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Abstract

Background: Activation of microglia, the resident immune cells of the central nervous system, is a prominent
pathological hallmark of Alzheimer’s disease (AD). However, the gene expression changes underlying microglia
activation in response to tau pathology remain elusive. Furthermore, it is not clear how murine gene expression
changes relate to human gene expression networks.

Methods: Microglia cells were isolated from rTg4510 tau transgenic mice and gene expression was profiled using
RNA sequencing. Four age groups of mice (2-, 4-, 6-, and 8-months) were analyzed to capture longitudinal gene
expression changes that correspond to varying levels of pathology, from minimal tau accumulation to massive
neuronal loss. Statistical and system biology approaches were used to analyze the genes and pathways that underlie
microglia activation. Differentially expressed genes were compared to human brain co-expression networks.

Results: Statistical analysis of RNAseq data indicated that more than 4000 genes were differentially expressed in
rTg4510 microglia compared to wild type microglia, with the majority of gene expression changes occurring
between 2- and 4-months of age. These genes belong to four major clusters based on their temporal expression
pattern. Genes involved in innate immunity were continuously up-regulated, whereas genes involved in the
glutamatergic synapse were down-regulated. Up-regulated innate inflammatory pathways included NF-κB
signaling, cytokine-cytokine receptor interaction, lysosome, oxidative phosphorylation, and phagosome. NF-κB
and cytokine signaling were among the earliest pathways activated, likely driven by the RELA, STAT1 and STAT6
transcription factors. The expression of many AD associated genes such as APOE and TREM2 was also altered in
rTg4510 microglia cells. Differentially expressed genes in rTg4510 microglia were enriched in human
neurodegenerative disease associated pathways, including Alzheimer’s, Parkinson’s, and Huntington’s diseases, and
highly overlapped with the microglia and endothelial modules of human brain transcriptional co-expression networks.
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Conclusion: This study revealed temporal transcriptome alterations in microglia cells in response to pathological tau
perturbation and provides insight into the molecular changes underlying microglia activation during tau mediated
neurodegeneration.

Keywords: Microglia, rTg4510, Tauopathy, RNAseq, Neuroinflammation, Alzheimer’s disease

Background
Microglia are tissue macrophages of the central nervous
system (CNS) [1]. They help shape the neuronal circuits
during CNS development and constantly survey the
CNS environment in adulthood [2–5]. In response to
neuronal damage or pathogenic stimuli, microglia be-
come activated to serve as first line defenders. Prolifera-
tion, migration, and a range of morphological and
functional transformations are the hallmarks of micro-
glia activation [6–8]. In neurodegenerative diseases, such
as Alzheimer’s disease (AD), activated microglia are de-
tected by histological analyses of postmortem human
brains [9, 10] and positron emission tomography (PET)
imaging using TSPO (Translocator protein) ligands in
living patients [11–13].
Genetic studies also suggest that microglia are directly

involved in the disease cascade wherein they contribute
to AD onset and development. Several single nucleotide
polymorphisms (SNPs) associated with microglia and
immune function genes, such as TREM2, CD33, CR1,
ABCA7, SHP1, and APOE, significantly affect AD risk
[14, 15]. Rare coding mutations in PLCG2, ABI3, and
TREM2 are also associated with increased risk for AD
and other neurodegenerative diseases [16–18].
The exact biological roles of microglia in AD are not

fully understood. It is generally thought that microglia
activation can be both positive and deleterious [19, 20],
wherein early in disease, microglia activation is consid-
ered beneficial due to increased motility and phagocytic
activity that facilitates the clearance of pathological
protein aggregates and promotes tissue recovery [21].
However, in later phases of neurodegeneration, chronic
microglia activation with excessive and persistent pro-
inflammatory cytokine release and oxidative species
production is thought to be detrimental to neuronal
function and survival [22–24]. These two opposite
microglia phenotypes were traditionally categorized as
classic (M1/pro-inflammatory) or alternative (M2/tissue
repair) activation phenotypes, a concept derived from
peripheral macrophage biology yet currently is under
reconsideration [25]. Nevertheless, it is well known that
microglia play a complex role in AD and that the longi-
tudinal characterization of microglia molecular changes
during disease progression is incredibly important.
Microglia activation has mainly been studied by exam-

ining morphological changes and measuring limited

activation markers. Recently, genome-wide gene expres-
sion profiling has been used to characterize the molecu-
lar changes of isolated microglia from animal models of
neurodegenerative diseases, including the amyloidosis
models such as APPswe/PS1dE9 [26], PS2APP [27], and
5xFAD [28], and the amyotrophic lateral sclerosis (ALS)
model SOD1G93A (super-oxide dismutase) [29, 30]. These
studies revealed that complex and dynamic molecular
changes underlie microglia activation in response to
pathological insults [31, 32].
However, microglia specific molecular changes in re-

sponse to pathological tau perturbation have remained
elusive. Filamentous tau accumulation is not only a
pathological hallmark of AD, but also the characteristic
of other tauopathies, such as progressive supranuclear
palsy, frontotemporal dementias (FTD) and corticobasal
degeneration [33]. It was reported that microglia activa-
tion preceded notable pathological tau accumulation in
transgenic tau (P301S) models [34] and drove tau
pathology [35]. A recent study using a microglia ab-
lation animal model demonstrated that microglia
mediate pathological tau propagation [36]. Therefore,
it is important to understand how microglia respond
to pathological tau perturbation at the molecular
level.
In this study, we performed transcriptome profiling of

acutely isolated microglia from a widely used animal
model of tauopathy, rTg4510. In this model, human
4-repeat tau containing an FTLD-17 associated mutation
(P301L) is expressed postnatally in forebrain neurons,
which results in age-dependent pathological tau accumu-
lation, neurodegeneration, and cognitive deficits [37, 38].
Microglia cells were acutely isolated from 2-, 4-, 6-, and
8-month old rTg4510 and wild type control animals to
capture longitudinal transcriptome changes. Gene expres-
sion was profiled by RNA sequencing (RNAseq) and ana-
lyzed by statistical and systems biology approaches. Key
genes and pathways were identified that underlie micro-
glia activation in response to tau perturbation. In addition,
differentially expressed microglia genes were compared to
human brain gene expression networks.

