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Abstract

Large-scale brain bulk-RNAseq studies identified molecular pathways implicated in Alzheimer’s disease (AD), however
these findings can be confounded by cellular composition changes in bulk-tissue. To identify cell intrinsic gene
expression alterations of individual cell types, we designed a bioinformatics pipeline and analyzed three AD and control
bulk-RNAseq datasets of temporal and dorsolateral prefrontal cortex from 685 brain samples. We detected cell-proportion
changes in AD brains that are robustly replicable across the three independently assessed cohorts. We applied three
different algorithms including our in-house algorithm to identify cell intrinsic differentially expressed genes in individual
cell types (CI-DEGs). We assessed the performance of all algorithms by comparison to single nucleus RNAseq data. We
identified consensus CI-DEGs that are common to multiple brain regions. Despite significant overlap between consensus
CI-DEGs and bulk-DEGs, many CI-DEGs were absent from bulk-DEGs. Consensus CI-DEGs and their enriched GO terms
include genes and pathways previously implicated in AD or neurodegeneration, as well as novel ones. We demonstrated
that the detection of CI-DEGs through computational deconvolution methods is promising and highlight remaining
challenges. These findings provide novel insights into cell-intrinsic transcriptional changes of individual cell types in AD
and may refine discovery and modeling of molecular targets that drive this complex disease.
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Background
Alzheimer’s disease (AD) is a neurodegenerative disease
that affects ~ 5.7 million patients with annual cost of
more than $230 billion in the US [1]. Effective disease-
modifying drugs are still elusive despite the urgent need
and increasing global burden [2, 3]. Pathologically, AD is
marked by amyloid-beta plaques and neurofibrillary tan-
gles, along with neuronal loss and gliosis in the affected
brain regions. Transcriptome-wide expression levels
have been analyzed from bulk brain tissue of hundreds

of AD patients and neuropathologically normal controls
[4–8] to discover genes and biological pathways that are
perturbed in and/or lead to AD. Systems biology and
bioinformatics analysis of these data have implicated al-
tered pathways in AD including immune response [6]
and myelin metabolism [4, 5]. However, a fundamental
knowledge gap remains concerning whether disease-
associated changes in brain gene expression are due to
changes in cellular composition of the AD samples sec-
ondary to disease neuropathology, or due to changes in
the intrinsic regulation/activity of genes in the central
nervous system (CNS) cells. From a clinical perspective,
it is difficult to target changes in cellular composition
secondary to neuropathology, whereas intrinsic changes
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in gene expression that may drive AD progression are
potentially “druggable”.
We expect that identifying cell-intrinsic differentially

expressed genes (CI-DEGs) of individual CNS cell types
will reveal novel insights into the genes and pathways that
could potentially identify drug targets and lead to AD
therapeutics. This approach circumvents the influence of
cell-composition changes that can impact disease associ-
ated DEGs obtained from bulk tissue transcriptome ana-
lysis. RNA sequencing (RNAseq) studies from single cell,
single nucleus or purified adult human CNS cells [9–11]
can be used to identify CI-DEGs. Even though such single
cell-type RNAseq data can effectively serve as a reference
to annotate bulk-tissue transcriptome data [4], such ap-
proaches remain costly, cumbersome and limited in sam-
ple sizes. On the other hand, there exist large-scale bulk
brain RNAseq datasets [5, 8, 12], which can be leveraged
to identify CI-DEGs through analytic deconvolution of
bulk tissue expression into signals of individual cell types
by using cell proportions or their proxies [13, 14].
In this study, we describe the design and application of

a bioinformatics pipeline that uses cell type marker
genes to estimate cell proportion [15, 16] to deconvolute
bulk tissue transcriptome data using three computa-
tional approaches [13, 14, 17] and to subsequently iden-
tify CI-DEGs. We applied our pipeline to the analysis of
three post-mortem brain datasets, one from dorsolateral
prefrontal cortex (DLPFC) [8] and two from temporal
cortex (TCX) [4, 12, 18] regions, comprised of 685
unique samples. Consensus CI-DEGs common to both
TCX and DLPFC regions were analyzed for enrichment
of gene ontology (GO) terms. We compared the results
of consensus CI-DEGs to consensus bulk-DEGs. In
addition, for the DLPFC [8] dataset that had both bulk
and single nucleus RNAseq [19] (snRNAseq) data, we
compared the CI-DEGs from the computational decon-
volution to CI-DEGs obtained from snRNAseq [19].
To our knowledge, this is the first study to detect consen-

sus CI-DEGs and their enriched gene ontology (GO) terms
from multiple brain regions using multiple computational
deconvolution algorithms for AD and control RNAseq
samples. Our study illustrates the cell proportion landscape
of AD and control brain regions assessed in three inde-
pendent RNAseq studies [4, 7, 8, 12]. We identify consen-
sus CI-DEGs many of which are not observed in bulk-DEG
analysis and characterize their cell-type specificity. GO
terms that are enriched for CI-DEGs implicate cell intrinsic
transcriptional alterations that may influence AD, rather
than be a result of cell-proportion changes in this disease.
These CI-DEGs and their biological pathways may serve as
refined molecular targets for therapeutic discoveries and
disease modeling in AD. Our study also demonstrates that
detection of CI-DEGs through computational deconvolu-
tion methods is promising while some challenges remain.

Results
Cellular composition in three brain cohorts from two
brain regions
We analyzed three cohorts each consisting of post-
mortem brains from AD and control subjects (Table S1),
namely the Rush Religious Orders Study and Memory and
Aging Project dorsolateral prefrontal cortex (DLPFC) [7,
8], Mayo Clinic temporal cortex (TCX-Mayo) [4, 12], and
Mount Sinai VA Medical Center Brain Bank temporal
cortex (TCX-MSBB) [18]. We generated the TCX-Mayo
RNAseq dataset, and downloaded DLPFC and TCX-
MSBB RNAseq datasets from the AMP-AD knowledge
portal on Synapse (www.synapse.org).
Cell proportions (Table S2) were estimated for DLPFC,

