
Didonna and Opal Molecular Neurodegeneration           (2019) 14:19 
https://doi.org/10.1186/s13024-019-0318-4
REVIEW Open Access
The role of neurofilament aggregation in

neurodegeneration: lessons from rare
inherited neurological disorders
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Abstract

Many neurodegenerative disorders, including Parkinson’s, Alzheimer’s, and amyotrophic lateral sclerosis, are well
known to involve the accumulation of disease-specific proteins. Less well known are the accumulations of another
set of proteins, neuronal intermediate filaments (NFs), which have been observed in these diseases for decades. NFs
belong to the family of cytoskeletal intermediate filament proteins (IFs) that give cells their shape; they determine
axonal caliber, which controls signal conduction; and they regulate the transport of synaptic vesicles and modulate
synaptic plasticity by binding to neurotransmitter receptors. In the last two decades, a number of rare disorders
caused by mutations in genes that encode NFs or regulate their metabolism have been discovered. These less
prevalent disorders are providing novel insights into the role of NF aggregation in the more common neurological
disorders.
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Background
The majority of neurodegenerative disorders are proteino-
pathies, i.e., they are diseases of protein homeostasis with
proteins misfolding and accumulating in aggregates [1–3].
Advances in molecular medicine have begun to reveal spe-
cific proteins that accumulate in specific syndromes—for
instance, α-synuclein in Parkinson’s disease (PD); Aβ and
tau in Alzheimer’s disease (AD); polyglutamine proteins in
various CAG trinucleotide repeat disorders; superoxide
dismutase 1 (SOD1), TAR DNA-binding protein 43
(TDP43), FUS, optineurin (OPTN), ubiquilin 2
(UBQLN2), and dipeptide repeat protein (DRP) in amyo-
trophic lateral sclerosis (ALS) [4–7].
It is worth noting, however, that protein accumulation

in neurons was already a well-recognized phenomenon
in the pre-genetic era. Silver stains developed by Camillo
Golgi in 1873, which depend on the so-called “black re-
action” and which were improved upon by David Bodian
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60 years later, demonstrated the presence of protein tan-
gles and accumulations in the brains of patients with de-
mentia at autopsy [8, 9]. These aggregates were later
found to contain specific proteins that form cytoskeletal
polymers called neurofilaments (NFs) (Table 1) [22–24].
Within a few years, NFs were found to overlap with tau
neurofibrillary tangles in brains affected by AD [10] and
were discovered within Lewy bodies in PD dopaminergic
neurons [11] and in skeins and aggregates in the dys-
trophic neurites of ALS motor neurons [12]. Hirano
bodies, a term used to describe the crystalloid structures
found in in the soma of neurons in a variety of degen-
erative conditions including ALS and AD, also stained
strongly for NFs [25].
We now know that NFs belong to the larger family of

intermediate filaments (IFs), so called because their ap-
proximately 10 nm diameter falls between those of the
two other cytoskeletal polymers, microtubules (25 nm)
and actin filaments (6 nm) [26]. Based on primary amino
acid sequence and tissue of distribution, IFs have been
classified into six major types (I-VI) [27]. Adult neurons
in the central nervous system (CNS) express the
pan-neuronal type IV IFs (NF triplet proteins: light,
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Table 1 List of neurodegenerative diseases characterized by NF aggregates

Disease Aggregated proteins Mutated genes References

Alzheimer’s disease (AD) Amyloid-β, tau, NFs APP, PSEN1,
PSEN2

[10]

Parkinson’s disease (PD) α-synuclein, NFs SNCA, LRRK2,
PARK7, PINK1,
PRKN

[11]

Amyotrophic lateral sclerosis (ALS) Superoxide dismutase 1 (SOD1), TAR DNA-binding protein
43 (TDP43), FUS, dipeptide repeat protein (DRP), NFs

SOD1 [12]

Frontotemporal dementia (FTD) Tau, NFs PSEN1, MAPT [13]

Fragile X tremor/ataxia syndrome (FXTAS) Crystallin, heat shock protein 70 (HSP70), HSP27, ubiquitin,
NFs

FMR1 [14]

Spinal muscular atrophy (SMA) NFs SMN1 [15]

Essential tremor (ET) NFs FUS, TENM4 [16]

Spinocerebellar ataxia type 1 (SCA1) Ataxin-1, NFs ATXN1 [16]

