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Abstract

Amyotrophic lateral sclerosis (ALS) and Frontotemporal Degeneration (FTD) are neurodegenerative disorders, related
by deterioration of motor and cognitive functions and short survival. Aside from cases with an inherited pathogenic
mutation, the causes of the disorders are still largely unknown and no effective treatment currently exists. It has
been shown that FTD may coexist with ALS and this overlap occurs at clinical, genetic, and molecular levels. In this
work, we review the main pathological aspects of these complex diseases and discuss how the integration of the
novel pathogenic molecular insights and the analysis of molecular interaction networks among all the genetic
players represents a critical step to shed light on discovering novel therapeutic strategies and possibly tailoring
personalized medicine approaches to specific ALS and FTD patients.
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ALS and FTD: two sides of the same coin?
In principle, Amyotrophic lateral sclerosis (ALS) and
Frontotemporal Degeneration (FTD) are two very differ-
ent neurodegenerative diseases. ALS, whose incidence in
Europe is 2.16 per 100000 person-years [1], is a progres-
sive and ultimately fatal disease caused by progressive
loss of motor neurons controlling voluntary muscles [2].
On the other hand, FTD, whose incidence in Europe is
3.5 per 100000 person-years [2], is a type of dementia
characterized by atrophy of the frontal and temporal
lobes, with composite clinical signs ranging from alter-
ations in behavior and language to motor and cognitive
dysfunctions [3]. More specifically, there is a general
consensus that FTD consists of three distinct clinical
syndromes: behavioral variant frontotemporal degener-
ation (bvFTD), non-fluent variant primary progressive

aphasia (nfvPPA) and semantic variant primary progres-
sive aphasia (svPPA) [4].
These pathologies were initially considered two inde-

pendent clinical entities, because of heterogeneity at
clinical and neuropathological levels [5–9]. Indeed, along
this line, recent studies have outlined how these two dis-
eases seem to be also characterized by different inflam-
matory profiles, with predominance of macrophage/
microglia activation in ALS and astrocyte malfunction-
ing in FTD [10–12].
However, it is increasingly recognized that ALS is a

multisystem disorder in which other non-motor (and in
particular, cognitive and behavioral) impairments can
be observed [13, 14], whereas, on the other side, FTD
can be associated to signs of motor neuron disease
(FTD-MND) [15].
The outlook of ALS and FTD as distinct nosological

entities has progressively changed in the last decade due
to genetic breakthroughs. Over this time period, more
than 50 genes have been associated with ALS and FTD
[16–18]. Mutations in at least 44 loci have been linked
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to ALS and, correspondingly, at least 14 loci have been
linked to FTD. At present, the four major ALS-associ-
ated genes are the chromosome 9 open reading frame 72
(C9ORF72) [19, 20], Cu-Zn superoxide dismutase 1
(SOD1) [21], TAR DNA-binding protein 43 (TARDBP)
[22, 23], and fusion in malignant liposarcoma/translocation
in liposarcoma (FUS/TLS) [24, 25], in addition to at least
other 40 genes [26]. On the other hand, mutations three
main genes (MAPT, GRN and C9ORF72) are found in 60%
of familial FTD cases, whereas rare mutations (<5%) have
been found in other 11 genes [8, 27, 28].
These findings have contributed to shed light on the

major biological processes altered in ALS and FTD/FTLD
pathologies (Table 1) [29]. On the other hand, as the
genes associated with these diseases were fleshed out, it
was apparent that ALS and FTD share pathophysiological
processes. In fact, the intersection of the gene sets impli-
cated in the pathogenesis of ALS and FTD shows that at
least 11 susceptibility genes are in common between these
two disorders (Fig. 1). This genetic observation makes the
molecular overlap particularly striking and strengthens
the current notion that ALS and FTD share common
pathogenic mechanisms.

No gene is an island by itself
If we analyze more thoroughly the genes implicated in
the pathogenesis of ALS and FTD it is interesting to
note the intricate network of coexpressions, interactions
and pathways interconnecting most of the players (Sup-
plementary Figures 1, 2, 3 and 4). In fact, a prediction of
gene functions and connections carried out by using the
Genemania online tool [30, 31] suggests that a large
number of the susceptibility genes are linked through
physical protein-protein interactions (44.57%), and are
co-expressed (26.29%), whereas few gene share pathways
(7.42%), or show predicted functional interactions based
on orthology (6.55%).
Altogether these observations support the hypothesis

that such complex diseases as ALS and FTD are likely
caused not only by the simple alteration of a single gene
and that these pathologies are the result of alteration of
multiple genes clustered in the same pathways or in con-
nected pathways, caused by the triggering of a “domino
effect” propagating the initial pathological signal to the
other physical or functional partners. In this line, TDP-
43 and the related TDP-43 proteinopathies are an exem-
plary case. It is now well established that clinically and

Table 1 Main genes and cellular components/processes implicated in the pathogenesis of ALS and FTD

RNA metabolism TARDBP, FUS, hnRNPA1, hnRNPA2B1, MATR3, ATXN2, TAF15, SETX, EWSR1, ELP3, ANG