Methods
Animals
All animals were housed under standard conditions
with access to water and food ad libitum. All animal
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procedures and experiments were performed in ac-
cordance with the Institutional Animal Care and Use
Guidelines for Eli Lilly and Company. C57/Bl6 mice
were used for method development.
rTg4510 transgenic mice were generated as described

by Ramsden et al. [38]. Female rTg4510 mice were li-
censed from the Mayo Clinic (Jacksonville Florida, USA)
and bred for Eli Lilly by Taconic (Germantown, USA). In
this mouse line, the human tau (P301L) gene is placed
downstream of a tetracycline operon–responsive elem-
ent (TRE). In the presence of a second transgene encod-
ing a CaMKIIα-controlled tetracycline-controlled
transactivator (tTA), tau is expressed in forebrain neu-
rons postnatally but repressible by administration of the
tetracycline analog doxycycline (dox). In this study, fe-
male mice containing both transgenes were used as
tau transgenic (rTg4510), while wild type (WT) litter-
mates that do not contain any transgene were used as
control animals.

AlphaScreen assays
AlphaScreen assays (Perkin Elmer Life Sciences) were
developed as previously described [39] and performed
according to the manufacturer’s guidelines using tau spe-
cific antibodies. Antibodies against total tau DA9 (amino
acids 102–140), TG5 (amino acids 220–240), and confor-
mationally changed tau, MC1, were kind gifts from Peter
Davies (Albert Einstein College of Medicine, New York).
Brain cortex tissue samples collected from rTg4510

and wild type mice were lysed (in the absence of sarko-
syl) and fractionated into soluble and insoluble fractions
by low speed and high speed spin (100,000 g), using a
protocol adapted from Berger et al. [40]. The insoluble
fraction P1 (pellet after 100,000 g centrifugation) was
subjected to AlphaScreen assays to quantify the levels of
total tau and conformationally changed tau.

Immunohistochemistry (IHC) and neuropathological
characterization
rTg4510 and age-matched WT controls were anesthetized
at specific time points and transcardially perfused with
ice-old phosphate-buffered saline (PBS). The brain was re-
moved and the right hemisphere was drop fixed in 10%
buffered formalin and embedded in paraffin wax. Sagittal
brain sections (6 μm) were deparaffinized and processed for
IHC. Tissue sections were processed in an autostainer (720,
Thermo Scientific) with the following steps: (1) 10min
0.3% H2O2; 30min normal goat serum (Vector Labs); (2)
60min in primary antibody (PG-5, courtesy of Peter Davies;
Iba-1,WAKO); (3) 30min in biotinylated secondary anti-
body (goat anti-rabbit or goat anti-mouse, Vector Labs); (4)
30min avidin-biotin complex solution (Vector Labs); (5) 5
min in 3,3′-diaminobenzidine (Vector Labs). Sections were
counterstained with haemotoxylin prior to dehydration and

cover-slipping. The stained slides were scanned and digi-
tized using the Scanscope AT slide scanner (Aperio) at 20x
magnification and viewed using Imagescope software
(version 12.2.1.5005; Aperio). An automated algorithm
was used to count the number of microglial cells in
the region of interest. The number of PG-5 positive
neurons was quantified manually using the digitized
images.

Evaluation of microglia isolation methods
Two microglia isolation methods were evaluated, a trad-
itional Percoll gradient method [41, 42] and a newly-de-
veloped method of antibody mediated affinity magnetic
cell separation. Mice were anesthetized and transcar-
dially perfused with ice-cold PBS. Forebrains were dis-
sected and kept in Hank’s Balanced Salt Solution (HBSS
-Ca/-Mg, Thermo Fisher Scientific). Brain tissue was
mechanically and enzymatically dissociated into a single
cell suspension using a Neural Tissue Dissociation Kit
on a gentleMACS® Dissociator following manufacturer’s
protocol (Miltenyi Biotec, Bergisch Gladbach, Germany).
Cells were then divided into two aliquots (Additional file
1: Figure S1A), one aliquot was subjected to Percoll gra-
dient separation (GE healthcare, USA), and the other
was subjected to myelin removal using 30% Percoll (GE
healthcare, USA), followed by CD11b antibody-coupled
MicroBeads and MACS® technique (Magnetic-activated
cell sorting) according to the manufacturer’s protocol
(Miltenyi Biotec, Bergisch Gladbach, Germany). The
microglia cell layer from the Percoll gradient and
CD11b-positive and -negative cells were collected for
further evaluation by quantitative real-time reverse-tran-
scription polymerase chain reaction (q-RT-PCR) or
Fluorescence-activated cell-sorting (FACS) analysis. FACS
analysis was done using PE-CD11b and FITC-CD45 anti-
bodies (BioLegend). Briefly, cells were washed and incu-
bated with antibodies for 30min at 4 °C and then fixed.
The next day, stained cells were analyzed using FACS/
CALIBUR (BD Bioscience).

RNA isolation
Microglia cell pellets were processed for total RNA isola-
tion using RNeasy mini kits according to the manufac-
turer’s protocol (Qiagen). RNA samples were quantified
using a Nanodrop (Thermo Fisher Scientific).

Quantitative real-time reverse-transcription polymerase
chain reaction (q-RT-PCR)
RNA samples were reversely transcribed into comple-
mentary DNA (cDNA) using TaqMan Reverse Tran-
scription Reagents (Thermo Fisher Scientific, Waltham,
MA, USA). cDNAs were subjected to q-RT-PCR analysis
using Taqman assays (Thermo Fisher Scientific, Waltham,
MA, USA).
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RNA sequencing, data quality control (QC), and gene
mapping
Microglia were isolated using CD11b MicroBeads me-
thods as described above. Total RNA were isolated and
sent to Cofactor Genomics (St. Louis, USA) for RNA
deep sequencing. RNA samples were first examined
using Agilent Bioanalyzer (Agilent Technologies, Palo
Alto, CA, USA) for purity and quality. RNAs were re-
verse transcribed to cDNA using Ovation RNA-Seq Sys-
tem Version 2 (NuGEN, San Carlos, CA) according to
the manufacturer’s protocol. The resulting cDNAs were
then sheared using a focused ultrasonicator (Covaris Inc.,
Woburn, MA, USA) and the libraries were prepared using
the Kapa LTP Library Preparation Kit (Illumina, San
Diego, CA, USA). RNAseq of 32 samples was performed
on Illumina HiSeq2000 systems according to the manufac-
turer’s protocol. For each sample, approximately 50
million clusters (100 million reads) were generated via
paired-end 100-bp reads.
RNAseq data were subjected to a QC pipeline devel-

oped at Eli Lilly and Company. Briefly, base quality/base
composition, heterologous organism contamination,
adapter content, mapping rate/mapped read counts, 3′
bias, template length, and rRNA/mitochondrial content
were checked. Four samples, WT-4 m-3, rTg4510-4
m-3, WT-8m-4, and rTg4510-8m-4, were excluded from
further analysis due to failed RNAseq QC assessment.
To map reads to genes and obtain gene level expres-

sion measures, RNAseq data were subjected to a “rollup”
pipeline developed at Eli Lilly and Company. The follow-
ing rules were applied for the rollup: (1) Exon reads of
multiple assays from the same libraries were summed;
(2) Exons were excluded if more than 80% of samples
have less than 10 counts; (3) Robust gene level signals
across exons of a gene were determined by a robust lin-
ear model and were output for each library and each
gene; (4) Mean signal of log2 transformed gene level
across all samples were median normalized.
Accession number for RNA-Seq data in Gene Expression

Omnibus (GEO) is GSE123467.