Multiple system atrophy-cerebellar (MSA-C) α-synuclein, tau, NFs COQ2 [16]

Spastic paraplegia 11 NFs SPG11 [17]

Neurodevelopmental disorder with movement
abnormalities, abnormal gait, and autistic features
(NEDMAGA)

NFs ZSWIM6 [18]

Neuronal intranuclear inclusion disease (NIID) Ubiquitin, NFs – [19]

Diabetic neuropathy NFs – [20]

Progressive encephalopathy syndrome with edema,
hypsarrhythmia and optic atrophy (PEHO syndrome)

NFs ZNHIT3 [21]
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middle and heavy; henceforth called NF-L, NF-M, NF-H;
and α-internexin, INA) [28], while neurons in the per-
ipheral nervous system (PNS) express the NF triplet pro-
teins along with the type III IF peripherin [29]. The
immature nervous system expresses the class III IF
vimentin and the class VI IFs nestin and synemin. These
IF proteins are thought to be more dynamic at a time
when developmental processes such as neurite extension
and synapse formation warrant a more changeable cyto-
skeleton [30].

NF structure and functions
At a molecular level, IF proteins share a common tripar-
tite structure. They consist of a conserved central
α-helical rod domain flanked by two variable head and
tail domains located at the C- and N-terminus, respect-
ively [31]. Our knowledge of how they polymerize has
come from studying IF assembly. Taking advantage of
IF’s ability to dissolve in chaotropic reagents (e.g., urea),
IF assembly can be studied in vitro under controlled
conditions by dialysis against defined ionic strength
buffers. The assembled intermediates can then be assessed
by a combination of analytical centrifugation, chemical
cross-linking, and electron microscopy (EM) [32]. IF
monomers form an in-parallel coil-coiled dimer (2 nm in
diameter) from tight hydrophobic interactions of the rod
domains; the dimers interact in an anti-parallel fashion to
form tetramers (3.6 nm in diameter). Eight tetramers
associate to form unit-length filaments (ULFs; ~ 18 nm
diameter) that in turn undergo radial compaction and join
end-to-end to form mature, 10 nm-long polymers [33, 34].
NFs have a greater subunit complexity: NF-M and NF-H
copolymerize with NF-L to form two heterotetramers,
NF-L/NF-M and NF-L/NF-H. These heterotramers also
in distinct neuronal populations incorporate INA or per-
ipherin, although many of the details of this incorporation
appear less clear [35]. The stoichiometry of assembled
NFs, nevertheless, appears to be regulated: for instance in
the CNS (optic nerve and spinal cord) the ratio of NF
polymers is 4:2:2:1 (NF-L:ΙΝΑ:NF-M:NF-H) [28], while in
the PNS (the sciatic nerve) the molar ratio of the NF qua-
druplets is 4:2:1:1 (NF-L:NF-M:peripherin:NF-H) [29].
Because IF polymers are higly stable in vitro they were

initially thought to be static and relatively inert [36, 37].
However, in living cells they are dynamic—they undergo
cycles of severing and end-to-end annealing, and also
show subunit exchange along their length [38, 39]. In-
deed, besides their mechanical role, IFs organize the cel-
lular environment, position the nucleus, and dock organelles
such as mitochondria and endoplasmic reticulum; they
also participate in intracellular signaling and transcription
[40]. In the nervous system, NFs regulate neurite out-
growth and axonal caliber; the latter controls the cable
properties of the neuron [41, 42]. Some of the neuronal
functions of NFs are driven by specific subunits. NF-L
interacts with the molecular motor myosin Va to help
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transport synaptic vesicles [43]; NF-L also directly inter-
acts with the N-methyl-D-aspartate (NMDA) receptor
subunit NR1, anchoring NMDARs on the neuronal mem-
brane at the level of dendrites and growth cone [44]. NF-M
binds the D1 dopamine receptor and regulates its surface
expression [45]. NF-H directly binds the C-terminal do-
main of tubulin in a phosphorylation-dependent manner,
modulating microtubule polymerization [46, 47]. Not all
NF functions are dependent on their polymeric nature; for
instance, shorter particles and even soluble oligomers bind
NMDA and other neurotransmitter receptors to regulate
synaptic function [48].
The behavior of NFs is modulated by