TCX-Mayo and TCX-MSBB datasets independently using
the digital sorting algorithm (DSA) method [16] and the
top 100 marker genes (Table S3) obtained from R package
BRETIGEA [15] for each of the following cell types –
neuron, oligodendrocyte, microglia, oligodendrocyte pro-
genitor cell (OPC), astrocyte and endothelial cell.
An inspection about the pairwise correlation between

marker genes (Fig. 1a) revealed that markers of OPC
have poor median pairwise Pearson correlation values of
0.12 in DLPFC, 0.11 in TCX-Mayo and 0.06 in TCX-
MSBB respectively, whereas among the other five cell
types neuronal markers have the highest median correl-
ation (0.68 in DLPFC, 0.78 in TCX-Mayo and 0.67 in
TCX-MSBB), and microglia markers have the lowest
correlation (0.37 in DLPFC, 0.42 in TCX-Mayo and 0.44
in TCX-MSBB). In addition, a computer simulation
study (Fig. S1) demonstrated that the estimated propor-
tions of OPC were not robust upon using different selec-
tion of marker genes. Therefore, we did not include
OPC in downstream analyses in this study.
In all three datasets, neuronal cell proportion estimates

were significantly lower in AD compared to controls
(Fig. 1b). The magnitude of this decrease was the great-
est for TCX-Mayo (AD mean proportion = 28.0%, Con-
trol = 35.7%; ratio of AD:control cell proportions = 0.78),
followed by TCX-MSSM (AD = 42.3%, control = 49.3%;
ratio = 0.87) and DLPFC (AD = 42.4%, control = 47.4%;
ratio = 0.89). The estimated proportions of microglia
were significantly higher in AD vs. controls for all data-
sets, with higher magnitude in TCX-Mayo (AD:control
ratio = 1.19) and TCX-MSBB (AD:control ratio = 1.19)
than for DLPFC (AD:control ratio = 1.06). The estimated
proportions of astrocytes and endothelial cells were sig-
nificantly higher in AD vs. controls for DLPFC and
TCX-Mayo datasets, although the magnitude was greater
in TCX-Mayo (1.40 and 1.30 respectively) than in
DLPFC (1.07 and 1.14 respectively) for both cell types.
Oligodendrocyte proportion is significantly higher in AD
in DLPFC with AD:control ratio 1.14 and TCX-MSBB
with AD:control ratio 1.27, although remains unchanged
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in TCX-Mayo with the ratio 0.94. Collectively, these
findings demonstrate that the proportions of CNS cell
types are different in post-mortem AD vs. control brains
for most cell types. Although these proportional changes
with AD are mostly consistent across the different stud-
ies, their extent varies across brain regions, with TCX
tending towards higher magnitude of neuronal loss and
microglia proliferation than DLPFC. It needs to be em-
phasized that the cell proportion changes estimated here
are relative values, rather than absolute cell proportion
changes between ADs and controls.

Differential expression analyses
In this study, three computational approaches were
applied to identify cell intrinsic differential expression in
individual cell types (CI-DEGs, Table S4-S6), namely Cell-
CODE [14], PSEA [13] and our method WLC. Differen-
tially expressed genes from bulk brain tissue (bulk-DEGs)
were identified through linear regression without adjusting
for cellular composition (Table S7). For the DLPFC, TCX-
Mayo and TCX-MSBB datasets, we obtained bulk-DEGs
and CI-DEGs from the three computer algorithms for
neuronal, oligodendrocytic, microglial, astrocytic and
endothelial cell types respectively.

We compared bulk-DEGs across the three datasets
(Fig. 2a, top panel). Similarly, CI-DEGs from CellCODE,
PSEA and WLC are compared across datasets (Fig. 2a,
lower panels), such that CI-DEGs shared between datasets
are required to be consistent in the designated cell type.
All DEGs are identified at nominal p-value cutoff 0.05 and
shared CI-DEGs have the same direction of change in the
compared datasets. The ratio of overlap between any two
datasets over all DEGs, i.e. the number in overlapping
areas of the Venn diagram over the total number (Fig. 2a,
top panel), is 30.0% or 1711/5697 in up-regulated bulk-
DEGs, and 34.8% or 2214/6371 in down-regulated bulk-
DEGs. This ratio of overlap in bulk-DEGs is much higher
than that in CI-DEGs (2.7, 4.7 and 10.0% in up-regulated
genes from CellCODE, PSEA and WLC respectively; 3.1,
6.8 and 9.3% in down-regulated genes from CellCODE,
PSEA and WLC respectively).

Consensus CI-DEGs between DLPFC and TCX
To obtain the consensus CI-DEGs that are shared be-
tween DLPFC and TCX brain regions, we selected those
CI-DEGs that are detected in “DLPFC and TCX-Mayo”
or in “DLPFC and TCX-MSBB” under any of the three
algorithms (Fig. S2). We combined all such genes, which

Fig. 1 a) Pearson correlation between marker gene expressions in six cell types. Marker genes are from literature. b) Estimated cell proportions in
DLFPC, TCX-Mayo and TCX-MSBB datasets in five cell types. Red asterisk indicates differences between cell proportions in AD and control groups
at nominal p value 0.05 from Wilcoxon rank sum test
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collectively comprised the consensus CI-DEGs for each
cell type (Fig. 2b). Similarly, consensus bulk-DEGs were
the combined set of bulk-DEGs shared between “DLPFC
and TCX-Mayo” or “DLPFC and TCX-MSBB”.
Most consensus CI-DEGs are from neuronal cells (N =

559), followed by oligodendrocytes (N = 260), whereas
microglia contributed the least number (N = 101). The
majority (65.5% or 366/559) of neuronal CI-DEGs is
down-regulated in AD, and the majority (66.0% or 140/
212) of endothelial CI-DEGs is up-regulated in AD, with
other cell types lying in between. Some of these CI-DEGs
are also among the 1000 marker genes of the correspond-
ing cell type from BRETIGEA [15]; 14.7% or 82/559 of
neuronal CI-DEGs are also neuronal markers, 25.4% or

66/260 of oligodendrocyte CI-DEGs are also oligodendro-
cyte markers, and other cell types lie in between.
With regards to consensus bulk-DEGs (Fig. S3), 28.2%

of them (885/3135) are cell type markers; 10.4% neur-
onal markers, 5.6% oligodendrocyte, 3.4% microglia,
4.8% astrocyte and 4.0% endothelial markers. The above
observations indicate that computational deconvolution
algorithms could identify CI-DEGs for both marker
genes and non-marker genes. Importantly, the propor-
tion of non-marker CI-DEGs is greater than that in
bulk-DEGs. This suggests that compared to bulk-DEGs,
CI-DEGs may be capturing a greater proportion of ex-
pression changes that are not due to mere cell popula-
tion changes.

