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Abstract 

The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and 
SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling 
engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, 
and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer’s disease (AD) devel-
opment. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and 
major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how 
dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting 
with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid 
beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and 
distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, 
neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially 
linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and 
mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their 
interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, 
knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
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Background
Alzheimer’s disease pathophysiology
Over 55 million people worldwide suffer from dementia, 
which is expected to rise to 78 million by 2030 (World 
Alzheimer Report 2021). Alzheimer’s disease (AD) 
accounts for 60–80% of all diagnosed dementia cases [1]. 
Disturbingly, no efficient treatment is currently available. 
This unmet medical need is likely a consequence of the 

complex biology of the disease, which remains poorly 
understood. AD is clinically characterized by exten-
sive neuronal cell death in the cerebral cortex and lim-
bic system that is manifested by cognitive impairments, 
memory deficits, disorientation, spatiovisual difficulties, 
linguistic problems, and emotional imbalances. At the 
histopathological levels, AD is defined by the accumula-
tion of extracellular Amyloid-β (Aβ) plaques and by the 
formation of intracellular neurofibrillary tangles com-
posed of hyperphosphorylated Tau protein (pTau) in the 
brain parenchyma [2]. The Aβ plaques are considered 
the pathological hallmark of AD, but synergistic effect of 
pTau leading to weakening and deterioration of synapses, 
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dystrophic neurites, neuroinflammation, and progressive 
neuronal cell death is likely involved too [2, 3].

The Aβ peptide lies within the amyloid precursor pro-
tein (APP). Under normal conditions, the nascent APP 
is transported through the trans-Golgi network (TGN) 
to the plasma membrane where it is sequentially cleaved 
by α- and γ-secretases, respectively, disrupting the Aβ 
sequence. These processes produce and liberate the 
non-pathological, soluble fragment called sAPPα. The 
APP processing is depicted in (Fig. 1). According to the 
“amyloid cascade hypothesis”, APP may, however, escape 
α-secretase cleavage. Following internalization to the 
endosomal compartment, APP is then sequentially pro-
cessed by β-secretase and γ-secretase, respectively, which 
generates the Aβ peptide. After secretion into the extra-
cellular space, Aβ peptides polymerize into detrimental 
Aβ oligomers (AβO), later forming the ultimately insolu-
ble, cytotoxic Aβ plaques [4]. However, attempts to treat 

AD by lowering Aβ have failed in several clinical trials 
which questions the impact of Aβ plaques as the only 
factor that controls disease progression [5]. Imbalance 
between proapoptotic and neuroprotective stimulation 
by proneurotrophins and mature neurotrophins likely 
contributes to the AD pathophysiology by negatively 
impacting on synaptic plasticity, and neuronal vulnerabil-
ity and integrity [6–10]. Strikingly, the family of Vacuolar 
protein sorting 10p-Domain (VPS10p-D) receptors plays 
a dual role in the pathobiology of AD: it controls APP and 
Aβ trafficking and clearance, and it regulates the balance 
between the trophic and apoptotic signaling by neurotro-
phins such as BDNF and its precursor proBDNF. These 
activities may explain why members of this receptor fam-
ily have surfaced as important risk genes in AD. Interest-
ingly, the individual receptors often regulate different, 
sometimes even opposing aspects of AD, which will be 
discussed mostly in the main text.