Statistical analysis of differentially expressed genes
Twenty-eight samples that passed QC were used for
statistical analysis. Statistical analysis included a 2 × 4
genotype x month factorial linear model, followed by
contrasts. Differentially expressed genes (DEGs) were
defined using a cutoff of 1.5-fold of change and less than
5% false discovery rate (FDR). FDR was per contrast.

Microglia transcriptome data sets in AD animal models
The Microglia transcriptome data from APPswe/PS1dE9
mouse model [26] and the DEG results were down-
loaded from Glia Open Access Database (GOAD) [43].
The microglia microarray data from 5xFAD mouse

model [28] was download from NCBI GEO (GSE65067)
and then re-analyzed to generate the DEG list. The cri-
teria for DEG are the same across studies, i.e. adjusted
p-value < 0.05 and |fold change| > 1.5.

Principal component analysis (PCA) and hierarchy
clustering analysis
Normalized and log2-transformed gene expression data
from each sample was used. PCA and hierarchical clus-
tering analysis were carried out using statistical software
JMP with “Ward” method and “standardize data” op-
tions. Two-way clustering option was turned on after
initial clustering analysis of samples to visualize gene ex-
pression patterns across samples.

Pathway enrichment and gene set analysis
KEGG pathway enrichment analysis was performed for
each group of genes using R package clusterProfiler
[44, 45]. The p-value and Q-value cutoffs were 0.05 and
0.1 respectively.
Subsets of genes that have been associated with AD

were selected based on previous literature reports or
public data sources: AD risk genes by genetic study [14],
phagocytosis, complement system, Scavenger receptors
(SR) subsets (KEGG gene GO), and microglia classic or
alternative activation (M1 or M2 states) signature genes
identified from primary human microglia cells [46].

Identification of upstream regulators
The upstream regulators that affected these DEGs were
predicted using IPA’s “Upstream Regulator Analysis” tool
[47]. Z-scores and p-values were used to select upstream
regulators in the regulator network containing direct in-
teractions between genes that exist in bone marrow cells
and immune cells. Z-scores assess the match of observed
and predicted up/down regulation patterns. P-values
measure enrichment of the regulated genes in the data-
set without taking into account the regulation direction
in order to avoid incomplete and biased regulatory infor-
mation used in z-score calculation. The top 10 common
genes gated by p-values and z-scores were selected.

Human transcriptomic network
A statistical network of gene co-expression using an en-
semble network inference algorithm was constructed.
Briefly, nine distinct gene co-expression network infer-
ence methodologies were applied, including ARACNe
[48], Genie3 [49], Tigress [50], Sparrow [51], Lasso [52],
Ridge [52], mrnet [53], c3net [54], and WGCNA [55].
The edge lists from each method were ranked based on
the edge weights and a mean rank for each edge across
methods was identified, then the total number of edges
supported by the data with Bayesian Information Criterion
for local neighborhood selection with linear regression
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was identified. The ensemble approach is inspired by work
from the DREAM consortia [56] showing that ensemble
methods are better at generating robust gene expression
networks across heterogeneous data-sets. This method was
applied to RNAseq data from 632 participants in the ROS/
MAP (The Religious Orders Study/The Memory and Aging
Project) [57, 58], to identify a gene co-expression network
associated with aging and late onset Alzheimer’s disease.

Network cell type specificity annotation
The cell type specific RNAseq data sets derived by
Zhang et al. [59] were used to annotate the networks in
terms of cell specific markers in Fig. 7a. Multiple distinct
clusters in the human co-expression network were iden-
tified to be associated with cell types including microglia
(blue), endothelial cells (red), astrocytes (cyan), neurons
(yellow) and myelinating oligodendrocyte cells (ma-
genta). Strong associations between cell type specific
markers and co-expression signatures in post-mortem
brain tissue were discovered.

Network module identification
Network modules were identified based on the inferred
network topology with a consensus clustering algorithm
[60] applied to multiple individual module identification
methods. Individual network clustering methods applied
to the network topology include CFinder [61], GANXiS
[62], a fast greedy algorithm [63], InfoMap [64], Link-
Communities [65], Louvain (http://iopscience.iop.org/
article/10.1088/1742-5468/2008/10/P10008/meta), Spin-
glass [66], and Walktrap (https://arxiv.org/abs/physics/
0512106) methods. After the consensus modules were
identified, gene set enrichment analyses were performed
on consensus modules, as discussed below.

Comparison of the rTg4510 microglia DEGs with human
network modules
Differential expression genes at each time point in the
rTg4510 microglia were run via ortholog conversions
and compared with the human microglia module 5 and
module 9 using enrichment analysis and visualized using
Cytoscape (http://www.cytoscape.org). The strength and
significance of overlap is represented by Q-values and
odds ratios (OR).

Results
Evaluation and validation of mouse brain microglia
isolation methods
To select a microglia isolation method for transcriptome
profiling, two microglia isolation methods were evaluated, a
traditional Percoll gradient method, and a newly-developed
antibody mediated affinity magnetic cell separation method
(Additional file 1: Figure S1A, Methods). Using q-RT-PCR,
microglia-specific markers, such as AIF1, CX3CR1, and

CD11b, were shown to be mostly enriched in
CD11b-positive cells (Additional file 1: Figure S1B, upper
panel), while the non-microglia markers, such as NeuN,
GFAP, and SOX10, were barely present (Additional file 1:
Figure S1B, lower panel). To examine whether these isola-
tion procedures cause artificial stimulation of microglia, the
expression levels of genes that associate with microglia acti-
vation, including TNFα and IL-1β, were analyzed using
q-RT-PCR and normalized to AIF1. Compared to total iso-
lated cells, CD11b positive cells have comparable gene ex-
pression levels for TNFα and IL-1β, suggesting CD11b
bead isolation procedure caused minimal stimulation of
microglia (Additional file 1: Figure S1C). Further evaluation
using Fluorescence-activated cell-sorting (FACS) indicated
that more than 90% of magnetic bead isolated cells were
CD11b positive and CD45 low (Additional file 1: Figure
S1D), which is consistent with the published microglia sur-
face marker characteristics [41]. Based on these results, the
CD11b antibody coupled magnetic beads separation
method was used to acutely isolate microglia from mouse
brain in the following experiments.