post-translational modifications (PTMs) such as phos-
phorylation, O-linked glycosylation, ubiquitination, oxi-
dation and nitration [49, 50]. Phosphorylation is the best
studied and is thought to play a major role in driving NF
assembly and disassembly. Phosphorylation of the head
domain regulates NF polymerization and is mediated by
protein kinase A (PKA), protein kinase C (PKC) and cal-
cium/calmodulin dependent protein kinase II (CAMKII)
[51–54]. The tail domains of NF-M and NF-H, which
mediate spacing between NF polymers, are also phos-
phorylated at specific Lys-Ser-Pro (KSP) motifs by
CDC2-like kinase (CLK), cyclin-dependent kinase 5
(CDK5), and mitogen-activated protein kinases (MAPKs)
[55–57]. This was initially thought to modulate the lat-
eral growth of the NF lattice and by extension the radial
growth of axons [58], but NF-M mutants in which all
serines of KSP repeats have been replaced with
phosphorylation-incompetent alanines fail to show
major alterations in the caliber of their axons [59]. The
phosphorylation of the head and tail domains is thought
to occur in different regions of the neuron, with the
head domain being phosphorylated in the cell body,
while that of the tail domain occurs after entering the
axon. In fact, C-terminal phosphorylation inhibits phos-
phorylation of the tail-domain, suggesting that cross-talk
between signaling events regulates subunit assembly and
possibly transport down the axon [60].
Much less is known about the other PTMs, although

the proximity of O-linked glycosylation sites to the phos-
phorylation sites on both head and tail domains of NF-M
and NF-H subunits suggests that this PTM competes with
phosphorylation to regulate NF dynamics [61].

NF aggregation and its role in neurodegeneration
The mechanism by which NFs aggregate is still un-
known, but hyper-phosphorylation is considered one of
the main triggers for NF aggregation [62]. This model is
similar to what has been proposed for tau, which also
tends to aggregate when hyper-phosphorylated. Indeed,
for many years it was thought that NFs did not really ag-
gregate in AD and related tauopathies, and that their
presence was due to antibody cross-reaction with
phosopho-tau epitopes [63–65]. NF aggregation, how-
ever, has since then been convincingly demonstrated by
proteomic findings, which do not rely on antibody de-
tection at all [24].
There are several ways that phosphorylation could

cause aggregation. First, it could alter ionic interactions
among the subunits to create aberrant intermediates that
are prone to aggregation or drive assembly over disas-
sembly [66, 67]. Second, hyper-phosphorylation could
alter the association of NF subunits with molecular mo-
tors and disrupt their transport, leading to their aggrega-
tion; NF mutants that mimic permanent
phosphorylation states display lower rates of transport,
and premature phosphorylation sequesters NF subunits
within the cell soma [68, 69]. Third, phosphorylation
could protect NFs from proteolytic cleavage, which
could enhance their biochemical stability and trigger ag-
gregation through the imbalance in the tight stoichiom-
etry among the different subunits that is required for
correct filament formation [70, 71]. There is evidence to
support this stoichiometric model too (Table 2): trans-
genic mice overexpressing wild type NF subtypes can
mimic strategic mutant versions that impair NF assem-
bly in their ability to develop abnormal neurofilamentous
axonal swellings and progressive neuropathy that are
highly reminiscent of those found in ALS [72, 76, 84].
Moreover, these data supported a causal role for NF ag-
gregates in causing neurodegeneration [90]. In the ab-
sence of disease-causing mutations, however, these
experiments did not prompt inquiry into possible roles
of NFs in the pathophysiology of bona fide neurodegen-
erative diseases.
The pathogenic role of NF dysmetabolism began to be

studied more closely only after the discovery of rare
neurological disorders that involve NF accumulation and
are caused by mutations in NF genes (Table 3). These
NF Mendelian disorders fall under the rubric of
Charcot-Marie-Tooth (CMT) diseases, which typically
cause sensory and motor peripheral neuropathy. The
first neurofilament-related CMT to be discovered was
CMT2E, an autosomal dominant disease that can be
caused by any of more than 20 different mutations dis-
tributed through the head, rod and tail domains of the
NF-L encoding NEFL gene [100]. When expressed in cell
lines, some of these NF-L mutants display altered phos-
phorylation patterns that suppress the filament assembly
process, which confirms the importance of phosphoryl-
ation for NF aggregation [101].
The second NF-related CMT, called CMT2CC, is

caused by frameshift variants in NEFH, which encodes
the NF-H, leading to stop loss and translation of a cryp-
tic amyloidogenic element (CAE) in the 3’UTR with a
propensity toward aggregation [93]. It is worth noting