Fig. 1  A simplified scheme of APP proteolytic processing and the origin of Aβ plaques. APP is a type I transmembrane receptor that contains Aβ 
peptide within its sequence. α-secretases such as ADAM10/17 cleave APP inside the Aβ peptide, which is disrupting, and produces soluble, secreted 
sAPPα fragment. sAPPα is neuroprotective, and thus this cleavage is called non-amyloidogenic pathway. The C83 peptide can be further cleaved by 
γ-secretase producing soluble P3 peptide. In contrast, APP can be cleaved by β-secretase, for example BACE1, creating a cytotoxic, soluble sAPPβ. 
The proteolysis by β-secretase exposes Aβ peptide, which is further cleaved by γ-secretase. This cleavage results in the release of Aβ monomers 
into the extracellular space, where they can further polymerize forming Aβ oligomers, and later Aβ plaques. This pathway is neurotoxic and is called 
amyloidogenic pathway
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Genetic risks in AD
The strongest genetic evidence behind AD pathogene-
sis is linked to familial early-onset AD (EOAD), which 
accounts for 5–10% of all AD cases. EOAD diagnosis 
has been mostly associated to autosomal-dominant 
mutations in three genes that result in increased lev-
els and aggregation of Aβ. They are APP, and APP-
cleaving γ-secretase presenilin components, PSEN1 
and PSEN2. However, the majority of patients are diag-
nosed with sporadic, late-onset AD (LOAD), the her-
itability of which is estimated to be between 60 and 
80% [11, 12]. Hence, genome-wide association stud-
ies (GWAS) investigating up to 150,000 AD cases have 
identified a number of risk genes underscoring the 
polygenic nature of LOAD [11, 13, 14]. Most recently, 
a study incorporating more than 100,000 AD cases and 
almost 700,000 control individuals identified 75 risk 
loci, of which 42 had not previously been described 
[14]. Functional annotation of the risk genes indi-
cated that amyloid aggregation, Tau phosphorylation, 
endocytosis, intracellular vesicle trafficking, altered 
lipid metabolism, and immune responses are criti-
cally involved in the pathogenesis of LOAD [2, 13–18]. 
Notably, around 40% of LOAD patients carry a disease-
associated SNP in the gene encoding Apolipoprotein E 
(APOE), which exists in 3 polymorphic alleles called 
E2, E3, and E4. Due to such high incidence, APOE pol-
ymorphism is considered the most important genetic 
risk factor for LOAD [19–21]. ApoE has multiple phys-
iological functions, but it is mostly known for trans-
portation of cholesterol and other lipids through the 
circulation system as well as within the brain paren-
chyma. Even though all human ApoE isoforms inter-
act with Aβ, the functional outcome is different [22]. 
While ApoE2 shows neuroprotective features, ApoE4 
represents the major risk factor for AD due to its 
involvement in Aβ processing [23]. The possession 
of ApoE4 allele leads to intracellular accumulation of 
Aβ by enhancing the uptake of Aβ peptides, result-
ing in the enlargement of endosomal compartments, 
subsequent endosomal-lysosomal pathway dysregula-
tion, and thus decreased clearance of Aβ [24]. Several 
other mechanisms have been described for ApoE4 in 
relation to AD, including neuronal hyperactivation 
[25], increased Tau phosphorylation [26], modulation 
of neuroinflammatory pathways [23], and impaired 
synaptic plasticity [27]. Such abnormalities, fueled by 
reduced trophic support, are considered major drivers 
behind the progression of AD. For this reason, impair-
ments in proteins involved in endocytic trafficking and 
trophic signaling have surfaced as important AD risk 
factors including the VPS10p-D receptors family.

AD as imbalance between neurodegeneration 
and neuroprotection
The neurotrophin protein family (NTs) is a subgroup of 
secreted neurotrophic factors that are essential for axonal 
outgrowth, neuronal differentiation, synaptic plastic-
ity, and neuronal survival [9, 28, 29]. It comprises Brain-
derived neurotrophic factor (BDNF), Nerve growth 
factor (NGF), Neurotrophin 3 (NT3), and Neurotrophin 
4 (NT4); proteins that are expressed across the CNS in a 
spatiotemporal manner. Their actions depend on binding 
to transmembrane receptor complexes composed of Tro-
pomyosin receptor tyrosine kinase (Trk) that is ligand-
specific, and the promiscuous neurotrophin receptor 
denoted p75 (p75NTR). While all neurotrophins can bind 
p75NTR, they show strongest binding to their respective 
Trk receptor: NGF binds to TrkA, BDNF and NT4 binds 
to TrkB, and NT3 bind to TrkC. The p75NTR can form 
heterodimers with a given Trk, which increases the affin-
ity and fidelity of the Trk receptor towards its cognate 
neurotrophin [9].