Fig. 2 a) Overlap across three independent RNAseq datasets of bulk-DEGs (upper panel) and CI-DEGs (lower panels) from three computational approaches.
b) Consensus CI-DEGs between DLPFC and TCX brain regions, which consist of consensus CI-DEGs between DLPFC and TCX-Mayo, or between DLPFC and
TCX-MSBB. c) Overlap between consensus CI-DEGs and consensus bulk-DEGs, per cell type. The p-values of overlap are from hypergeometric tests
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We also compared the consensus bulk-DEGs with
consensus CI-DEGs (Fig. S4). We determined that only
a small fraction (15.0% or 29/193) of the up-regulated
neuronal CI-DEGs was also present in up bulk-DEGs al-
though the overlap is still significant (Fig. 2c). In com-
parison, most of the up-regulated CI-DEGs of the other
four cell types were included in up bulk-DEGs. On the
other hand, most (84.2% or 308/366) of the down-
regulated neuronal CI-DEGs were also present in down
bulk-DEGs, whereas most of the down-regulated CI-
DEGs of the other four cell types were absent from this
group. Since bulk-DEGs did not adjust for neuronal loss
and gliosis in AD (Fig. 1b), its ability to identify up-
regulated neuronal genes and down-regulated glial genes
is likely to be compromised. For the same reason, bulk-
DEGs may have a false inflation of detecting down-
regulated neuronal and up-regulated glial genes.

Enriched GO terms of consensus CI-DEGs between DLPFC
and TCX
To identify pathways implicated by CI-DEGs that are ro-
bust across brain regions, we performed Gene Ontology
(GO) enrichment analysis [20, 21] for the consensus CI-
DEGs, assessing separately those that are up vs. down in
AD subjects (Table S8-S17). Figure 3 illustrates the top
two enriched GO terms by enrichment p-values, after fil-
tering out terms that encompass less than four CI-DEGs
or are cellular compartments.
Consensus CI-DEGs revealed biological pathways that

are perturbed in AD in specific brain cell types. Some of
these pathways have previously been implicated in AD
and others are novel. Down-regulated neuronal CI-
DEGs were enriched in neuropeptide hormone activity
(GO:0005184) and hormone activity (GO:0005179) path-
ways, which include VGF (a.k.a. neuroendocrine regula-
tory peptide 1) [22] and corticotropin releasing hormone
(CRH) [23] (Table S13). Consensus up-regulated neur-
onal CI-DEGs were significantly enriched in potassium
channel activity (GO:0005267) and regulation of ion
transport (GO:0043269) pathways (Table S8). The latter

GO term encompasses most of the genes from the
former, and also includes other genes involved in neur-
onal functions such as the glutamate ionotropic receptor
NMDA type subunit 1, GRIN1 [24] and SYT1, which en-
codes the synaptic vesicle protein, synaptotagmin [25].
Many of the most significant GO terms are related to

key functions of the respective cell types for the glial CI-
DEGs, as well. The top enriched pathway of down-
regulated CI-DEGs in oligodendrocytes is myelination
(GO:0042552), including myelin basic protein (MBP) [4],
plasmolipin (PLLP) [4, 5], myelin and lymphocyte pro-
tein (MAL), and myelin-associated glycoprotein (MAG)
[26] (Table S14). Up-regulated CI-DEGs of oligodendro-
cytes are enriched in ceramide biosynthetic process (GO:
0046513) including ceramide synthase 4 (CERS4) and
UDP glycosyltransferase 8 (UGT8) [5] (Table S9). Cer-
amide is a constituent of sphingomyelin, a sphingolipid
which is particularly found in the myelin sheath; and
also a multi-functional signaling molecule [27, 28].
Hence, both the down-regulated and the up-regulated
oligodendroglial consensus CI-DEGs highlight different
components of the myelin biology that are perturbed in
AD.
Similarly, microglial, astrocytic and endothelial CI-

DEGs also highlight processes pertinent to the functions
of these cell types. Microglial up-regulated CI-DEGs are
enriched in inflammatory response (GO:000695) and
leukocyte activation (GO:0002696), which includes com-
plement C3a receptor 1 (C3AR1) [29], interleukin 18
(IL18) [30, 31] and CCAAT enhancer binding protein
alpha (CEBPA) [32] genes (Table S10).
Astrocytes, a cell type that plays a critical role in main-

taining brain energy dynamics [33] and metabolism [34],
show enrichment of oxidoreductase activity (GO:
0016491) and drug metabolic process (GO:0017144) in
down-regulated CI-DEGs which includes genes glutathi-
one S-transferase mu 2 (GSTM2) [35] and thioredoxin2
(TXN2) [36] (Table S16). Astrocytic up-regulated con-
sensus CI-DEGs are enriched for cell-cell junction as-
sembly (GO:0007043) process (Table S11), including the

Fig. 3 Top two enriched GO terms in up (red) or down-regulated (blue) consensus CI-DEGs between DLPFC and TCX regions, per cell type
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astrocytic gap junction protein connexin43 (GJA1) [37],
which was identified as a key regulator associated with
AD related outcomes. The other top GO process for
astrocytic up-regulated consensus CI-DEGs is adenylate
cyclase-inhibiting G protein-coupled receptor signaling
pathway (GO:0007193), which harbors adenylate cyclase
8 (ADCY8), involved in memory functions [38].
Finally, endothelial cells, which are crucial in maintain-

ing blood-brain barrier integrity [39, 40], show enrich-
ment of up-regulated DEGs in cytoskeleton organization
(GO:0007010) and actin filament-based process (GO:
0030029) (Table S12).
Importantly, some CI-DEGs highlight protein transla-

tion as a top perturbed biological pathway. Down-
regulated microglial consensus CI-DEGs show enrich-
ment in processes involved in protein translation (GO:
0006614 and GO:0006613), which include ribosomal
protein encoding genes [41–43] (Table S15). Similarly,
down-regulated endothelial consensus CI-DEGs also
harbor ribosomal protein encoding genes, with enrich-
ment in protein translation related GO processes (GO:
0006413 and GO:0006613) (Table S17).

Comparison of CI-DEGs from computational
deconvolution vs. snRNAseq
We determined the extent to which each of the three
computational deconvolution algorithms could detect
CI-DEGs from bulk tissue by comparison of their results
with those obtained in a published snRNAseq study [19].
The ROSMAP dataset utilized in our study has both
bulk RNAseq from DLPFC (bulk-DLPFC) as well as
snRNAseq (snDLPFC) in a subset of its participants [19].
We compared the bulk-DLPFC data deconvoluted with
three different algorithms with the published snDLPFC
[19] data. Endothelial CI-DEGs were not available from
the snRNAseq study, therefore overlap of results could
be assessed only for four cell types.
We tested the overlap between the top CI-DEGs for

each cell type obtained from deconvoluted bulk-DLPFC
and those from snDLPFC ranked by their p values
(Fig. 4a). We evaluated the overlap for a range of top CI-
DEGs up to top 1000 genes. Overlap for CI-DEGs that
are either up (Fig. 4a, upper panel) or down (Fig. 4 a,
lower panel) in AD were assessed separately. Hence,
overlapping genes had both similar ranks and direction
of effect in both deconvoluted bulk-DLPFC and
snDLPFC analyses. We established the significance of
overlap using simulations for a range of top ranked
genes (N = 200, 600 and 1000) (Table S18).
Neuronal CI-DEGs retained their significance of overlap

across all comparisons and for all algorithms, except for
the top 1000 up-regulated neuronal CI-DEGs deconvo-
luted with PSEA. Microglial CI-DEGs had the least num-
bers of significant overlap for their top ranked genes.