Microglia isolation from rTg4510 mice
In the rTg4510 animal model, human 4-repeat tau
(P301L) is expressed postnatally in the forebrain neurons.
Progressive age-related accumulation of pathological tau
tangles, neuronal loss, and behavioral impairments were re-
ported previously [37, 38]. To understand the time course
of tau pathology development in rTg4510 in our hands, the
insoluble P1 fraction of the cortices from rTg4510 and wild
type (WT) mice over time (2-, 4-, 6- and 8- months) were
analysed using AlphaScreen assays (Methods). As expected,
elevated levels of total tau (DA9) were detected in rTg4510
compared to WT (Fig. 1a, left panel). The levels of confor-
mationally changed tau (MC1) in rTg4510 were first de-
tected above WT levels at 4month of age and continued to
accumulate at 6 and 8months of age (Fig. 1a, right panel).
To further evaluate the tau pathology at cellular level,

immunohistochemistry (IHC) was performed using PG5
(phospho-tau S409) antibody (Methods). At 2 months of
age, a very limited PG5 positive neurons were detected
in the cortex and the hippocampal region of rTg4510
(Fig. 1b), but by 4months of age, substantial level of
pathological tau was observed and continued to increase
at 6 and 8months (Fig. 1b). Similar results were ob-
served with other tau antibodies including MC1, AT-8,
PHF-1, and nY29 (data not shown).
Along with these pathological changes, the number of

microglial cells, indicated by positive Iba1 staining, in-
creased dramatically in the forebrain of rTg4510 in com-
parison to WT controls starting from 4months of age
(Fig. 1c).
In order to compare microglia transcriptome change

across tau pathological continuum, four age groups of
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Fig. 1 (See legend on next page.)
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rTg4510 and WT animals, 2-, 4-, 6-and 8-month old,
were selected for microglia isolation to capture longitu-
dinal changes. Four biological replicates were prepared
for each genotype at each time point. Acute microglia
isolation was performed using pooled forebrain tissues
dissected from 8 to 10 animals. As summarized in
Fig. 1d, forebrain tissue weight was significantly de-
creased in rTg4510 compared to WT, consistent with tis-
sue atrophy (Fig. 1d, upper panel). Interestingly, the level
of total RNA per microglia cell was higher in rTg4510
than that in WT, at as early as 2months of age, suggesting
increased transcriptional and/or translational activity in
microglia at this early stage (Fig. 1d, lower panel).

Genome-wide RNAseq of acutely isolated rTg4510
microglia
Forebrain microglia RNA samples were subjected to
deep RNA sequencing (Methods). Approximately 100
million reads for each sample were collected and 18,588
genes were mapped. Principal component analysis
(PCA), using all mapped genes, showed significant sep-
aration between rTg4510 and WT groups, which
emerged at 2 months of age and became more evident in
later age groups. The variance within biological repli-
cates was small (Fig. 2a). The first component of PCA is
highly associated with genotype and the second compo-
nent is associated with the age of the groups. The first

(See figure on previous page.)
Fig. 1 Pathological study and microglia isolation from rTg4510 mice. a. AlphaScreen assays showing levels of insoluble total tau and MC1-reactive
tau in the cortex of rTg4510 (red circles) and wild-type (WT, black circles) mice over time (2-, 4-, 6- and 8- months); expressed as a percent relative to the 2-
month old rTg4510 mice. Data are mean ± SEM (20 mice per group); statistical analysis: one-way ANOVA analysis + Dunnet’s test, *,**,*** = p< 0.05, 0.01,
0.001 vs. 2-month old rTg4510 group. b. Immunohistochemistry (IHC) using PG5 antibody to detect phospho-S409 tau accumulation in 2-, 4-, 6-, and 8-
month old rTg4510 mouse brain. Quantification result using number of positive cells in the region of interest is plotted on the right (*** p< 0.005 two way
factorial ANOVA). c. Iba1 IHC of the cortex region of rTg4510 and age-matched WT mice. The number of Iba1 positive cells are quantified and plotted on
the right (*** p< 0.005 two way factorial ANOVA). d. Microglia isolation summary. Bar graphs show the weight of forebrain tissue (upper panel), and the
amount of total RNA per microglia cell (lower panel) of rTg4510 and WT animals at different age. Data are mean +/− SEM; statistical analysis: Student t
Test, *, **, **** = p< 0.05, 0.01, 0.0001 WT versus rTg4510 at each age

A

B

Fig. 2 Genome-wide transcriptome analysis of acutely isolated rTg4510 microglia. a. Principal component analysis (PCA) of all 18,588 transcripts
from 28 samples. Plot shows three-dimensional comparison of transcripts in four age groups and two genotypes of microglia cells. Data were
transformed by logarithm of base 2. b. Heat map display of the clustering analysis result of all 18,588 transcripts. All data on logarithm of base 2
from 28 samples and hierarchical analysis was carried out in statistical software JMP
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PCA component accounts for 27.7% of the total vari-
ance, suggesting that gene expression signature in
rTg4510 microglia is significantly different from that of
WT microglia.
Hierarchical clustering analysis divided all samples

into two major clusters. The first cluster consists of the
2-month rTg4510 samples and all WT samples, and the
other cluster consists of the remaining rTg4510 samples,
indicating that the significant separation of rTg4510
microglia transcriptome from WT microglia started at 4
months of age (Fig. 2b).

Identification of differentially expressed genes (DEGs)
A total of 4672 genes were differentially expressed (DEG)
in rTg4510 microglia versus WT across all age groups
(FDR < 0.05 and |fold change| > 1.5, Table 1 and Additional
file 2: Table S1). There were more up-regulated genes than
down-regulated genes at each time point (Table 1 and
Fig. 3a). At 2months of age, only 368 genes were differen-
tially expressed in rTg4510 microglia. A majority of them
display fairly small magnitude of changes with absolute
values of fold change less than 2 (Fig. 3a and Table 1). How-
ever, more than two thousand genes were DEGs at 4
months of age and maintained at 6 and 8months of age.
Consistent with the PCA and clustering analysis, DEGs at
4-, 6-, and 8- months of age were not significantly different
from each other, indicating that the most gene expression
change occurred between 2 to 4months of age.
To confirm the DEGs identified by RNAseq, the top