Protein trafficking and Proteostasis C9ORF72, CHMP2B, FIG 4, TBK1, UBQLN2, SQSTM1, SIGMAR1, OPTN, VCP, ALS2, VAPB

DNA repair EWSR1, FUS, SETX, TAF15, TARDBP

Mitochondria and Oxidative stress: SOD1, CHCHD10, C19ORF12

Immune response/Inflammation: GRN, TREM2, TYROBP

Stress granule assembly ATXN2, C9ORF72, MAPT

Glia and Neurons metabolism GRN, SIGMAR1, SOD1, TREM2, TYROBP

Vacuolar transport C9ORF72, CHMP2B, GRN, TMEM106B, VCP, OPTN, UNC13A

Axo-dendritic transport KIF5A, MAPT, SPG11

Fig. 1 Genetic overlap between ALS and FTD. To this date, more than 50 genes have been associated with ALS and FTD. The Venn diagram
summarizes the number of specifically altered genes in each disease and the observed overlap between the two pathologies
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neuropathologically, ALS and FTD or its pathological
substrate FTLD may be seen as two ends of a spectrum
[13, 15, 32] as well as representing a connection with
several other neuromuscular diseases [33].
Until recently, the pathological protein/s in these

inclusion bodies of ALS and FTLD with ubiquitin-
immunoreactive inclusions was thought to be an un-
known ubiquitinated protein. Subsequently, TDP-43 was
identified as the major component of the cytoplasmic
inclusions of both ALS and FTLD neurons and glia [34,
35]. Deeper biochemical analysis of purified neuronal
cytoplasmic inclusions has shown that pathologic TDP-43

is not only ubiquitinated, but also hyperphosphorylated,
and aggregates as abnormal C-terminal fragments [23].
Phosphorylated TDP-43 intraneuronal inclusions in ALS
are found within the motor cortex, brainstem motor nu-
clei, cranial nerve nuclei V, VII, and X-XII, and in spinal
cord motor neurons. It is still unclear whether TDP-43
aggregation might represent a primary event in ALS
pathogenesis or rather an epiphenomenon secondary to
other pathological processes.
In addition to ALS, TDP-43 proteinopathy now also

constitutes 45% of all FTLD molecular pathologies [36]
(Table 2). Approximately 50% of all cases contain

Table 2 ALS-FTD genotype/phenotype correlations for genes and presence of TDP-43 inclusions

Gene Genetic overlap ALS/FTD TDP inclusions References

SETX ALS Yes [37]

ATXN2 ALS Yes [38]

SOD1 ALS Yes [39, 40]

VABP ALS NR --

ALS2 ALS NR --

ANG ALS Yes [41]

SQSTM1 ALS Yes [42]

C21ORF2 ALS NR –

MATR3 ALS Yes [43]

EWSR1 ALS NR --

TAF15 ALS NR --

HNRPA1 ALS Yes [44, 45]

HNRNPA2B1 ALS Yes [44, 45]

OPTN ALS Yes [46]

TUBA4A ALS-FTD NR [47]

TARDBP ALS-FTD Yes [48, 49]

C9ORF72 ALS-FTD Yes [50, 51]

DCTN1 ALS-FTD Yes [52]

TUBA4A ALS-FTD NR [47]

TBK1 ALS-FTD Yes [53]

CHCHD10 ALS-FTD Yes [54]

CCNF ALS-FTD Yes [55]

FUS ALS>FTD NR [24, 25]

UBQLN2 ALS>FTD Yes [56]

SIGMAR1 ALS>FTD NR --

TIA1 ALS>FTD NR --

CHMP2B FTD>ALS NR [56, 57]

VCP FTD>ALS Yes [58]

GRN FTD Yes [59]

MAPT FTD NR --

TMEM106B FTD Yes [60]

The evidence for mutations linking each gene to the ALS-FTD spectrum is reported (ALS only; FTD only; both ALS-FTD; majority of ALS cases: ALS>FTD; majority of
ALS cases: FTD>ALS). NR not reported
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abnormal tau (namely, tauopathies) and the residual
group of about 5% of cases is characterized by abnormal
FUS (FUS proteinopathies) [61].
Importantly, co-morbidity of TDP-43 proteinopathy

seems not to be limited to ALS/FTLD but it has also
been detected in several other neurological disorders,
such as Alzheimer's disease (about 75% of cases with
hippocampal sclerosis, 31% without hippocampal scler-
osis, 30% with dementia with Lewy bodies), Parkinson's
disease (about 7% and 19% of PD with dementia), de-
mentia Parkinsonism ALS complex of Guam (G-PDC),
Pick's disease, corticobasal degeneration and progressive
supranuclear palsy (PSP) [62–70]. Furthermore, recent
studies reported the altered expression and mislocalization
of TDP-43 in brain tissues obtained from a Niemann
Pick C (NPC) patient and in NPC cellular models [71].

Disease modifier factors
Genetic mutations are not sufficient to explain the onset
and the progression rates of ALS and FTD patients. The
common delayed onset of both pathologies [72], and the
observation that only specific cellular types are affected
suggests that the vulnerability of disease-specific neurons
is not induced just by simple genetic factors. Additional
environmental, metabolic and genetic factors and
modifiers have to be brought into play to explain and
increase the complexity of ALS and FTD etiopathogenesis
(Fig. 2).

