refer to
Additional file 2 for a complete list of cryptic exons
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(Fig. 4d). Thus, it appears that the activation of a cryptic
exon within a specific cell type depends not only upon
transcription of the associated mRNA, but also the local
splicing factor environment present within the cell
(Additional file 1: Figure S3).

Comparative analysis of genes affected by cryptic exon
disruption
We have previously shown that Tdp-43’s nonconserved
cryptic exons could disrupt gene function in cultured stem
cells [15]. Similarly, while some neuron and myocyte
cryptic exons reside in the 5’ or 3’ untranslated regions
(~19%) with no clear effect on transcript levels, the major-
ity of cryptic exons disrupt normal protein translation by
introducing premature stop codons that lead to nonsense
mediated decay (Additional file 1: Figure S4) or early
termination of the mRNA transcript (~63%). Of these
disrupted genes, numerous critical pathways are affected,
ranging from mitochondrial function and protein regula-
tion to transcriptional control and genome stability
(Table 1). These findings demonstrate that cell type-

specific pathways are altered when Tdp-43 function is lost
and suggest that unique molecular pathways could differ-
entially impact ALS-FTD and IBM.

Common pathways affected by Tdp-43 loss of function
Although many cryptic exons are predicted to induce
nonsense mediated decay, their impact on mRNA and
protein levels depends upon the frequency of cryptic
exon incorporation. Across stem cells, neurons and
myocytes, a broad group of genes are affected by Tdp-43
loss of function (Table 1). Many pathways are affected,
from mitochondrial function and cell growth to tran-
scription and genomic regulation, offering a possible
explanation for the observed cell death associated with
Tdp-43 deletion [24–28]; CaMKIIα-Cre;TardbpF/F ex-
hibit significant cortical atrophy at 8 months of age [12]
while MLC-Cre;TardbpF/F mice reach endstage by 4–5
months. Several other genes that are disrupted by cryptic
exons also reflect previously reported observations:
Drosha is involved in miRNA biogenesis [29], Tecpr1 is

Fig. 3 Muscle-specific cryptic exons (MLC-Cre;TardbpF/F knockout mice). (a) Visual examples of muscle-specific cryptic exons (Sh3bgr, Tns1). (b)
Muscle-specific cryptic exons are flanked by UG repeats that are present upstream, downstream or within the cryptic exon sequence itself. (c and
d) RT-PCR validation of cryptic exons (red arrows) in RNA extracted from quadriceps of 2 month old MLC-Cre;TardbpF/F mice. Refer to Additional
file 2 for a complete list of cryptic exons
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involved in autophagy [30], and Tbc1d1 and Adipor2 are
involved in fat metabolism [20].
Interestingly, a low percentage of cryptic exons (~6%)

do not induce nonsense mediated decay, but still have
an impact on protein structure. These cryptic exons do
not contain any stop codons and have sequence lengths
that are multiples of three, thereby preventing detrimen-
tal frameshifts (Additional file 1: Table S3). These
inframe cryptic exons introduce short peptide insertions
into the primary amino acid sequence of the protein,
which may represent neoantigens.

Discussion
We have found that Tdp-43’s nonconserved cryptic
exons vary widely between cell types and affect many
pathways that are critical for neuronal and muscle physi-
ology. This suggests that in human disease, myogenic
and neurogenic TDP-43 proteinopathies exhibit cell
type-specific cryptic exons that could influence disease
progression in unique ways. Although our RNA-seq data
are based on a limited number of samples, future ana-
lysis to increase sample sizes would strengthen our find-
ings. Identifying the cryptic exons that are specific to
human neurons or myocytes will also help clarify the

selective vulnerability associated with diseases such as
IBM and ALS-FTD.
While it remains to be proven whether TDP-43 loss of

function is a central driver of human disease, our data
demonstrates that within neurons and myocytes, TDP-
43 is the major splicing repressor for numerous noncon-
served cryptic exons. In human disease, dysregulation of
Tdp-43 function may impair other neuronal functions
beyond mRNA splicing such as axonal trafficking, hyper-
excitability, and liquid-liquid phase separation [31–34].
Nevertheless, mouse models of Tdp-43 have demon-
strated that constitutive deletion of Tardbp results in
embryonic lethality [24, 25, 35, 36]. Conditional deple-
tion of Tardbp in adult mice also leads to metabolic
deficits and premature death [20] and significant neuro-
degeneration [26, 37, 38]. Together, these studies dem-
onstrate the importance of Tdp-43 for cell survival.
The current work clarifies the mechanisms of toxicity

that underlie Tdp-43 loss of function in the context of
cryptic exon repression [15], a finding that has been
replicated by other groups [39–41]. Our results suggest
that cryptic exons disrupt unique pathways depending
on cellular context, although future studies are needed
to understand the degree to which these splicing errors

Fig. 4 Tdp-43 cryptic exons are highly variable between cell types. (a) While some cryptic exons are common between cell types, many cryptic
exons are unique to neurons (58), muscle (79) and stem cell [22]. Of the common cryptic exons, several are highly incorporated in mRNA
regardless of splicing environment (b), while other cryptic exons are incorporated at varying levels depending on the cell type (c to g)
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contribute to cell death. Furthermore, TDP-43 belongs
to a family of proteins that repress cryptic exons,
suggesting that these splicing factors perform a general
function in the cell to maintain splicing fidelity [42].
Thus, loss of TDP-43 splicing repression contributes to

cell death and the pathways affected by cryptic exon
incorporation are likely to be relevant for disease
pathogenesis.
The question then becomes, how do we prevent

incorporation of nonconserved cryptic exons? Therapeutic

Table 1 Common pathways affected by Tdp-43 cryptic exons across mouse stem cell, muscle and neuron (cryptic exon present in
at least two cell-types)

Refer to Additional file 2 for a full list of cryptic exons
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strategies that aim to directly interfere with cryptic exon
splicing (e.g. anti-sense oligonucleotides) will be difficult
to envision due to the sizeable number of nonconserved
cryptic exons per cell. Furthermore, because noncon-
served cryptic exons are different between mouse and hu-
man, testing splicing modulators for human cryptic exons
in animal models is essentially impossible. However, the
general splicing repression function of TDP-43 is
conserved. Thus, it may be possible to use mouse models
of TDP-43 deletion to specifically test therapeutic
strategies that rescue TDP-43 mechanism of action rather
than directly targeting individual cryptic exons. One
strategy would employ gene therapy to introduce designer
splicing factors—chimeric proteins that would couple the
UG binding domain of TDP-43 with non-aggregating
splicing repressor domains [15]—into neurons or muscles.
In principal, this approach would repress most of
TDP-43’s nonconserved cryptic exons in a manner that
would be species-independent.
If neuron loss or skeletal muscle degeneration can be

attenuated, such a therapeutic strategy could be rapidly
translated into the clinic. Moreover, the observation that
cryptic exons can occasionally introduce inframe inser-
tions into mRNA suggests that certain human TDP-43
cryptic exons could represent biomarkers for human
disease. We envision the development of specific anti-
bodies to detect neoantigens introduced by human
inframe cryptic exons in CSF or blood from patients,
serving as either diagnostic biomarkers or tools to moni-
tor the efficacy of treatments in future clinical trials.

Conclusions
This study demonstrates that Tdp-43 represses a unique
set of cryptic exons, depending on cellular context.
Thus, the pathways impacted by Tdp-43 loss-of-function
and cryptic exon incorporation are likely distinct for
each cell type. These results have important implications
for human disease, given that Tdp-43 proteinopathy can
manifest in various tissues.

Additional files
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