22 up-regulated genes and 6 down-regulated genes were
selected for q-RT-PCR confirmation. Microglia RNAs
purified from an independent cohort of 4-month old an-
imals, together with original RNA samples, were used
for q-RT-PCR. The fold changes (FC) of these 28 genes
detected by q-RT-PCR were highly consistent with the
RNA sequencing results (Fig. 3b).
To understand how microglia transcriptome change in

response to pathological tau in comparison to the change
in response to amyloid pathology, we downloaded or gener-
ated DEG lists from two previously published microglia
transcriptome studies using mouse models with β-amyloid
deposition, the APPswe/PS1dE9 model [26] and the 5xFAD
model [28], and compared them to the DEGs from the
8-month old rTg4510 (Additional file 3: Table S2). Across
the three studies, 265 genes were consistently differentially
expressed in response to tau or amyloid pathology (Fig. 3c

and Additional file 3: Table S2). Furthermore, all 265 DEGs
showed the same direction of change although with differ-
ent magnitude of change, with 206 up-regulated and 59
down-regulated genes (Fig. 3d). Pathway enrichment ana-
lysis of the 265 common DEGs found that four KEGG
pathways were significantly enriched, cytokine-cytokine
receptor interaction (Q-value =0.0088), hematopoietic
cell lineage (Q-value =0.0094), HIF-1 signaling pathway
(Q-value =0.00016), and cholesterol metabolism (Q-
value =0.00016), suggesting that these common genes
and pathways in microglia are involved in response to
both β-amyloid and pathological tau (Fig. 3c).

Pathway enrichment analysis of DEGs
DEGs at 2 months of age represented the early-re-
sponders to tau pathology in microglia. Out of the 368
DEGs at 2 months, 314 genes (85.33%) remained differ-
entially expressed at 4-, 6-, and 8- months of age (Venn
diagram, Fig. 4a), and majority of them (261 genes) were
continuously up-regulated (Additional file 4: Figure S2
heat map of the 314 genes). KEGG pathway analysis
showed that the innate inflammatory pathways, e.g.,
NF-κB signaling and cytokine-cytokine receptor inter-
action, are enriched in these 314 genes, suggesting that
these two pathways were among the first to be activated
and remained active over the course of tau pathology de-
velopment. Genes involved in these two pathways in-
clude several tumor necrosis factor superfamily (TNFSF)
genes, TNFRSF8, TNFRSF11B and TNFSF13B, two inter-
leukin 1 family (IL-1) genes, Il1a and Il1b, four chemo-
kine genes, CCL3, CCL4, CCL6 and CXCL16, three B
cell leukemia/lymphoma 2 related (BCL2) genes,
BCL2A1A, BCL2A1B and BCL2A1D, and CSF1 and
GADD45B. The expression changes of these genes are
shown in Fig. 4b.
At 4months of age, additional inflammation-related

pathways became activated, including oxidative phos-
phorylation, lysosome, HIF-1 signaling, and phagosome
pathways (Table 2, KEGG at each month). In addition,
the neurodegeneration disease related pathways, AD, PD
(Parkinson’s disease) and HD (Huntington disease), were
enriched in the 1742 DEGs common to 4-, 6-, and 8-
months of age, suggesting similar immune/microglia
mechanisms underlying these neurodegenerative condi-
tions (Fig. 4a and Table 2). The 398 DEGs specific to 4
months of age were enriched in the DNA replication

Table 1 Distribution of 4672 DEGs (FC > 1.5) in rTg4510 microglia

Month DEG Up Down |Fold change| > 2 |Fold change| < = 2

Month 2 368 293 75 70 298

Month 4 2564 1760 804 1286 1278

Month 6 3689 2101 1588 2036 1653

Month 8 2950 1952 998 1665 1285
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pathway, aligning well with the microglia number in-
crease observed at this age (Fig. 4a and Fig. 1c).
Genes involved in NF-κB signaling (Additional file 5:

Figure S3A) and AD pathways (Additional file 5: Figure
S3B) are illustrated in more detail using the Pathview
package [67]. Each gene rectangle is split into four bins to
represent the 4 age groups. In the NF-κB signaling pathway,
the expression of 26 out of 104 genes was significantly al-
tered in rTg4510 microglia, including pro-inflammatory cy-
tokines, IL1b and TNFalpha. In addition, the expression of
IκBalpha was up-regulated implicating a negative feedback
response (Additional file 5: Figure S3A). In the AD related
pathway, 62 out of 177 genes showed differential expression
including APOE and LPL. The expression of BACE1 and
PSEN1, which encode two enzymes critical for the produc-
tion of pathogenic Aβ, was also affected (Additional file 5:
Figure S3B).

Identification of upstream regulators
To identify the upstream regulators that drive the tran-
scriptome changes and pathway activation in rTg4510
microglia, 4672 DEGs were analyzed using IPA’s “Up-
stream Regulator Analysis” tool [47]. The top 10 upstream
regulators are shown in Fig. 4c. RELA, STAT1, STAT3, and
STAT6 are key mediators of the immune responses, while
MYC, CDKN2A, MKL1, KLF6 and ZBTB16 regulate the
cell proliferation which represents another aspect of
microglia activation. These upstream regulators control
multiple downstream targets and mediate broader gene
expression changes (Fig. 4d).

Clusters of DEGs in rTg4510 microglia
Based on their longitudinal expression changes in
rTg4510 microglia, the 4672 DEG were divided into four
major clusters using Pearson’s correlation coefficients
between pairs of genes (Fig. 5). Cluster 1 includes 640
genes (13.7% of total DEGs) whose expression was
down-regulated in rTg4510 microglia with age, but re-
main fairly stable in WT microglia. The second cluster,
the largest cluster, includes 1761 genes (37.7% of total
DEGs). Their expression was continuously up-regulated in
rTg4510 microglia across four age groups but remained
stable in WT microglia. Enrichment analysis revealed that
genes in this cluster are mostly related to innate

inflammatory pathways and microglia functions, such as
lysosome, phagosome, antigen processing and presentation,
and NF-κB signaling pathways. The third cluster includes
831 genes (17.8% of total DEGs), which were up-regulated
in rTg4510 with peak expression at 4 or 6 months of
age, but their expression was down-regulated in WT
microglia. Several neurodegenerative disease-related
pathways are enriched in this cluster. The last cluster
includes 1440 genes (30.8%) whose expression is signifi-
cantly down-regulated in rTg4510, but moderately
up-regulated in WT microglia. Notably, genes involved
in glutamatergic synapse belong to this cluster.