Regarding the environmental factors, elevated heavy
metal levels stand out not only as risk factors for ALS
but have also been proposed to correlate with ALS
progression [73, 74].
It is interesting to report that different epigenetic

mechanisms influencing the expression of C9ORF72,
SOD1, GRN, VEGF, and GLT1 have been implicated in
the pathogenesis of these disease [75, 76]. While the pro-
moters of SOD1, VEGF, and GLT1 genes have been
found to be unmethylated in ALS patients [77, 78],
hypermethylation of GRN promoter has been reported
in FTD subjects and the observed lower mRNA levels
lend support to its correlation with GRN haploinsuffi-
ciency and FTD pathogenesis [77, 78]. On the other
hand, the role of C9ORF72 gene methylation in ALS and
FTD pathogenesis is still unclear. Intriguingly, only
10–30% of c9FTD/ALS subjects present hypermethy-
lation of the C9ORF72 promoter possibly correlated
with a decreased C9ORF72 expression.
Although other epigenetic modifications, such as his-

tone and miRNA alterations have been reported in ALS
and FTD patients [76], we are still lacking a clear picture
of the impact of all the epigenetic findings on the clinical
aspects of these pathologies.
Other intriguing lines of research evaluated some

metabolic parameters as disease-modifiers that can
impact the clinical course in ALS. For example,
recent investigations have shown that high-risk car-
diovascular profiles such as a high body mass index
(BMI) or diabetes mellitus type 2 might be protect-
ive for ALS patients and may act by delaying the
onset and/or by slowing down clinical progression of
the disease [79–85]. Altogether, these finding suggest
that caution should be exercised when comorbidities
and risk factors are evaluated as prognostic factor in
such as complex diseases as ALS and FTD. In
particular, a better characterization of the eventual
association between the clinicopathological features
of the patients and a particular metabolic disorder
might be helpful to understand if and how metabolic
disorders can influence the subcellular localization,
aggregation, and phosphorylation of some of patho-
genic proteins, or if the metabolic disorders might
rather modulate the toxic effects downstream of
these events [81]. In addition, these observations
open potentially the way to nutrition, dietary supple-
ments (in particular, antioxidant) and lifestyle inter-
ventions as potential strategies for modifying the
course of the disease [86–88]. In this line, recent
studies have suggested that a high-calorie diet might
be an effective treatment for ALS by inducing a
hypermetabolic state that counters the increased
resting energy expenditure (REE) observed in ALS
patients [89–91].

Fig. 2 Factors affecting the disease- and clinical- phenotypes of ALS
and FTD pathologies. Schematic diagram of the various exogenous
and endogenous factors potentially affecting the age at onset, the
disease phenotypes, as well as the clinical phenotypes
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Disease modifier genes
On top of the disease-associated genes, an additional level
of complexity is added by the existence of modifier genes.
In fact, part of the disease and clinical phenotypes can be
ascribed to the action of genes other than those directly
implicated in the pathologies (Table 3).
In this context, after identification of the first muta-

tions in the GRN gene of FTLD patients, the high clin-
ical variability observed among the carriers of similar
GRN mutations led to hypothesize the presence of envir-
onmental and/or genetic modifiers. For example, it has
been found that each copy of the rs646776 minor C
allele, linked to SORT1 expression, is associated with a
decreased GRN plasma levels by ∼15% [92, 93].
It has been also shown the existence of a link between

GRN and TMEM106B genes. In fact, variation in
TMEM106B expression seems to be associated with
changes in progranulin expression: in fact, it has been
found that TMEM106B rs1990622 C-minor allele is as-
sociated with a delay of FTLD onset age (lower risk) for
GRN mutation carriers [94, 95]. It has been also shown
the existence of a link between GRN and TMEM106B
gene and variations in TMEM106B expression seem to
be associated with changes in progranulin expression.
TMEM106B SNPs has been also reported to be risk
factors across the genetic FTLD-TDP spectrum. In
addition, the rs1990622 T-major allele has been associ-
ated with later age at onset and at death, whereas the
homozygosity for rs3173615 G minor allele seems to
protects from developing FTD but not from developing
MND [96, 97]. To make the puzzle even more challen-
ging, the rs1990622 T-major allele has been also associ-
ated with poorer cognitive performance in FTLD-TDP
but not in ALS patients [98]. On the other hands, the
rs1990622 C-minor allele has been shown to have a
protective effect on cognitive aging in MAPT mutation
carriers [99–101].

Present drugs
The clinical and molecular heterogeneity of ALS and
FTD have represented a significant challenge for the
development of effective treatments.