Astrocytic and oligodendrocytic top ranked CI-DEGs had
significance of overlap between the neuronal and micro-
glial results (Table S18). These findings are reflective of
the abundance of these cell types, with the most abundant
neurons having the most overlap for the top ranked CI-
DEGs between deconvoluted bulk-DLPFC and snDLPFC.
Amongst these comparisons, we determined that the

significance for overlap was best for all algorithms for the
top ranked 600 genes. Using WLC deconvoluted results,
the overlap for the top 600 CI-DEGs from bulk-DLPFC
and snDNPFC are statistically significant for all eight com-
parisons (Fig. 4a). For the top 600 genes, overlap with
CellCODE results is significant for all except down-
regulated oligodendrocyte and up-regulated astrocyte CI-
DEGs. For PSEA, none of the microglia CI-DEGs had sig-
nificant overlap. PSEA results for the top 600 genes were
otherwise significant for all but up-regulated oligodendro-
cyte and down-regulated astrocyte genes.
We also performed a comparison of CI-DEGs identi-

fied at nominal significance (p-value < 0.05) with each al-
gorithm from bulk-DLPFC to nominally significant
snDLPFC results (Fig. 4b, Table S19). As with the above
comparison, genes that are either up or down in both
deconvoluted bulk-DLPFC and snDLPFC data were ana-
lyzed separately for each cell type.
Not surprisingly, down-regulated neuronal CI-DEGs

have the greatest overlap (537/3732 or 14.4% for WLC,
292/3213 or 9.1% for CellCODE, 415/3516 or 11.8% for
PSEA). These overlaps are significant for all three algo-
rithms (Table S19). Down-regulated CI-DEGs in microglia
show the least proportion of overlap (9/723 or 1.2% for
WLC, 4/609 or 0.66% for CellCODE, 16/820 or 2.0% for
PSEA) (empirical p-value > 0.05). Significant overlap de-
tected with WLC (all but down-regulated microglia) and
PSEA (all but microglial results and up-regulated oligo-
dendrocytes) were similar, whereas CellCODE results had
significant overlaps only for the neuronal CI-DEGs (Table
S19).

Discussion
There is an increasing number of large scale RNAseq-
based transcriptome datasets generated in bulk tissue for
many diseases, including brain tissue from patients with
AD, other neurodegenerative diseases and controls [5–8,
12]. Comparison of such transcriptome data from patient
and control individuals has been instrumental in the identi-
fication of genes and co-expression networks that are al-
tered in and may therefore be risk factors for these diseases
[4–7, 44]. The discovery that many of these transcriptional
networks harbor genes with disease risk variants provides
support for the utility of this bulk-transcriptome approach
in deciphering molecules and pathways that are risk factors
for these conditions. Nevertheless, there is clear evidence
for abundant transcriptome alterations in bulk tissue from
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affected organs of patients with disease, which appears to
be due to changes in cellular composition of that tissue as
a consequence of the disease processes [4, 45]. Given this,
there is a strong need to detect cell-intrinsic transcriptional
alterations to be able to distinguish gene expression
changes that are upstream of and may therefore be causa-
tive factors for disease from those that are merely a result
of cell proportion changes that occur due to disease path-
ology. The discovery of molecules and pathways that are
upstream of and risk factors for disease pathology is of
paramount importance for development of targeted ther-
apies. This information can also aid in the identification of
refined disease biomarkers reflective of disease-causative
expression alterations in these conditions. Detection of

cell-specific transcriptional changes can also help develop
more accurate disease models harboring these cellular al-
terations. Further, discovery of cell-specific transcriptional
alterations in disease may uncover expression changes, par-
ticularly in less abundant cell types, which may be missed
by the analysis of bulk transcriptome. Thus, there is a
growing effort to identify cell-specific expression alter-
ations in human diseases [9–11, 14, 15, 17, 46–48].
There are two general approaches to decipher cell-

specific transcriptional changes in AD. One approach is
to conduct single nucleus (snRNAseq), single cell
(scRNAseq) or purified cell RNAseq experimentally,
followed by data analyses. The alternative approach is to
design relatively complex bioinformatics pipelines to

Fig. 4 Comparison of CI-DEGs from computational deconvolution with CI-DEGs from snRNAseq on DLPFC dataset. a. Upper panel: number of
overlapping genes (y-axis) between the top N (x-axis) up-regulated genes in snDLPFC and top N up-regulated genes from bulk-DLPFC
deconvoluted with PSEA, WLC and CellCODE, respectively. Lower panel: number of overlapping genes (y-axis) between the top N (x-axis) down-
regulated genes in snDLPFC and top N down-regulated genes from deconvoluted bulk-DLPFC. b. Venn diagram of CI-DEGs from computational
deconvolution methods and those from snRNAseq. Overlap is evaluated for both bulk-DLPFC and snDLPFC CI-DEGs detected at nominal p
value ≤0.05
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decipher cell-intrinsic information of individual cell
types from bulk tissue microarray or RNAseq data. The
first approach is limited due to significantly higher cost
and experimental challenges. Additionally, these ap-
proaches may have the drawback that the procedures of
dissociating cells break cell-to-cell communication and
thus may not reflect the true expression signal in vivo.
The alternative bioinformatics approach to decipher
cell-specific transcriptome alterations from bulk tissue
has the potential to avoid the above weaknesses of the
experimental approach. Furthermore, a bioinformatics
approach can make use of the large amount of existing
RNAseq data [4–8, 12] from fresh or frozen bulk brain
tissues with minimum added cost, and may better reflect
the true situation in brain where different cells are in
communication.
In this study, applying three different algorithms [13,