Table 2 List of mouse models for NFs and other neuronal intermediate proteins

Protein Gene Protein expression levels
compared to wild type

Promoter Phenotype Reference

NF-H NEFH Overexpression (2-fold) Human NEFH
promoter with
regulatory elements
(full genomic region)

NF accumulation, axonal transport disruption,
selective motor neuron degeneration

[72]

Nefh 50–70% increase over
endogenous NF-H levels

Mouse Nefh promoter
with regulatory
elements (full
genomic region)

No overt phenotype, slower axonal transport,
reduced axonal diameter

[73]

Nefh/LacZ fusion
gene

Less than 10% as compared to
endogenous NF-L levels

Mouse Nefh promoter No overt phenotype, NF accumulation [74]

Nefh lacking the
C-terminal 612
amino acids

Similar to endogenous NF-H
levels

Mouse Nefh promoter No overt phenotype [75]

NF-M NEFM Overexpression (2- to 4-fold) Human NEFM
promoter with
regulatory elements
(full genomic region)

NF accumulation, axonal loss, progressive
hind limb paralysis

[76]

NEFM 3–25% of endogenous NF-M
levels

Human NEFM
promoter with
regulatory elements
(full genomic region)

No overt phenotype, NF accumulation [77]

NEFM 2–25% of endogenous NF-M
levels

Human NEFM
promoter with
regulatory elements
(full genomic region)

No overt phenotype, NF accumulation [78]

NEFM fused to a
11 amino acid tag

Brain region specific expression
patterns

Human NEFM
promoter

No overt phenotype [79]

NEFM lacking the
multi-
phosphorylation
region (MPR)

Brain region specific expression
patterns (100% of endogenous
NF-M in cortex and
hippocampus)

Human NEFM
promoter

No overt phenotype [80]

Nefm lacking the
C-terminal 50
amino acids

Overexpression (2-fold) Murine sarcoma virus
(MSV) promoter

No overt phenotype, NF accumulation, axonal
radial growth inhibition

[81]

Nefm KSP
phospho-
incompetent

Endogenous levels Mouse Nefm
promoter

No phenotype [59]

Nefm lacking the
C-terminal 426
amino acids

Similar levels of endogenous NF-
M

Mouse Nefm
promoter

No overt phenotype, axonal radial growth
inhibition

[82]

NF-L Nefl Overexpression (2-fold) Murine sarcoma virus
(MSV) promoter

No overt phenotype, cataract formation [83]

Nefl Overexpression (4-fold) Murine sarcoma virus
(MSV) promoter

NF accumulation, axonal degeneration, axon
swelling, severe skeletal muscle atrophy

[84]

L394P Nefl 50% of endogenous NF-L Murine sarcoma virus
(MSV) promoter

NF accumulation, selective motor neuron
degeneration, severe skeletal muscle atrophy

[85]

P22S NEFL 1.4 times of endogenous NF-L Thy1 Tet-Off promoter Gait anomalies, sensimotor deficits, loss of
muscle innervation

[86]

N98S Nefl 30% less of total NF-L Endogenous Nefl
promoter (knock-in)

Abnormal hindlimb posture, tremor,
disorganized processes in cerebellum and
cortex, lower levels of NFs, reduced axonal
diameter, NF aggregates

[87]

P8R Nefl 50–60% less of total NF-L Endogenous Nefl
promoter (knock-in)

No phenotype [87]

Peripherin Prph Overexpression (2 to 7-fold, ac-
cording to the region)

human Thy1 gene
promoter

Selective degeneration of motor axons during
aging

[88]

INA Ina (rat) Overexpression (3-fold) Rat Ina promoter with Motor coordination deficits, neuronal IF [89]
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Table 2 List of mouse models for NFs and other neuronal intermediate proteins (Continued)