Regarding treatments for FTD, although a lot of symp-
tomatic treatments have been reported so far, it has been
found that open-label studies of anticholinesterase medi-
cines and memantine have been negative. In some cases,
they may even exacerbate behavioral symptoms [102,
103]. Concerning selective serotonin reuptake inhibitors
and antipsychotic therapies these treatments can be
helpful in the management of mood and behavioral fea-
tures in individual patients [102]. Tauopathy has become
a target for novel disease-modifying treatments such as
Methylene Blue that is a drug in Phase III clinical trials.
This compound was found to be effective in arresting
age-related cognitive decline of tau-transgenic mice but
only if administered at the earliest stages [104]. Regard-
ing ALS, although several new potential drugs are
currently being tested in Phase 1 to Phase 3 clinical trials
(www.clinicaltrials.gov), there are no effective therapies
able to stop the progression of ALS. Riluzole, the only
disease-modifying treatment shown to extend life ex-
pectancy in patients with ALS, was the first FDA drug
approved for clinical use in 1995 [105]. In initial studies,
it has been associated with 38,6% reduction in mortality
in an efficacy trial [106], and 35% improvement in
survival with the 100 mg dose in a dose – ranging trial
[107]. Despite being associated with a short survival
benefit of 2–3 months equating to a 9% increase in
1-year survival it still represents the most ALS-effective
therapy to this date [108]. Although the main neuro-
protective activity of Riluzole relies mainly on blocking of
the glutamatergic excitotoxicity several other actions have
been proposed. These include inactivation of voltage-
dependent sodium channels and interference with signal
transduction events following interaction of neurotrans-
mitters to excitatory amino acid receptors [109]. Only
after 22 years, in 2017, the USA FDA approved the clinical
use of the second ALS-specific drug, Edaravone. The
Edaravone (MCI-186, also known as Radicava or Radicut)
is a neuroprotective drug with free radical scavenger and
antioxidant properties [110]. In a double-blind, placebo
controlled, Phase 2 study using intravenous Edaravone
therapy in ALS patients, Akimoto and colleagues showed
a decrease in primary endpoint in the Revised ALS
Functional Rating Scale (ALSFRS-R) scores from baseline

Table 3 Effect of the genetic modifiers of ALS and FTD

GRN SORT1 rs646776 C-minor allele => decreased GRN plasma expression [92, 93]

GRN TMEM106B rs1990622 C-minor allele => lower risk (older age at onset) [94, 95]

C9ORF72 TMEM106B rs1990622 C-minor allele => earlier onset [96]

rs3173615 G minor allele => Homozygosity protects from
developing FTD but not from developing MND

[97]

-- TMEM106B rs1990622 T-major allele => poorer cognitive performance in
FTLD-TDP patients not in ALS patients

[98]

-- TMEM106B rs1990622 C-minor allele => protective effect on cognitive aging [99–101]
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to 24 weeks after randomization [111]. In the recent Phase
3 study, it has been reported that Edaravone treatment is
beneficial in ALS patients even after 6 months of receiving
placebo, and efficacy is maintained for up to 1 year [112].
However, both drugs have a relatively small efficacy in
delaying the motor function deterioration, and their ef-
fectiveness is limited during early stages of the disease
[113]. Therefore, new treatments are urgently needed to
improve the clinical course of both diseases. Over the
years, different approaches are emerging to identify effect-
ive therapeutic strategies against ALS and FTD (schemat-
ically depicted in Fig. 3).

Drugs on the way
Arimoclomol
Arimoclomol is a hydroxylamine derivative able to
induce heat shock protein expression [114], whose
dosing was reported to improve muscle function and
survival in different mouse models of motor neuron
disease [115]. This compound may have multiple mecha-
nisms of action and several lines of evidence suggest that
under non-stressed conditions it may reduce the levels
of protein aggregates in motor nerves (a possible cause
of ALS). This is achieved by boosting expression of the
heat shock proteins Hsp70 and Hsp90 [116]. In addition,
Arimoclomol was recently found to induce a HSF1-
mediated reduction of the TDP-43 aggregates [117].

Finally, in order to evaluate the efficacy and safety of
Arimoclomol, a Phase 3 randomized, double blind, pla-
cebo-controlled trial is currently underway (NCT03491462)
after a Phase 2 trial suggested a possible therapeutic
benefit of this molecule (NCT00706147) [118].

Ceftriaxone
Ceftriaxone is a third generation of cephalosporin anti-
biotic, with ability to cross the blood brain barrier (BBB)
and to exert neuroprotection in different animal models.
This activity seems to rely on induction of the astrocytic
glutamate transporter EAAT2 expression in humans,
and GLT1 glutamate transporter expression in rodents.
Apparently, overexpression of glutamate transporters
can boost the clearance of synaptic glutamate and pro-
tects neurons from glutamate-mediated excitotoxicity,
that is thought to be critical in the pathogenesis of ALS
[119]. Along this line of evidence, low expression of the
glutamate transporter EAAT2 has been reported in ALS
animal models as well as in human post-mortem tissue
[120]. Unfortunately, this compound did not show
efficacy at Phase III clinical trials [121], most likely due
to already well-established disease.