Expression pattern of selected genes
Genes that are associated with AD genetically or biochem-
ically were further analyzed and their expression changes
are shown as heat map in Fig. 6. Out of 26 AD risk genes
[14, 15], eight were differentially expressed in at least one
age group (Fig. 6a). APOE, PLD3, PTK2B, SORL1 and
TREM2 were up-regulated, while CASS4, CR2 and EPHA1
were down-regulated. APOE has the highest fold change
among them (about 8 fold at 4months of age).
Phagocytosis is one of the primary functions of micro-

glia and is implicated in amyloid plaque clearance [68].
Twenty-eight of the phagocytosis genes (N = 113, see
Methods) showed differentially expression (Fig. 6b). FGR,
CLEC7A and ITGAX showed dramatic up-regulation in
rTg4510 at 4-, 6- and 8- months (fold change > 5).
Complement components were shown to be up-regu-

lated surrounding amyloid plaques in human AD [69,
70], and mediate early synapse loss in AD animal
models [71]. In rTg4510 microglia, genes encoding the
three subunits of C1q, namely C1qa, C1qb, and C1qc,
complement factor (Cfb) in the alternative complement
pathway, and downstream components C3 and C3AR1,
were significantly up-regulated (Fig. 6c).
Scavenger receptors (SR) participate in cellular adhe-

sion and immune response, and microglia scavenger re-
ceptors are associated with the development of AD
[72–74]. Twelve out of 28 SR genes were differentially
expressed in at least one age group. Half of the SR
DEGs were constantly up-regulated, while the other
half were down-regulated in all age groups (Fig. 6d).
Gene Ontology (GO) analysis showed that all the

(See figure on previous page.)
Fig. 3 Identification and validation of differential expression genes (DEGs). a. Volcano plot of DEGs in rTg4510 transgenic microglia relative to
WT microglia at indicated age. Fold change are plotted against the –log(p value). The vertical empty space indicates the 1.5 fold change cutoff
threshold. b. Validation of selected DEGs by q-RT-PCR. Twenty eight DEGs, 22 up-regulated and 6 down-regulated ones, were selected for q-RT-
PCR. Log (fold change, rTg4510 vs. WT microglia RNA) of q-RT-PCR results of the original RNA samples (circles) and an independent set of RNA
samples (squares) are plotted against RNAseq results (triangulars). Genes are ordered from left to right based on highest to lowest fold change
values of RNAseq results. c. Venn diagram of the number of DEGs in the three studies as labelled. The number of common DEGs is shown in the
overlapping areas. Enriched KEGG pathways are listed on bottom. d. Heat map of genes common to the three studies. The color intensity
represents the log2 fold change of the expression
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up-regulated SRs are located on the plasma membrane
(GO:0005886), whereas a majority (except FCRLS) of
the down-regulated SRs are secreted proteins (GO:
0005615, extracellular space).
Although the M1/M2 paradigm of microglial activa-

tion is being reconsidered, we explore whether there is
apparent M1/M2 polarization in rTg4510 microglia and
whether there is M2 to M1 transition in the course of
pathology advancement. The expression of M1 and M2
signature genes [46] were examined in rTg4510 micro-
glia transcriptome. Sixteen out of the 38 (42%) M1 spe-
cific genes, including TNFαlpha and IL1b, and 20 out of
the 40M2 (50%) specific genes, including Arginase 1
and YM1, were differentially expressed in at least one of
the age groups, mixed with up-regulation and down-
regulation (Fig. 6e). Within each age group, the ratios of
affected M1 genes and affected M2 genes are similar
(Fisher’s exact test, P-value = 0.37), suggesting no clear
polarization to either M1 or M2 states at any of the 4
ages. Additionally, no difference in the expression pat-
tern of M1 and M2 DEGs was observed across different
age groups (Chi-squared test, P-value = 0.838), arguing
against the hypothesis that there is M2 to M1 phenotype
transition at least within the studied time period. Taken
together, rTg4510 microglia became activated with a dis-
tinct gene expression signature from M1 or M2 states.

rTg4510 microglial DEG sets overlap with human
co-expression modules
In order to understand how relevant the gene expression
changes in rTg4510 microglia are for human biology, we

performed network analysis using RNAseq data from
human brains, and mapped the DEGs in the rTg4510
microglia onto the human networks. RNAseq data from
the dorsolateral prefrontal cortex of 632 participants in
ROS/MAP cohorts were used to develop a human tran-
scriptional co-expression network using an ensemble ap-
proach (Methods). Using cell type specific gene expression
data published by Zhang et al. [59], the genes in the net-
work were annotated by cell type and indicated by differ-
ent colors, including neuronal, astrocytic, endothelial,
microglia, and oligodendrocyte cell types (Fig. 7a). Tran-
scriptome modules were identified based on the inferred
network topology and multiple distinct modules in the
network associated with cell types (Methods).
Enrichment analysis of rTg4510 microglia DEGs against

this human co-expression network revealed that rTg4510
DEGs overlapped with human microglia co-expression
module (module 5) and endothelial module (module 9)
(Fisher’s exact tests). The enrichment became increasingly
significant at later ages, represented by lower Q-value
(Fig. 7b). However, the strength of overlap in terms of
the odds ratio (OR) from a Fisher’s exact test is stron-
gest at two months (OR: 4.5 and 4.2 for human Mod-
ules 5 and 9 respectively) (Fig. 7b).
In gene expression networks, highly connected genes

are more likely to represent genes that are critical to
regulatory processes in the cell or upstream drivers of
response to disease [51, 75]. We hypothesized that early
response genes in rTg4510 microglial at 2 months of age
are more connected in the human network. To explore
this, the degree of genes (the number of connected

(See figure on previous page.)
Fig. 4 Bioinformatics analysis of DEGs. a. Venn diagram of the number of DEGs in each age group. The number of common DEGs across months
is shown in the overlapping areas. Subgroups of genes shown in the diagram are subjected to KEGG pathway enrichment analysis. Enriched
KEGG pathways are listed on the side and connected to the region by arrows. b. Heat map of genes involved in NF-κB signaling and cytokine-
cytokine receptor interaction. The color intensity represents the log2 fold change of the expression. c. Upstream regulator analysis. Z-score heat
map of upstream regulators. The color intensity represents the Z-score. d. IPA network of target genes regulated by RELA (left panel) or STAT1
(right panel). Red represents up-regulation and green represents down-regulation. The color intensity represents the level of change

Table 2 Number of DEGs involved in selected KEGG pathways at each age group. Values in the parentheses are Q-values of
pathway enrichment test, and significant Q-values (< 0.1) are marked witha

Pathways Month 2 Month 4 Month 6 Month 8

NF-κB signaling 7 (9.69E-03a) 21 (8.74E-03a) 18 (2.44E-01) 24 (2.83E-03a)

cytokine-cytokine receptor interaction 11 (1.86E-02a) 42 (1.82E-02a) 53 (1.07E-02a) 49 (4.68E-03a)