14] including our own novel approach, we estimated
cell-intrinsic gene expression for deconvoluted cell types
from three large bulk RNAseq datasets [4, 8, 12, 18]
from two brain regions. We identified consensus cell-
intrinsic transcriptional alterations (CI-DEGs) in AD,
which are conserved across cohorts and brain regions.
We also performed an in-depth comparison of these CI-
DEGs with bulk brain RNAseq data obtained from the
same datasets, collectively comprised of 685 unique
brain samples. To our knowledge, this is the first study
to detect CI-DEGs and their enriched gene ontology
(GO) terms in computationally deconvoluted large-scale
RNAseq data from AD and control brain samples. Add-
itionally, we conducted a detailed comparison of CI-
DEGs deconvoluted from bulk-DLPFC data with the
three algorithms and those obtained from snRNAseq
[19] (snDLPFC) of a subset of the samples from the
same cohort [7, 8].
The main findings from our study can be summarized

as follows: 1) The direction of change in cellular propor-
tions in AD is consistent across two brain regions and
three datasets for most cell types, although the magni-
tude of change seems to vary. Our findings revealed
greater neuronal loss and microgliosis in TCX compared
to DLPFC. 2) We identified CI-DEGs and bulk tissue
DEGs (bulk-DEGs) independently in two TCX and one
DLPFC datasets. The overlap in bulk-DEGs across data-
sets is greater than that for CI-DEGs. 3) We performed
an in-depth comparison of the consensus CI-DEGs,
common to both TCX and DLPFC against the consensus
bulk-DEGs detected in these same datasets. We identi-
fied significant overlap between consensus CI-DEGs and
consensus bulk-DEGs. The extent of overlap between
consensus bulk-DEGs and consensus CI-DEGs was
greatest for down-regulated neuronal genes (p = 9.7E-
206). This was followed by up-regulated non-neuronal
genes (p ranging from 1.6E-77 for endothelia to 1.1E-17

for microglia). 4) Despite the statistically significant
overlap between consensus bulk vs. CI-DEGs, the major-
ity of the consensus CI-DEGs for up-regulated neuronal
and down-regulated non-neuronal genes were not de-
tected in bulk tissue. This finding highlights the poten-
tial ability of computational deconvolution approach to
identify CI-DEGs that may be missed in bulk-DEGs es-
pecially for genes that are not moving in the direction of
cell proportion changes. 5) We identified GO-terms
enriched for consensus CI-DEGs, and detected processes
that have previously been implicated in AD as well as
novel ones. 6) Using an snRNAseq [19] dataset as com-
parison, we assessed the performance of our CI-DEG de-
tection algorithm (WLC), and the published CellCODE
[14] and PSEA [13] approaches. We determined that
WLC had comparable or superior performance in the
detection CI-DEGs that had significant overlap with
snDLPFC results.
Our findings highlight the consistency and reproduci-

bility of our findings across two different brain regions
from three different studies conducted separately. We
identified similar directions of change in AD:Control cell
proportions in TCX and DLPFC. As expected from
known AD neuropathology, neuronal populations are
significantly lower, and microglial populations are sig-
nificantly higher in AD vs. control brains in all datasets.
Consistent with this pattern of reproducibility, we also
found significant overlap of consensus CI-DEGs detected
in TCX and DLPFC for all cell types and for both direc-
tions of change, i.e. up or down in AD, with consensus
bulk-DEGs.
Using consensus CI-DEGs, we identified GO terms,

which include processes and genes that have previously
been implicated in AD, thereby providing further valid-
ation of our approach. Detailed discussion of all of the
pathways identified with the consensus CI-DEGs is be-
yond the scope of this study. Instead, we herein highlight
some of the CI-DEG enriched pathways.
Down-regulated neuronal CI-DEGs were enriched in

neuropeptide hormone activity (GO:0005184) pathway.
These terms include VGF (a.k.a. neuroendocrine regula-
tory peptide 1), which is selectively expressed in some
neurons and shown to be reduced in AD and Parkinson’s
disease [22]. Corticotropin releasing hormone (CRH),
which is a neuronally expressed peptide that mediates
stress in the hypothalamic-pituitary-adrenal axis, is also a
member of the same GO term. CRH has been implicated
in both adverse outcomes related to AD pathology in
model systems and epidemiology studies, as well as having
an important role in learning and memory [23]. Neuronal
reduction of CRH may either be a potentially neuro-
protective response in AD brains or lead to further nega-
tive impact on memory. Although the biological implica-
tions of our finding remain to be uncovered, our results
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are aligned with the potential importance of the neuroen-
docrine system in AD.
Interestingly, CI-DEGs also implicate biological pro-

cesses that are enriched for neuronal-DEGs that are up
in AD, despite reductions in neuronal cell populations in
this condition for both TCX and DLPFC. This suggests
that our cell type specific transcriptome deconvolution
successfully captures transcript changes that occur in
the direction opposite to that of cell-population changes,
and that may therefore be missed in bulk-DEG
approaches.
Indeed, the significant GO terms potassium channel

activity (GO:0005267) and regulation of ion transport
(GO:0043269) harbor many potassium channels, which
are up in AD for neuronal CI-DEGs in both TCX and
DLPFC, but do not have consistent results in bulk-DEGs
from the same cohorts. These findings highlight the po-
tential utility of cell-specific transcript deconvolution ap-
proaches in reducing noise from cell population
changes, thereby resulting in consistent detection of true
signal. Notably, potassium channels have been reported
to be up in AD brains and mouse models of AD [49–
51], leading to their suggestion as a potential therapeutic
avenue in this condition.
Notably, the computational approach we describe can

be extended to cellular sub-types. To exemplify this, we
utilized published snRNAseq [19] data to identify
marker genes of excitatory and inhibitory neurons. Using
those and the previously applied markers for the glial
cells, we ran DSA algorithm [3] to estimate cell propor-
tion (Fig. S6). We applied PSEA, WLC and CellCODE to
identify consensus CI-DEGs in the same fashion as de-
scribed (Table S20, Fig. S7). As expected, both excitatory
and inhibitory neuron proportions are significantly lower
in AD samples. Interestingly, the up-regulated excitatory
neuronal consensus CI-DEGs are enriched in cation
channel activity, which is not observed in inhibitory neu-
rons (Tables S21-S23). These results highlight the ability
of this approach to refine transcriptional alterations
from bulk brain data to cellular sub-types.
Some consensus CI-DEGs point to AD-related pertur-

bations of key cellular functions for the specific cell type.
An example of this is consensus oligodendrocyte CI-
DEGs. The down-regulated oligodendrocyte CI-DEGs
are enriched for the myelination GO term (GO:0042552)
and those that are up in this cell type are enriched in
ceramide biosynthetic process (GO:0046513).
Down-regulated oligodendrocyte CI-DEGs include mye-

lin basic protein (MBP) [4], plasmolipin (PLLP) [4, 5], mye-
lin and lymphocyte protein (MAL), and myelin-associated
glycoprotein (MAG) [26], even though bulk-DEGs for these
genes did not show consistent changes. We [4] and others
[5] demonstrated lower levels in AD of co-expression
networks of genes implicated in myelination, which is

consistent with the present findings from oligodendrocyte
CI-DEGs.
Ceramide dysregulation has been implicated in AD