Masitinib and cannabinoids
Masitinib is a selective tyrosine kinase inhibitor, with
anti-inflammatory activity deriving from its ability to

Fig. 3 Actual and potential therapeutic approaches to treat ALS and FTD pathologies. This schematic diagram recapitulates the major pharmacological
therapeutic approaches that have been tested or are currently approved for treatment of ALS patients (highlighted in red). In addition, it shows the main novel
approaches that are currently under development based on recent discoveries in the field of stem-cell/gene therapy and the molecular pathology of these
diseases. As shown in this figure, they range from small functional molecules and RNAs against specific protein/RNA-based targets, stem-cell approaches, to
transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS)

Liscic et al. Molecular Neurodegeneration           (2020) 15:31 Page 6 of 17



counteract degranulation of the mast cells. In addition, it
can also inhibit microglia proliferation and activation
[122]. This compound has entered Phase 3 trials for ALS
in 2017, as it was observed in a Phase 2 trial that it could
be of benefit to ALS patients as an add-on to Riluzole
[123]. Regarding anti-inflammatory effects, it has to be
noted that cannabinoids have also been proposed to be
useful in the treatment of ALS due to their anti-inflam-
matory, anti-oxidant, and anti-excitotoxic properties
[124, 125]. However, a recent meta-analyses of the stud-
ies conducted so far on animal models has concluded
that more standardized studies should be performed be-
fore supporting the treatment of ALS patients with these
compounds [126].

Tirasemtiv and structural analogs
Tirasemtiv is a troponin activator with the ability to
make troponin more sensitive to calcium and conse-
quently counteract muscle weakness, that is the most
common initial symptom in ALS [127]. Tirasemtiv was
the subject of a Phase 3 clinical trial program in ALS
patients [128, 129] (NCT02496767) but the results were
disappointing, as reported in recent congress communi-
cations. However, research in this area is still currently
evolving with the development of structural analogs of
Tirasemtiv such as CK-2066260 [130] and, especially
another skeletal muscle activator CK-2127107 [131] called
Reldesemtiv has entered Phase 2 trial (NCT03160898)
with, hopefully more promising results.

Stem-cell based approaches
Stem cell therapy aimed at counteracting immune dys-
regulation is another promising novel treatment for sev-
eral autoimmune diseases (such as rheumatoid arthritis,
multiple sclerosis, lupus) [132] as well as for ALS [133].
Initial attempts using neural stem cells in a Phase 2 clin-
ical trial (NCT01730716) did not seem to benefit
patients [134]. Therefore, starting from the observation
that neurotrophic growth factors seem to extend the
survival of motor neurons in ALS [135, 136] a culture-
medium based method was used to induce mesenchymal
stem cells (MSCs) to secrete neurotrophic growth
factors (NTFs) [137].
The intrathecal (i.t.) or intramuscular (i.m.) administra-

tion of autologous MSC-NTF cells has been shown to be
safe and to provide possible clinical advantages for ALS
patients and the potential positive outcomes are supported
by other clinical studies [138–140]. However, these results
should be further validated by recruiting a larger number
of patients and by including a placebo control. Interest-
ingly, it has been suggested that MSCs might modulate
the inflammatory responses in ALS patients by increasing
the levels of anti-inflammatory cytokines produced by
activated regulatory T lymphocytes (Treg) [141, 142]. A

Phase 1 study is currently in progress to determine the ef-
ficacy of these cells against disease progression [143].

Immunological approaches
Recent studies have shown peculiar differences in the in-
flammatory responses underlying the pathogenesis of
ALS and FTD [11, 144]. These researches pave the way
to the approaches on the similarities in the immuno-
logical mechanisms of ALS and FTD with other chronic
diseases where flogosis plays a critical pathogenetic role
[145]. These observations explain current efforts of
drug-repositioning with a series of NIH clinical trials
aimed at proving the effectiveness on ALS of agents used
for the treatment of Rheumatoid arthritis and Multiple
sclerosis. However, although some encouraging pre-
liminary reports were observed in animal models with
regards to safety and tolerability, no clear improvements
for ALS has been found [145].
At the moment, another ALS-specific immunological

therapy seemed to be more promising. It was shown, in
fact, that peripheral nervous system injury is associated
with inhibition of the axonal growth in mammals,
through activation of the reticulon 4 receptor (RTN4R,
or Nogo receptor) [146]. NogoA is one of the three iso-
forms of the Nogo protein acting as a neurite outgrowth
inhibitor [147]. It is also localized on macrophages and,
following Wallerian degeneration, it has a crucial role
for the clearance of these cells from the site of injury.
NogoA seems to be overexpressed in the skeletal muscle
of ALS patients [148]. Therefore, the efficacy of an
anti-NogoA antibody (ozanezumab) to slow down
ALS progression was tested but no difference in disease
progression (ALSFRS-R) or in survival was observed [149].