Lysosome 4 (4.73E-01) 37 (3.96E-08a) 40 (1.13E-06a) 41 (8.58E-09a)

Alzheimer’s disease 3 (7.53E-01) 45 (1.41E-08a) 56 (2.20E-10a) 39 (1.51E-04a)

Parkinson’s disease 0 30 (2.75E-04a) 42 (3.43E-07a) 26 (2.51E-02a)

Huntington’s disease 0 33 (8.74E-03a) 47 (8.59E-05a) 27 (3.54E-01)

Oxidative phosphorylation 0 37 (1.41E-08a) 47 (4.71E-11a) 33 (3.82E-05a)

HIF-1 signaling pathway 3 (6.34E-01) 25 (1.12E-03a) 25 (2.51E-02a) 23 (2.26E-02a)

Phagosome 3 (7.91E-01) 31 (1.89E-03a) 45 (2.40E-04a) 43 (5.11E-05a)
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genes) was calculated and compared across different
time points. Indeed, the mean connectivity of DEGs at
2-months is higher than those at later time points
(P-value 0.02, Wilcoxen rank sum test), see Fig. 7c, sug-
gesting 2-months DEGs are more critical and more ‘hub’
like in the network.

Discussion
In this study, we performed longitudinal genome-wide
gene expression profiling of rTg4510 microglia cells and
identified 4672 DEGs. System biology approaches revealed
that NF-κB signaling and cytokine-cytokine receptor inter-
action pathways were the first to be activated, likely driven
by the key upstream regulators RELA, STAT1 and STAT6.
DEGs belong to four clusters based on their longitudinal
expression changes. The major cluster of DEGs contain
innate inflammatory genes that were continuously up-
regulated. We also developed human transcriptomic
co-expression networks and demonstrated that rTg4510
mouse microglia DEGs overlapped with the human net-
work sub-modules.
To our knowledge, this is the first study to assess lon-

gitudinal gene expression changes in isolated microglia
from tau transgenic animals. When compared to

previous studies using isolated microglia from animal
models of β-amyloid deposition, several similarities and
differences were noted. Common genes and pathways
were identified in spite of the different pathology in
these models, intracellular neuronal tau accumulation
versus extracellular β-amyloid plaque deposition, sug-
gesting that these genes and pathways present central
and core mediators of microglia activation. The DEGs
specific to each study may function as upstream sen-
sors of different stimuli and/or fine-tune microglia ac-
tivation toward the specific pathological condition in
each animal model. The number of DEGs in the
rTg4510 model is much larger than that in the amyl-
oidosis models (2950 genes vs. less than 1000 genes).
This could be due to technology differences since
RNAseq used in this study is much more sensitive in
detecting low-abundant RNAs than microarray
method used in the amyloidosis studies [76]; however
this may also reflect a different level of microglia acti-
vation in response to tau versus β-amyloid deposition.
This RNAseq dataset generated in pure tau animal
models not only brings complementary information to
AD but also sheds light on the understanding of
microglia activation in other tauopathies.

Fig. 5 Clusters of the DEGs in rTg4510 microglia. The total 4672 DEGs in rTg4510 were classified into four major clusters using hierarchical
clustering based on the correlations of expression profiles. In each plot, X axis represents the age (month) and y axis represents the normalized
gene expression value (log2 converted). Each plot represents the overall expression profile of the genes in one cluster. The dots are the median
expression values of genes in each replicates within the cluster, while the line indicates the median expression values of genes in the cluster.
Lines representing WT are in red, whereas lines for transgenic are in green. The enriched KEGG pathways are listed besides each cluster
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Fig. 6 Expression analysis of selected gene sets. Heat maps of (a). AD risk genes, (b). Phagocytosis genes, (c). Complement components, (d). scavenger
receptors, and (e). M1 and M2 specific genes. Only differentially expressed genes are shown in the heat maps. The color intensity represents the log2
fold change of the expression in rTg4510 versus WT microglia. M1 or M2 specific genes were noted blue or red on the far left column, respectively
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Using isolated microglia in transcriptome studies is ad-
vantageous to tissue level transcriptome investigations,
because the latter is confounded by altered cellular com-
position, as illustrated by a recent study [27]. In rTg4510
mice, microglia number significantly increased com-
pared to WT animals (Fig. 1 b and c), therefore using
isolated microglia would identify microglia-specific gene
expression changes other than expression changes
caused by cell number alteration. A gene expression
study of rTg4510 brain tissue by laser microdissecting
specific regions of the hippocampus was published pre-
viously [77]. A preliminary comparison to that dataset
indicated that the number of DEGs and the degree of
change are significantly different, and DEGs only par-
tially overlapped (unpublished results).
By analyzing the longitudinal changes of the 4672

DEGs and their biological functions, we started to
understand the dynamic molecular changes that underlie
microglia activation in response to tau pathology.
Microglia are very sensitive to pathological disturbance.
In 2-month old rTg4510 mouse brain, total tau was ele-
vated with a very limited amount of pathological tau as
assessed by biochemical and IHC methods. However,

even at this early stage microglia activation was evident
as shown by gene expression change and cell number
increase. Inflammatory pathways including NF-κB sig-
naling and cytokine-cytokine receptor interaction path-
ways are the earliest to be activated, likely driven by
upstream transcription factors RELA in the NF-κB
pathway and STATs in cytokine signaling pathway.
Consistent with microglia number increase, a set of
4-month specific DEGs are enriched in DNA replica-
tion, indicating active microglia proliferation at this
stage. The additional 1742 DEGs emerged at 4 months
and remaining as DEGs at 6 and 8 months are enriched
in oxidative phosphorylation, lysosome, HIF-1 signal-
ing, and phagosome pathways (Fig. 4a and Table 2), as
well as the neurodegeneration disease related pathways.
This set of genes likely function as mediators to en-
hance and expand the microglia response. NF-κB is a
well-known master regulator of inflammation [78]. Ac-
tivation of NF-κB was found in several disease condi-
tions, such as in AD [79]. Currently, multiple drug
discovery activities targeting NF-κB and STAT family
proteins are underway, including treating AD by inhi-
biting phosphorylation of STAT3 [80].