[52, 53]. Increased ceramide species were observed in
AD and other neuropathological disorders compared to
controls [53], and the activation of the neutral sphingo-
myelinase–ceramide pathway induces oligodendrocyte
death [54]. Our present observation from oligodendro-
cyte CI-DEGs are consistent with these findings.
Another potential utility of the computational decon-

volution approach is its complementarity to snRNAseq
data. While the latter is able to provide transcriptional
data at a cellular level, it can miss information from low
abundance cell populations. Indeed, in a recent snRNA-
seq [19] study of AD and control brain samples, only
121 endothelial cells were identified out of a total of 70,
634 cells; and consequently no endothelial DEGs were
reported. In contrast, our computational approach iden-
tified 140 genes that are up-regulated in endothelial cells
in AD and 72 genes that are down-regulated. We further
validated the endothelial expression of these genes by
confirming their expression in sorted endothelial cells
[9]. The significantly enriched GO terms include cyto-
skeleton organization and translational initiation, for
these genes up- and down-regulated, respectively, in
endothelia (Fig. 3, Tables S12, S17). These findings high-
light the ability of the computational deconvolution ap-
proach to provide biological insights that could be
missed by snRNAseq approaches.
Despite the biological insights gained from computa-

tionally deconvoluted CI-DEGs, they also have some
shortcomings. Compared to bulk-DEGs, CI-DEGs be-
tween different datasets show less degree of overlap, re-
gardless of the deconvolution algorithm utilized. This
highlights the challenge in the field for the ultimate goal
of minimizing detection of transcriptional perturbations
due to cell proportion changes while maximizing discov-
ery of those that lead to disease. Put differently, CI-
DEGs may enhance discovery of true cell-specific tran-
scriptional changes but this may come at the expense of
increased false negative findings. In contrast, bulk-DEGs
may capture a larger number of perturbed transcripts,
but some may be merely due to cell population differ-
ences between diseased and healthy tissue. Ultimately,
findings from both approaches may provide the greatest
utility in detecting true positives.
Another analytic caveat is that cell proportion estima-

tion approaches, including those used in this study yield
relative values rather than the absolute levels of cell pro-
portions. Detection of absolute levels in a typical bulk
RNAseq experiment will be challenging if not impossible
due to different mRNA amounts per cell type and the li-
brary preparation protocols (e.g. TruSeq® RNA Sample
Preparation v2 Guide) which require similar amounts of
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cDNA from each sample to be sent to the sequencer.
This leads to a normalization which would preclude the
detection of the absolute cell proportions, as illustrated
in an example in Fig. S8. Despite these challenges, our
findings reveal that analytic deconvolution of bulk RNA-
seq can detect cell-specific transcriptional changes.
Comparison of CI-DEGs deconvoluted from bulk-

DLPFC and those detected using an orthogonal ap-
proach of snRNAseq [19] from the same cohort (ROS-
MAP) demonstrates the ability of these computational
approaches to identify true cell-specific expression
changes in AD. Using our in-house WLC algorithm,
there was significant overlap with the results from
snRNAseq and CI-DEGs of most cell types (Fig. 4, Ta-
bles S18-S19). CellCODE and PSEA also identified sig-
nificant overlaps, but to a lesser extent, especially for
rarer cell types such as microglia. Hence, our WLC algo-
rithm demonstrates at least comparable performance to
these two algorithms [13, 14]. This is also supported by
the higher degree of overlap among different cohorts for
CI-DEGs detected by WLC than the other two algo-
rithms (Fig. 2a). Due to the challenges in deconvoluting
noisy data from human series, different computational
approaches may be utilized and combined, and that calls
for a more devoted effort in developing such algorithms.
In summary, using three distinct computational ap-

proaches, we deconvoluted brain bulk-RNAseq data
from three large and independent cohorts [8, 12, 18].
We detected cell population changes that are observed
consistently across cohorts, and congruent with the
known disease pathology. Although there is significant
overlap between consensus CI-DEGs and consensus
bulk-DEGs, there are more unique CI-DEGs that change
in the direction opposite to that of cell population
changes. This suggests that CI-DEGs may have utility in
detecting disease-related transcriptional changes above
and beyond those due to cell proportion changes. Con-
sensus CI-DEGs identify GO terms, including those for
hormone activity, myelin biology and channel activity.
The enriched CI-DEGs include genes previously impli-
cated in AD or neurodegeneration, such as VGF, CRH,
MOBP and MBP, and other novel genes.

Methods
Analysis datasets
We generated the TCX-Mayo data, which consists of
temporal cortex RNAseq measurement of 80 AD pa-
tients and 28 controls diagnosed according to neuro-
pathologic criteria [4, 12]. RNAseq data were processed
and quality control (QC) was conducted as described [4,
12]. ROSMAP DLPFC [7, 8] and TCX-MSBB [18] data-
sets were downloaded from the AMP-AD Knowledge
Portal on Synapse (syn8691134 and syn8691099). We
further filtered out non-Caucasian samples and those

that had incongruent sex based on provided covariate vs.
transcriptome data. All samples were classified as AD or
control based on neuropathological data. All TCX-Mayo
AD samples had Braak neurofibrillary tangle (NFT)
score ≥ 4. TCX-Mayo controls had Braak score ≤ 3 and
were without any neurodegenerative disease diagnoses.
TCX-MSBB AD samples had Braak ≥4 and CERAD ≥2;
and controls had Braak ≤3 and CERAD ≤1. DLPFC AD
samples form ROSMAP had Braak score ≥ 4 and CERAD
neuritic plaque score ≤ 2. ROSMAP control samples had
Braak ≤3 and CERAD neuritic plaque score ≥ 3.
It should be noted that the CERAD [55] neuritic

plaque score as applied by the ROSMAP study is defined
such that high CERAD indicates lower neuritic plaque
burden and decreased probability of AD. In the MSBB
study, higher CERAD indicates higher plaque burden.
Raw RNA read counts were normalized using conditional

quantile normalization (CQN) method [56] implemented in
R cqn package, as previously described [4]. This
normalization takes into consideration library size, gene
length and GC content. It also performs a log2 transform-
ation so that the resulting distribution for each gene is
Gaussian-like. We also determined covariates that contrib-
uted significantly to the variation of gene expression in these
RNAseq cohorts (Fig. S5) for adjustment in the analyses.

Cell proportion estimation
Digital sorting algorithm (DSA) [16] was applied to esti-
mate cell proportions through R DSA package, function
DSA. For each cell type, DSA first computes the average
marker gene expression in the analysis dataset, the pur-
pose of which is to construct a variable that better reflects
cell proportion variation among subjects. To reduce the
effect of outlier expression that is occasionally seen in
RNAseq data, we modified the original DSA so that the
median instead of mean expression was computed.