The therapeutic potential of the gut microbiota
One of the most prominent scientific breakthroughs of
the last decade is the demonstration of the link between
the gut microbiota and the brain based on the growing
number of studies reporting causal effects of the gut
microbiota on the brain. Taken together, these studies
suggest that the microbiota might influence behavior
and play a role in the pathogenesis of several neuro-
logical disorders [150–152]. In this context, preclinical
studies have demonstrated that there is a difference in
the microbiota profile in ALS patients. The results of
these studies have suggested that such modifications can
alter the gut microbiota brain axis and induce gastro-
intestinal dysfunction in ALS patients [153, 154]. Not-
withstanding the limitation of the studies (in particular,
the small panel of human samples and uncertainty
whether dysbiosis is primary or secondary to dietary
changes in ALS), the role of the gut microbiota in ALS
stays on the cutting edge for developing therapies aimed
at improving gut dysbiosis as well as the course of the
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disease using probiotics and prebiotics, both from a
prophylactic and therapeutic points of view. Regarding
this issue, it is worth to mention a recent study that
demonstrates how, in an ALS-prone Sod1 transgenic
mouse model, the course of the ALS-like disease can be
modulated by administration of specific gut microbial
strains. Apparently, administration of Akkermansia
muciniphila was associated with improvements of symp-
toms and prolonged survival whereas Ruminococcus
torques and Parabacteroides distasonis were associated
with an exacerbation of disease progression. In addition,
preliminary analyses of human gut microbiota further
supported the hypothesis that Akkermansia might play a
role in the progression of human ALS, an exciting dis-
covery [155]. Although more studies are necessary, it is
feasible to predict that the management of the gut
microbiota might represent a further strategy helpful to
prevent or alleviate the symptoms of this neurodegenera-
tive disease.

Therapeutic approaches based on non-invasive
brain stimulation
An alternative and innovative approach to pharmaco-
logical therapies is provided by non-invasive brain
stimulation approaches, represented by transcranial
magnetic stimulation (TMS) or transcranial direct
current stimulation (tDCS) to slow down clinical pro-
gression in patients with ALS. Recent studies have
shown limited but promising results on muscle strength,
quality of life and neurophysiological measures in ALS
patients treated with these options [156, 157]. In the
same view, beneficial effect of targeted language training
in combination with brain stimulation was demonstrated
in agrammatic variant of PPA patients [158].

Therapeutic approaches based on genetic factors
The identification of dominant mutations in TDP-43
and FUS/TLS genes represented the starting point to
highlight alterations of common pathogenic pathways in
both ALS and FTD mediated by dysfunctions in RNA
metabolism [159]. TDP-43 and FUS/TLS have similar
structures and are implicated in several steps of mRNA
and miRNA processing. On one hand, TDP-43 interacts
with over 6000 RNA targets and plays a role during all
phases of gene expression. It can act as a transcriptional
repressor by direct DNA binding [160] and regulator
pre-mRNA splicing, microRNA biogenesis, as well as
RNA transport and translation [161]. Conversely, FUS/
TLS binds to a single or double-stranded DNA and
RNA and promotes or represses transcription and affect-
ing splicing by interacting with RNA polymerase II [162,
163]. Both TDP-43 and FUS/TLS can modify the func-
tion of stress granules and regulate synaptic function in

neurons, a feature that might represent a crucial link
with the pathology [164].
Moreover, a shared characteristic of ALS/FTD is a

reactive gliosis [165]. This is an unspecific proliferation
of glial cells in injured brain regions characterized by
microglial proliferation and astrocytic hypertrophy.
Interestingly, gliosis is not the only main feature of the
brain regions that show neuronal loss and inclusion
pathology. In addition, glia can further promote neuro-
degeneration by releasing toxic compounds and by
decreasing its clearance ability [166].

TDP-43
The lack of proper models of TDP-43 aggregation (that
might allow to study the mechanism of formation, and
their impact on other cellular components, as well as on
cell metabolism) hampers full comprehension of the role
of this nuclear factor in the pathogenesis of ALS and
FTD [34]. Improving characterization of the mechanisms
underlying the activities of these proteins, especially
TDP-43, C9ORF72, and FUS/TLS is the main logical ap-
proach to better unravel the pathogenesis of ALS and
FTLD-TDP. This is currently being done together or in
parallel with investigating the relevance of common
pathological pathways. For example, perturbation in
neurotransmitters has been demonstrated in ALS as well
as in FTLD, in particular with glutamate-driven excito-
toxicity [160]. This pathway is supposed to be involved
in ALS pathophysiology [167] and, more recently, also in
FTLD [168, 169].
One still open question in the TDP-43 field has always

been to determine whether the pathology caused by this
protein was through a mechanism of loss-of-function or
gain-of-function (bearing in mind that both mechanisms
are not necessarily mutually exclusive and may be acting at
the same time or at different stages in disease) [170, 171].
At the loss of function level, aggregates are able to se-

quester endogenous TDP-43 depleting its nuclear levels
and inducing loss of function at the RNA processing
level [172]. Importantly, neurodegeneration has recently
been observed in selected neuronal populations that are
affected early during disease even in the absence of
TDP-43 aggregation, an observation suggesting that loss
of function may be present even at early stages of disease
[173]. No apparent direct cellular toxicity of the aggre-
gates seems to be present beyond the lack of functional
TDP-43 although some reports using bacterially-made
TDP-43 aggregates have suggested that some degree of
toxicity may be present due to alteration of calcium
homeostasis [174]. Regarding therapy, therefore, the en-
gineering of protein “disaggregases”, such as Hsp104,
that can free and eventually reactivate TDP-43 trapped
in the inclusions, could represent a valuable therapy for
ALS and FTD patients [175, 176].
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As TDP-43 is a ubiquitous protein that plays a general
role in cellular and developmental processes of higher
organisms, it may be difficult to target this protein in a
generalized manner. One possibility, therefore, might be
to target regions that are important to trigger the aggre-
gation process, such as the RNA Recognition Motif 1
(RRM-1) that was shown to interact directly with p65-
NF-kB [177]. Interestingly, it has been recently shown
that antibodies against TDP-43 RRM1, able to disrupt
this interaction, can reduce the neuroinflammation and
the motor defects in mice that express an ALS-linked
TDP-43 mutation [178].
Alternatively, targeting eventual mutations in the se-