A

C

B

Fig. 7 Comparison of rTg4510 microglia DEGs with human gene expression network. a. Human brain gene co-expression network was constructed
using RNAseq data from 632 participants in the ROS/MAP (Methods). Cell type specificity of genes was annotated: microglia (blue), endothelial cells
(red), astrocytes (cyan), neurons (yellow) and myelinating oligodendrocyte cells (magenta). Network module 5 enriched of microglial signature genes
and module 9 enriched of endothelial genes are labelled. b. DEGs in rTg4510 microglia (green) at 2-, 4-, 6-, and 8-months significantly overlap with
human network module 5 and 9 (based on Fisher’s exact test). The significance and strength for the overlap is shown as Q-value and odds ratio (OR).
c. Connectivity of rTg4510 DEGs at 2-, 4-, 6-, and 8- months in human co-expression network. The mean connectivity of rTg4510 microglia DEGs is
represented by degree of genes shown in box plot. DEGs at two months are more connected (i.e. ‘hub’ like) than those at later time points (P-value
0.02, Wilcoxen rank sum test)
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We also explored the expression changes of genes that
have been linked to AD previously to help understand
their functions in AD pathogenesis. We found that sev-
eral of them, such as genetic risk factors APOE, PLD3,
TREM2, phagocytotic genes FGR, CLEC7A and ITGAX,
complement components and scavenger receptors (SR)
are upregulated in rTg4510 microglia, suggesting activa-
tion of these genes during microglia activation. The ex-
pression of APOE, the first and the strongest genetic risk
factor for late-onset AD, showed the biggest up-regulation
among all AD risk genes with a ~ 8-fold increase in
rTg4510 microglia cells at 4months of age. Another AD
risk gene TREM2 is also upregulated. Recently,TREM2-A-
POE pathway was identified as a major regulator of micro-
glia activation in response to amyloid pathology [81].
Lacking either TREM2 or APOE resulted in reduced
microglia response to plaque, altered plaque morphology,
and increased neuronal dystrophy [28, 82, 83]. Both APOE
and TREM2 are associated with lipid metabolism, thus
their activation may connect with altered lipidomic
homeostasis caused by AD pathology [28]. Components
of the complement system were also up-regulated in re-
sponse to tau pathology, including all three C1q com-
ponents in the classical complement pathway, the
complement factor (Cfb) in the alternative complement
pathway, and downstream C3 and C3AR1 receptor. It
was shown that C1q and C3 tagging of the damaged
synapses were required for their elimination by micro-
glia in diseased conditions [2]. In amyloidosis AD
models, C1q levels were increased and the synaptic
localization of C1q was detected even before plaques
formation [71]. Up-regulation of complement compo-
nents in rTg4510 might be a response to damaged
synapses/neurons that need to be tagged for microglia
elimination. Among up-regulated SRs, MSR1 (SCARA1)
and SCARB1 (SR-BI) have been reported to mediate the
clearance of β-amyloid fibrils [84–86]. Data here sug-
gests that these two receptors may also be involved in
the microglial response to tau and/or tau mediated
neurodegeneration.
One limitation of this study is that only female animals

were used for microglia isolation and transcriptome ana-
lysis, due to the size of this study and the availability of
animals. It has been recently demonstrated that micro-
glia gene expression and functional levels can differ be-
tween female and male mice. Female microglia express
less pro-inflammatory genes and are neuroprotective in is-
chemia animal model [87]. In addition, in spared nerve in-
jury (SNI) induced neuropathic pain model, microglia are
required for pain hypersensitivity in male mice but not in
female mice. Inhibiting microglia activity reversed the
mechanical allodynia only in male mice [88]. These obser-
vations emphasized the importance of including both gen-
ders of animals in microglia studies. Therefore, future

studies would be needed to evaluate tau-induced tran-
scriptome change and molecular mechanism of microglia
activation in male versus female animals.
Another potential limitation of our study is that we

used pooled microglia for RNAseq analysis. It is possible
that differential and distinct activation status existed at
individual cell level. Following recent technical advances,
a study using transcriptional single-cell sorting identified
a novel microglia type associated with neurodegenerative
diseases (DAM) in an amyloidosis animal model [89].
Similar studies on tau animal models are needed to help
understand microglia activation at single-cell resolution,
as well as the heterogeneity of microglia in the brain. In
addition, multiple CNS cell types communicate and mu-
tually depend on each other to function. The activity of
microglia is especially linked to astrocyte function, and
it was recently shown that microglia activation induces
neurotoxic reactive astrocyte formation [90]. Therefore,
comprehensive study of the molecular changes in differ-
ent cell types, together with bioinformatics tools, are
needed to further our understanding on neurodegenera-
tive diseases and provide opportunities for novel thera-
peutic targets and biomarker identification.

Conclusion
In response to pathological tau accumulation, microglia
respond early and continuously by producing over
4000 gene expression changes. These gene changes
drive the proliferation of microglia cells and the acti-
vation of key innate immune pathway, such as NF-κB
signaling, cytokine-cytokine receptor interaction, lyso-
some, oxidative phosphorylation, and phagosome path-
ways. These gene expression changes highly overlapped
with human co-expression modules, suggesting conserved
gene expression regulation between animal models and
human diseases. This study revealed temporal transcrip-
tome alterations in microglia cells in response to patho-
logical tau perturbation and provides insights to the
molecular changes underlying microglia activation during
tau mediated neurodegeneration.
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Additional file 1: Figure S1. Microglia isolation from adult mouse brain
and validation by q-RT-PCR and FACS analysis. (A). Graphic overview of
two microglia isolation methods. (B). q-RT-PCT result of relative expression
levels of microglia-specific markers (Iba1, CX3CR1 and CD11b) and non-
microglia markers (GFAP, NeuN, and Sox10) in mouse brain tissue and
different cell populations. (C). q-RT-PCT result of the expression levels of pro-
inflammatory genes, TNFα and IL-1β, in CD11b positive cells versus in total
cells and in microglia cells isolated by Percoll gradient method. (D). FACS
analysis of total, CD11b-positive and CD11b-negative cells using PE-CD11b
and FITC-CD45 antibodies. Left, Histograms of relative cell count for
PE-CD11b antibody. (DOCX 153 kb)

Additional file 2: Table S1. The list of DEGs (FDR < 0.05 and |fold change|
> 1.5) at each age groups of rTg4510. (XLSX 970 kb)
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Additional file 3: Table S2. The list of DEGs in three microglia
transcriptomic studies. (XLSX 240 kb)

Additional file 4: Figure S2. Heat map of the 314 genes that were
differentially expressed at all ages. The color intensity represents the log2
fold change. (DOCX 72 kb)

Additional file 5: Figure S3. (A). NF-kappa B signaling pathway and (B).
AD pathway overlaid with gene expression change in rTG4510 versus WT
microglia. The pathview plots show the expression change in log (fold
change, rTg4510 vs. WT) of genes in the pathway. Each gene rectangular
is split into four bins with filled colors, representing the log2 fold change
at the four time points. (DOCX 200 kb)
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