CI-DEG analysis for individual cell types
In this study we identified CI-DEGs from deconvoluted
bulk RNAseq data using three different algorithms,
namely PSEA [13], CellCODE [14] and our in-house algo-
rithm WLC. All analyses adjusted for the following vari-
ables: Sex, RIN, age at death and batch for DLPFC and
TCX-MSBB datasets, and sex, RIN and age at death for
TCX-Mayo dataset (Fig. S5).
PSEA [13] applies model selection procedures to select

cell type(s) that should be included in baseline (control)
or AD condition, and then estimate differential expres-
sion in specific cell types (CI-DEGs). We used the R
package PSEA to obtain CI-DEG results of PSEA ap-
proach, through functions em_quantvg (to generate can-
didate models) and lmfitst (to fit all candidate models
and pick the best one). Expression values used in PSEA
are in linear scale (non log-transformed).
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CellCODE [14] assesses overall gene expression differ-
ence between AD and control groups with adjustment of
relative cell proportion, followed by assigning the cell type
that correlates best with the difference (CI-DEGs). R pack-
age CellCODE was used to obtain DEG results of Cell-
CODE approach, through functions getAllSPVs (to
construct surrogate variable using marker genes through
singular value decomposition) and lm.coef (to estimate dif-
ference between AD and control groups). Strictly speaking,
CellCODE measures the overall differential expression ra-
ther than CI-DEGs but identifies the cell type that is most
correlated with the observed difference between AD and
control using cellPopT function. However, for simplicity,
we refer to the DEGs from CellCODE as CI-DEGs in this
study. Expression values used in CellCODE are in log scale.
Our in-house method WLC, described in the method

section, applies weighted linear regression with constraints
and model selection procedures, which also estimates dif-
ferential expression in specific cell types (CI-DEGs). It
guarantees the fitted relative gene expression is non-
negative. By weighing the expression, it smooths out the
extreme data points. The procedures of this algorithm is
illustrated by the following high level pseudo code.
Assume cell type 1,2,3,4,5 are neu, oli, mic, ast and end

respectively.
Fit Eq.(1) to identify a set of cell type T in which the

gene is significantly expressed.
If the set T is not empty:
Fit Eq.(2) to identify a set of cell type Φ ⊆ T in which

the gene is differentiallly expressed
Let Ω = {each cell type in T,Φ, T }
For each element Θ Ω.
Fit Eq.(3) with adjustment for other covariates Ck(1 ≤

k ≤m)
Keep Akaike information criterion (AIC) of this model

fitting
Identify Θbest that gives the best AIC.
Use the estimated values from the best model and ob-

tain p-value from F-test

yi∼a0 þ
X

t∈ 1;2;3;4;5f g
atxi;t þ ∈; s:t:at ≥0 1≤ t≤5ð Þ ð1Þ

yi∼β0 þ
X

t∈T

βtxi;t þ di

X

teT

βtΔxi;t þ ∈; s:t:βt ≥0; βt

þβtΔ≥0 t∈Tð Þ
ð2Þ

yi � γ0 þ
X

t∈T

γtxi;t þ di

X

t∈Θ

γΔt xi;t þ
Xm

k¼1

λkCi;k

þ ϵ; s:t:γt ≥0 t∈Tð Þ; γt þ γΔt ≥0 t∈Θð Þ ð3Þ
In Eqs.1, 2 and 3, yi is the observed expression of a

gene in subject i; xi, t is the median marker gene

expression of cell type t in subject i; Ci, k is covarite k in
subject i. In Eq.1, αt is the overall relative expression in
cell type t. In Eq.2, βt is relative expression at the base-
line condition in cell type t; di = 0 if subject i is in con-
trol group, and di = 1 if subject i is in AD group;
therefore, βΔt is the difference of relative gene expression
between baseline condition and AD condition in cell
type t. Of note, due to the biological meaning these coef-
ficents, they must satisfy constraints such that αt, βt, βt
þβΔt be non-negative. In addition, yi is in linear scale ra-
ther than in log scale [57], and these non-log-
transformed expression values tend to have extreme data
points that need to be weighted down. Based on the
above considerations, Eq. 1 was fitted by weighted least
square linear regression with contraints, which is imple-
mented in lsei function in R package limSolve. The
weight of each observation (wi) is determined by formu-
lae Eqs. 3 and 4 below. Intuitively, if the expression of a
gene in a sample is extremely distant from the median
expression of all samples in the same diagnosis group,
the weight of that sample is smaller than 1 for that gene.

wi ¼ 1= 1þ j yi−median yADð Þ j
1þmedian yADð Þ2

 !
sample i is AD

ð4Þ

wi ¼ 1= 1þ j yi−median ycontrolð Þ j
1þmedian ycontrolð Þ2

 !
sample i is control

ð5Þ

GO enrichment analysis
Using genes included in the CI-DEG analysis as back-
ground genes, p-value for GO term enrichment with
consensus CI-DEGs was calculated by “enrichmentAna-
lysis” function from WGCNA R package [35].

Comparison of CI-DEGs from computational
deconvolution vs. snRNAseq
To determine if computational bulk-tissue RNAseq
could reveal true CI-DEGs, we downloaded and utilized
a published snRNAseq study [19] from frozen DLPFC
tissues (snDLPFC) which compared gene expression
from 24 individuals with AD-pathology to that from 24
individuals without AD-pathology in six cell types - exci-
tatory neurons, inhibitory neurons, oligodendrocyte,
microglia, oligodendrocyte precursor cells and astro-
cytes. These snDLPFC samples are from the ROSMAP
project, of which we analyzed 474 bulk-DLPFC RNAseq
data in our current study. Twenty-four (9 AD cases, 15
controls) of the 48 individuals in snDLPFC study are
also included in the bulk-DLPFC dataset. Hence both
the snDLPFC and bulk-DLPFC are from the same

Wang et al. Molecular Neurodegeneration           (2020) 15:38 Page 11 of 15



cohort with significant overlap. Three deconvolution
methods were included in this comparison – CellCODE
[14], PSEA [13] and WLC, our in-house method.
Two types of comparisons were made between the

deconvoluted bulk-DLPFC and snDLPFC results. In the
first comparison, we ranked the genes by their p-values
of differential expression between AD and control sub-
jects, per cell type. We compared the top N up- or
down- genes from the snDLPFC study to those identified
by each deconvolution algorithm, per cell type. Genes
common to both the deconvoluted bulk-DLPFC and
snDLPFC were counted and plotted.
In the second set of comparisons, CI-DEGs identified

from deconvolution methods at nominal significance (p-
value < 0.05) were compared to those identified in the
snRNAseq data (p-value < 0.05).
To assess if the observed overlap from each set of ana-

lyses is significant with regards to overlap between ran-
dom selections, we obtained empirical p values from
computer simulations described below.