quence of this protein might represent a parallel alterna-
tive therapeutic option [179]. To this date, the study of
various patient populations has identified more than 50
TDP-43 mutations associated predominantly with ALS
[172] and occasionally also in FTLD [180]. Moreover, it
is now clear that a significant number of mutations
affect other disease-associated proteins such as FUS,
hnRNPA1, hnRNPA2/B1, MATR3, and TIA1 [45]
with the emerging picture that most of these muta-
tions may lead to altered stress granule (SG) dynam-
ics [181]. Indeed, a growing body of evidence suggests
that inhibiting stress granule formation may be a
viable therapeutic approach to suppress TDP-43 mediated
toxicity [182].
Finally, it may also be possible to target selected TDP-

43 RNA processing events that become disrupted by loss
of function [183–185] or other functional modifiers of
its toxicity such as hnRNP proteins [186], Ataxin-2
[187], matrix metalloproteinase 9 [188], TCERG1 [189],
cellular kinases [190], small molecule inhibitors of trans-
lational factors [191], and even the TARDBP autoregula-
tory process at the pre-mRNA level [192].

C9ORF72
The hexanucleotide G4C2, repeat expansion within the
C9ORF72 gene has been recently identified as the most
frequent genetic cause of both ALS and FTD [19, 20].
The pathogenic hexanucleotide length (>30 repeats) is
present in about 10% of all ALS patients [193].
Focal neuronal loss, gliosis and neuronal cytoplasmic

TDP-43 inclusions are the characteristic pathological
findings in both C9ORF+ ALS and FTLD cases. Among
the TDP-43 proteinopathies, the peculiarity of C9ORF72
pathology is that the inclusion bodies also contain di-
peptide repeat polymers (DPR) and both loss- and gain- of
function (LOF and GOF) of the C9ORF72 protein have
been suggested to cause neurodegeneration [194, 195].
Regarding possible functions of C9ORF72, in vitro

studies aimed at characterizing the effects of LOF have
suggested a role in endosomal and autophagic pathways
[196]. In this line, although still to be tested, C9ORF72

haploinsufficiency might eventually be addressed by gene
therapy approaches [197].
On the other hand, the finding of both repeat RNA

and protein aggregates in post-mortem brain supports
the toxic GOF hypothesis [198]. Repeat-containing RNA
aggregates, or RNA foci, have been found to trap pro-
teins implicated in RNA splicing, editing, nuclear export,
and nuclear function [199]. An alternative mechanism to
RNA binding protein sequestration is associated with
generation of DPRs by repeat-associated non-ATG
translation (RAN), that generate neuronal inclusions
with a distribution different from that of the TDP-43
pathology [200]. Small compounds targeting the peculiar
G-quadruplex structure of C9ORF72 repeats have suc-
cessfully used to reduced RNA foci burden and the
levels of DPRs in patient iPSC-derived motor and cor-
tical neurons [201]. Likewise to TDP-43 pathology modi-
fiers, the screening for repressors of C9ORF72 toxicity
has recently led to identify: 1) the cellular factor DDX3X
as capable of inhibiting non-AUG translation of the
C9ORF72 dipeptides [202]; 2) several members of the
karyopherin family as capable of suppressing dipeptide
toxicity [203]; 3) nuclear pore complex component Ref1
[204] and human RanGAP1 [205]. Alternatively, the de-
velopment of antibodies against selected dipeptides such
as GP has been shown capable of inhibiting their cell-to-
cell transmission and aggregation [206].
Finally, the use of oligonucleotide-based antisense aimed

at decreasing aberrant RNAs expression represents one of
the more successful approaches for the treatment of
various neurodegenerative disorders [207, 208]. Therefore,
it has been suggested that such a strategy might be useful
to reduce the levels of mutant C9ORF72 transcripts [209]
and successful targeting of mutant C9ORF72 transcripts
in different ALS model systems has already been described
[210]. Moreover, artificial miRNAs targeting mutant
C9ORF72 have been shown to be able to reduce the GOF
caused by the repeat-containing transcripts [211]. The
therapeutic potential of these approaches, however, still
remains to be tested.