Protein Gene Protein expression levels
compared to wild type

Promoter Phenotype Reference

regulatory elements
(full genomic region)

accumulations
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that indels in NEFH and missense mutations in
peripherin-encoding PRPH have been also linked to sus-
ceptibility to ALS, another disease that involves NF ac-
cumulation [102, 103].
What is the connection between NF aggregation and

neurodegeneration? One possibility is that NF aggregates
hinder axonal transport. This could in turn impair the
sub-cellular distribution of vesicles and key organelles
such as mitochondria. In support of this possibility are
two lines of evidence. First, ultrastructural analyses
of CMT sural biopsies have demonstrated that NF
inclusions often cause the misplacement and accumu-
lation of mitochondria, lysosomes and other mem-
branous bodies [91]. Second, in rat primary neurons
and neuronal cell lines overexpressing mutant NF
proteins, mitochondria accumulate within the cell
body and almost completely disappear from the distal
segments of axons and dendrites [104, 105]. Another
study in cell lines overexpressing mutant NF-L found
fragmentation of the Golgi apparatus and endoplasmic
reticulum, which could underlie dysfunctions of the
vacuolar compartment in addition to mitochondrial
mislocalization [106].
Another possibility is that NF accumulation occurs

downstream of other events caused by the non-structural
Table 3 List of neurodegenerative diseases caused by NF dysmetab

Mechanism Disease Inheritance

Deleterious mutations in NF genes Charcot-Marie-Tooth
2E (CMT2E)

Dominant

Charcot-Marie-Tooth
1F (CMT1F)

Recessive

Charcot-Marie-Tooth
2CC (CMT2CC)

Dominant

Deleterious mutations in genes
involved in NF degradation

Giant axonal
neuropathy (GAN)

Recessive

Giant axonal
neuropathy 2 (GAN2)

Dominant

Charcot-Marie-Tooth
2F (CMT2F)

Dominant

Charcot-Marie-Tooth
2 L (CMT2L)

Dominant

Charcot-Marie-Tooth
2R (CMT2R)

Recessive

Myofibrillar myopathy
6 (MFM6)

Dominant
roles of NF proteins. Indeed, studies in primary neu-
rons from Nefl knockout mice have shown that NF-L
ablation alters mitochondrial shape, fusion and motil-
ity [107]. Furthermore, abnormalities in mitochondrial
morphology and dynamics in CMT2E cellular models
have been described prior to the disruption of the NF
network and the appearance of visible NF deposits
[108]. There is also at least one autosomal recessive
neuropathic disease, CMT1F, where nonsense muta-
tions in NEFL produce truncated forms of NF-L that
are unstable and unable to assemble with NF-M and
NF-H subunits into NFs. In this disease the neur-
opathy is thought to result from a reduction in NFs
rather than accumulation [92, 109, 110]. Due to the
absence of a functional NF lattice, CMT1F axons fail
to develop their proper diameter during development,
and the diminished axonal caliber leads to defects in
myelination and lower conduction velocities.

Molecular mechanisms of NF-mediated
neurotoxicity
To truly understand the role of NFs in disease it would
be important to find tools that modulate NF levels or,
better yet, disassemble aggregated NF proteins. Hitherto,
this has been difficult to do since NFs are amongst the
olism

Mutated
gene

Protein function References

NEFL [91]

NEFL [92]

NEFH [93]

GAN NF-specific adaptor for the Cullin3-E3 ubiquitin
ligase complex

[94]

DCAF8 NF-specific adaptor for the Cullin4-E3 ubiquitin
ligase complex

[95]

HSPB1 Chaperone protein assisting nascent NFs in
acquiring the correct conformation

[96]

HSPB8 Chaperone protein assisting nascent NFs in
acquiring the correct conformation

[97]

TRIM2 E3 ligase specific for NF-L [98]

BAG3 Co-chaperone for HSP70 protein family [99]



Fig. 1 Molecular mechanisms of NF aggregation. The scheme shows the principal pathways triggering neurofilament (NF) aggregation in the
neurodegenerative diseases listed in Tables 1 and 3. NF subunits can undergo hyper-phosphorylation and accumulation due to pathological
mutations in NF-coding genes (inner circle). Alternatively, NF accumulation can be caused by damaging mutations in genes directly involved in
NF metabolism such as factors regulating NF turnover and degradation; gigaxonin is shown as an example (intermediate circle). Lastly, NF
aggregation can be the result of the dysregulation in cellular signaling pathways converging on NF metabolism such as specific protein kinase
cascades (outer circle). While the first two mechanisms are at the root of rare neurological disorders like giant axon neuropathy (GAN) and
Charcot-Marie-Tooth (CMT) syndromes, the latter is likely to explain NF aggregation in the more common neurodegenerative diseases
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most stable cytoskeletal polymers, with a half-life of
more than 2.5 months [111].
Here another rare disease, giant axonal neuropathy