Empirical p-value for the number of overlapping genes
The empirical p-values for the number of overlapping
genes between snDLPFC and bulk-DLPFC was obtained
using a computer simulation as follows. (A) Let Ssn stand
for all genes in snDLFC and Sbulk for all genes in bulk-
DLFC; (B) randomly assign up-regulation on each
Ssn gene at probability 0.5, and on each Sbulk gene at
probability 0.5; (C) randomly pick N genes from up-
genes of Ssn , randomly pick N genes from up-genes of
Sbulk, and count the number of overlapping genes; (D)
Steps B-C were repeated 10,000 times, and the numbers
of overlaps (M1, M2, …, M10000) were obtained; (E) Let
M be the number of observed overlapping genes, and
the empirical p-value is (1 + number of occurrences that
Mi >= M)/10,001.

Identification of excitatory and inhibitory neuronal
markers
Using a published human brain snRNAseq dataset [19],
we identified excitatory and inhibitory neuronal markers
using Seurat R package FindMarker function. Excitatory
neuronal markers are those that a) are detected in > =
70% of excitatory neurons, b) have average normalized
expression in excitatory neurons that are > = 4.5X of that
in each of the other cell types (i.e. inhibitory neurons, ol-
igodendrocytes, microglia, astrocytes and OPC), and c)
have rank sum test p-value < 0.05 in the comparison of
expression levels in excitatory neurons and each of the
other cell types. Inhibitory neuronal markers were simi-
larly identified except that we required a less stringent
detection limit of > = 50% of inhibitory neurons as the
> = 70% threshold yielded too few genes. Excitatory
neuronal markers were further refined by requiring their

presence in the neuronal markers from BRETIGEA [15].
A total of 53 excitatory and 62 inhibitory neuronal
markers were identified (Table S20). Excitatory and in-
hibitory CI-DEGs were identified as described above.

Conclusions
This study demonstrates the utility of our analytic ap-
proach in deciphering cell-specific transcriptional alter-
ations using bulk tissue in a complex disease, provides a
comprehensive comparison of our pipeline to existing
ones, identifies patterns of cell proportions in AD and
control samples across brain regions, discovers novel CI-
DEGs with replication across independent cohorts and
highlights biological processes with cell-specific expres-
sion changes in AD. These findings are expected to re-
fine discovery of molecular therapeutic targets,
biomarkers that reflect cellular transcriptional alterations
in AD and accelerate generation of more accurate dis-
ease models.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13024-020-00392-6.

Additional file 1 Figure S1. Pearson correlation of estimated cell
proportions using different sets of marker genes randomly selected. The
steps of this simulation study are as follows. (1) Obtain candidate markers
from R package BRETIGEA for neurons (top 500 out of 1000 listed),
oligodendrocyte (top 500 out of 1000 listed), microglia (top 500 out of
1000 listed), OPC (top 250 out of 500 listed), astrocyte (top 500 out of
1000 listed) and endothelial (top 500 out of 1000 listed). (2) From
candidate markers, randomly select 1/10 genes for each cell type, that is
50 selected genes for all cell types except OPC which has 25 selected
genes. (3) Estimate cell proportion using DSA algorithm. (4) Repeat (2)–(3)
100 times, and compute Pearson correlation of estimated cell proportion
between different runs. Figure S2. Illustration of obtaining consensus CI-
DEGs between DLPFC and TCX regions, using up-regulated CI-DEGs in
neuronal cells as an example. Figure S3. Left panel: the number of up-
regulated and down-regulated consensus bulk-DEGs between DLPFC and
TCX-Mayo, or between DLPFC and TCX-MSSM. Right panel: percent of
consensus CI-DEGs that are also cell type marker genes. Cell type markers
are from BRETIGEA, containing 1000 markers for each of the five cell
types. Figure S4. Venn diagram for all consensus bulk-DEGs and consen-
sus CI-DEGs. Figure S5. Source of variance analysis of in the DLPFC RNA-
seq dataset (left panel), TCX-Mayo (middle panel) and TCX-MSBB (right
panel). For each gene, a full model was fitted in which cqn normalized
gene expression with gene expression as dependent variable and RIN,
age at death, sex, batch, and diagnosis group as independent variables
(for DLPFC); RIN, age at death, sex, flowcell, and diagnosis group as inde-
pendent variables (for TCX-Mayo); RIN, age at death, sex, batch, and diag-
nosis group as independent variables (for TCX-MSBB). Partial models were
fitted using the same dependent variable and all but one independent
variable. F statistics were obtained by comparing the full model and par-
tial model for each independent variable. Y-axis is the mean of values of
F statistics over all genes. In DLPFC and TCX-MSBB, diagnosis, age at
death, sex, RIN and batch contributed more than random errors to the
variation of gene expression, whereas in TCX-Mayo diagnosis, age at
death, sex, and RIN contributed more than random errors to the variation
of gene expression. Figure S6. Estimated cell proportion of excitatory
neuron, inhibitory neuron, oligodendrocyte, microglia, astrocyte and
endothelial cells. Red asterisk indicates location shifts between cell pro-
portions in AD and control groups at nominal p value 0.05 from Wilcoxon
rank sum test. Figure S7. Venn diagram of consensus CI-DEGs in
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excitatory neuron and inhibitory neuron. Figure S8. Illustration of abso-
lute change of cell proportion (blue panel) and relative change of cell
proportion (pink panel) in a bulk RNAseq experiment. This is a hypothet-
ical experiment to illustrate the effect of library preparation step on cell
type proportions. For the ease of description, assume there are only two
cell types – neurons and glia; assume the total mRNA amount of a glial
cell is λ, and the total mRNA amount of a neuronal cell is 2λ on average.
In the above scenario there is one control and two AD samples (Case 1
and Case 2). We assume that the cell counts in the Control are baseline
(i.e. no changes due to disease). In Case 1, half of the neuronal cells were
lost while the number of glia cells remains the same. In other words, the
absolute proportion of neuronal cell loss is 50%. In a typical bulk RNAseq
approach, the library preparation involves a normalization step (TruSeq®
RNA Sample Preparation v2 Guide). The goal of this step is to send similar
amounts of cDNAs to the sequencer. After this step, the (relative) neur-
onal loss detected in Case 1 is 10% that of the Control. In Case 2, one
quarter of neuronal cells are lost and and glial cell increase by 50% com-
pared to the Control (absolute changes). However, after the cDNA
normalization step, the (relative) neuronal loss that can be detected is
about 10% that of the Control. Therefore, even though a bioinformatics
approach could accurately estimate the number of cells of different cell
types that were sequenced, it would be difficult to trace back to the ab-
solute proportion of cell changes.

Additional file 2.
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