FUS
Similarly to TDP-43, FUS is a predominantly nuclear pro-
tein and pathological FUS inclusions are mostly localized
in the cytosol [212]. Mutations in the FUS/TLS gene
account for approximately 4% of fALS (~0.4% of all ALS)
[24, 25] and FTLD [213]. Although the phenotype associ-
ated with a FUS mutation is variable, most patients pre-
dominantly demonstrate loss of lower motor neurons and
low survival rate [214]. The mechanisms by which FUS
mutations cause ALS and FTD remain controversial and
have been linked to a variety of neuronal features, such as
dendrite development [215], and alterations in cellular
processes, such as paraspeckle formation [216]. Recently,
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a model has been proposed in which low-complexity
domains of FUS drive its reversible assembly into mem-
brane-free, liquid droplet and hydrogen-like structure.
Since the inhibition of these fibrillar hydrogel assemblies
mitigates neurotoxicity, it has been proposed as a potential
therapeutic strategy in early phase ALS and ALS/FTD as-
sociated with mutations [217], and approach that could
potentially be used also for other RNA binding proteins.
As with TDP-43 and other ALS genes, autophagy

enhancement using small molecules has been shown to
successfully reduce cytoplasmic FUS levels, to restore RBP
homeostasis, and to rescue motor function in vivo [218].
In keeping with this view, it has been shown very recently
that a potent HDAC inhibitor, called ACY-738, can cross
the blood-brain barrier and improve the motor phenotype
and life span of Transgenic FUS+/+ mice [219]. Finally, an
early Phase 1 Clinical Trial has been started using the
FDA-approved steroid medication Betamethasone (The
TRANSLATE Study, NCT03707795) and the recruitment
process has been just completed.

GRN
Autosomal dominant mutations in the GRN gene have
been implicated in up to 25% of familial FTD cases and
these mutations seem to cause the disease due to hap-
loinsufficiency [220, 221]. Mutations in GRN also result
in TDP-43 neuropathology in humans, but knockout
mice show little pathologically phosphorylated TDP-43
[222], thus indicating that the link between gene defect
and pathology is complex. Although the specific func-
tions of GRN have not been fully characterized [223], it
is becoming clear that in the neuronal context the
expression and function of GRN is an important deter-
minant of proper neurite outgrowth and branching
[224]. An obvious therapeutic strategy for carriers of
GRN mutations would thus be represented by gene
therapy aimed at restoring proper GRN expression
levels. This strategy has not yet been tried in humans
but recent promising results have shown that using
Adeno Associated Vectors (AAV) capable of expressing
progranulin in the brain of Grn -/- mice have the ability
to improve lysosomal dysfunctions and microglial path-
ology [225]. Finally, with regards to disease, it is also im-
portant to note that TDP-43 loss of function caused by
aberrant aggregation can also induce a mis-splicing
event in Sortilin1, the neuronal receptor of Progranulin
[226, 227]. In this respect, therefore, these recently identi-
fied PGRN binding receptors may aid in the development
of therapeutics designed to regulate PGRN levels. More
recently, it has been announced by Alector company that
FDA has granted Fast Track designation to AL101 for the
treatment of FTD patients with progranulin gene
mutations. AL101 is an anti-sortilin human monoclonal

antibody designed with the aim to rescue progranulin
haploinsufficiency in the central nervous [228].

Conclusions and perspectives
The clinical and neuropathological heterogeneity of ALS
and FTD represents only the tip of the iceberg of these
multifaceted diseases and many key issues remain to be
fully explained, such as the reason for the selective vul-
nerability of cell types like specific motor neurons com-
pared to frontal and temporal neurons as well as the
influence of exogenous and endogenous modifier factors
on the onset and progression of disease. Moreover, there
are no appropriate biomarkers capable of accurate diag-
nosing and predicting disease progression. Nonetheless,
it is becoming increasingly clear that the main reason of
the complexity of these pathologies arises from the
heterogeneity in their etiology. Approximately 90% of
patients present sporadic adult-onset forms of unknown
etiology. The remaining percentage of patients with gen-
etic forms of the pathologies is characterized by a high
degree of genetic heterogeneity both at allele and at
locus level [17, 229]. Furthermore, several risk factors
and genetic modifiers able to increase susceptibility to
the diseases, or to influence the rate of progression have
now been identified [17, 230]. In conclusion, the two
diseases represent a pathological "continuum" possibly
associated with a complex inheritance and influenced by
an important interplay between genetic risks and likely
environmental factors.
In familial ALS (fALS) many causative gene defects

have been described (for an up-to-date list see:
http://alsod.iop.kcl.ac.uk/) and in September 2019, FDA
released a new guidelines on the elaboration of novel
treatments for ALS, providing suggestions for the design
of clinical trials and to measure the effectiveness of
the potential treatments [231].
At present, the road towards an effective treatment for

ALS and FTD lies still in the future. Table 4 summarizes
the upstream hurdles to lead the development of novel
treatments for ALS and FTD. Recent advances in our
better understanding of disease and the genes that are

Table 4 Hurdles on the road of developing novel treatments
for ALS and FTD

• Unknown etiology of sporadic cases.

• High degree of heterogeneity at clinical, neuropathological level.

• High degree of genetic heterogeneity both at allele and at locus level.

• Unknown reason(s) for the selective vulnerability of cell types (i.e.,
specific motor neurons, frontal, and temporal neurons).

• Unknown influence of exogenous factors on the onset and
progression of the diseases.

• Unknown influence of endogenous modifier factors on the onset and
progression of disease.
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