(GAN), has provided insights. In GAN, the NF accumu-
lation is so severe that the axons become distended.
Clinically, GAN overlaps with CMTs in producing sen-
sory and motor neuropathies, but it is a much more dev-
astating disease because it affects the CNS as well:
patients develop ataxia, dysarthria, nystagmus, ptosis, fa-
cial paralysis and ophthalmoplegia, and typically die in
the second or third decade of life [112]. Another differ-
ence is that GAN is caused not by mutations of NF genes,
but rather by mutations in the gene that encodes
gigaxonin, a protein that targets NFs for degradation.
Gigaxonin belongs to the broad-complex, tramtrack, and
bric-à-brac (BTB)/Kelch family of adaptors for the
Cullin3-E3 ubiquitin ligase complex [113–116]. We have
studied gigaxonin’s role in NF clearance using dorsal root
ganglia (DRG) from Gan-null mice, in which even
large accumulations can be readily cleared by overex-
pressing wild-type gigaxonin. These neurons are be-
ginning to shed light on pathogenic pathways likely
downstream from NF aggregation. For instance, we
have found that NF accumulations closely correlate
with mitochondrial dysmotility and bioenergetic
defects [117, 118]. Gan-null neurons experience in-
deed greater metabolic demands and are more prone
to oxidative stress [117].
Overexpressing wild type gigaxonin rapidly clears NF

aggregates and rescues mitochondrial motility and meta-
bolic defects. Since E3 ligase adaptors have multiple sub-
strates, which also appears to be the case with gigaxonin
[119, 120], it is still not entirely clear the extent to which
NF aggregates contribute to pathology. Some aspects of
the disease could well stem from derangements in other
cellular processes. This would explain why GAN path-
ology is more severe and affects more neuronal subtypes
that those affected in the CMT disorders. Even with this
shortcoming in our knowledge, gigaxonin promises to
become a tool to study NF degradation and clearance.
The therapeutic potential of gigaxonin is also being
tested in clinical trials where viral vectors are being used
to deliver gigaxonin to the nervous system of GAN pa-
tients [121].

Conclusions
For decades, the role of NF accumulation in many
neurological disorders has been neglected. But with the
discovery of Mendelian diseases affecting NF proteins or
those involved in their metabolism, we are beginning to
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gain novel insights into the role of NFs in disease. But
GAN is not the only disease caused by mutations in fac-
tors directly involved in NF metabolism. There are a few
other recently discovered disorders that feature NF ag-
gregation and promise to shed light on NF quality con-
trol mechanisms (Table 3). These include diseases such
as giant axonal neuropathy 2 (GAN2), a disease also
characterized by enlarged neurons, but in which the
pathology is due to loss of function mutations in another
E3 ligase adaptor named DDB1 and CUL4 associated
factor 8 (DCAF8), which interacts with Cullin4 (instead
of Cullin3) [95]. Others are due to pathological muta-
tions in molecular chaperones that help nascent NFs ac-
quire a correct tertiary structure: this is the case with
CMT2F and CMT2L, two CMT subtypes due to domin-
ant mutations in the heat shock protein (HSP)-encoding
genes HSPB1 and HSPB8, respectively [97, 98]. There is
also myofibrillar myopathy 6 (MFM6), a severe neuro-
muscular disorder caused by mutations in BCL2 associ-
ated athanogene 3 (BAG3), a gene encoding a factor that
regulates the HSP70 protein family [99].
The available data support a model in which multiple

triggers are able to cause NF aggregation by reducing
their physiological turnover and promoting their
pathological buildup. Mutations in NF-coding or
chaperone-coding genes can directly increase the resist-
ance of NFs towards degradation by affecting their phos-
phorylation patterns or their folding. On the other hand,
mutations in elements of the ubiquitin-proteasome sys-
tem indirectly cause NF aggregation by impairing NF
degradation pathways (Fig. 1). In the future, it would be
important to assess whether any of the cellular pathways
identified in these rare disorders are also dysregulated in
the more common neurodegenerative diseases character-
ized by NF inclusions. There could also be pathology
driven by signaling processes gone awry. For instance,
abnormal NF phosphorylation in AD has been con-
nected to an imbalance in the concerted activity between
protein phosphatase 1 (PP1) and 2A (PP2A), and the ki-
nases CDK5 and MAPKs [122–124]. Investigations into
these possibilities is likely to provide further insights into
NF aggregation mechanisms that, while historically the
oldest neuropathological phenomena, still resist full
explanation.
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