BDNF is considered particularly relevant to AD [8, 
9]. Reduced BDNF expression in the hippocampus and 
cortex of AD patients have been consistently reported 
at both transcriptional and protein levels [30–33]. In 
addition to its well established function in sustaining 
neuronal survival, BDNF is also important for cogni-
tive abilities as it promotes learning and memory by 
increasing synaptic strength [8, 34, 35]. There is a natu-
rally occurring single nucleotide polymorphism (SNP) in 
BDNF at codon 66, which results in the substitution of 
Valine with Methionine (BDNF-Val66Met). This muta-
tion has been associated with reduced synaptic plasticity, 
dendritic spine elimination [36], and impaired memory 
and learning in AD patients [37–39]. Strikingly, in rodent 
and primate models of Alzheimer’s disease, BDNF gene 
delivery administered after disease onset showed potent 
neuroprotective effects by increasing synaptogenesis 
and synaptic plasticity leading to restoration of cognitive 
function [40]. Likewise, transplantation of neural stem 
cells have been able to rescue memory function in AD 
mice via BDNF-induced stimulation of synaptogenesis 
[41].

BDNF levels also shape the onset of AD neurodegen-
eration by regulating Aβ production and formation of 
Tau containing neuritic plaques and neurofibrillary tan-
gles [34]. In cultured hippocampal neurons, BDNF dep-
rivation leads to increased cell death by 50% and elevated 
levels of APP and PSEN1, all of which can be rescued by 
inhibiting Aβ production [42]. Low BDNF levels increase 
expression of δ-secretase that cleaves Tau to produce 
a pathogenic fragment [43]. Subsequently, Tau peptide 
becomes hyperphosphorylated, abolishing microtubule 
assembly, and triggering the formation of neurofibrillary 
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tangles. Tau peptide also binds TrkB leading to degra-
dation of the receptor. This prevents trophic activity of 
TrkB and blunts APP phosphorylation thereby increas-
ing Aβ production [44, 45]. The importance of BDNF is 
further substantiated by the beneficial effects of physical 
exercise, which increases BDNF and TrkB expression, 
reduces APP processing and amyloid aggregation, and 
protects against cognitive decline in animal models and 
AD patients. Indeed, regular physical activity is consid-
ered among the most efficient ways to slow AD progres-
sion today [46–49]. Taken together, the above findings 
suggest that increasing BDNF can have therapeutic ben-
efits for AD patients.

NTs are synthesized as precursor proteins named 
“proneurotrophins” (proNTs) that undergo proteolytic 
cleavage of the prodomain during their maturation [50, 
51]. proNTs are active signaling molecules, but as opposed 
to their mature counterparts, they induce apoptosis, 
axonal growth cone retraction, and synaptic weakening; 
actions that require p75NTR and are independent of Trk 
[50, 52–56]. As a consequence, perturbed maturation and 
incorrect balance between proNTs and NTs may propel 
the neurodegenerative process and exacerbate the disease 
[33, 51, 57]. Indeed, AD patients with mild to medium cog-
nitive impairments commonly exhibit increased levels of 
proBDNF in cortex, hippocampus and cerebrospinal fluid 
(CSF) on the expense of reduced mature BDNF [40, 57–
61]. The studies showed that while proNGF is increased, 
NGF is decreased in the CSF and in different brain regions. 
Notably, this is the case in the basal forebrain where cho-
linergic neurons are reliant on trophic stimulation from 
NGF while being sensitive to proNGF-induced apopto-
sis [59, 62–67]. Expression of the neurotrophin receptors 
are altered too. Hence, p75NTR is commonly upregulated 
in several regions affected in AD brains [68–73], whereas 
TrkA [59, 74–76], TrkB [77], and TrkC [77] are downregu-
lated. Reported changes in neurotrophin signaling compo-
nents in AD patients are summarized in (Table 1).

A functional interaction between APP/Aβ metabolism 
and neurotrophin system has also been demonstrated. 
p75NTR can bind APP to enable APP trafficking to the 
endosomal compartment. Hence, in AD mouse models, 
removal of p75NTR or disruption of its internalization sub-
stantially lowers amyloidogenic processing, Aβ levels, and 
reduces cognitive decline [78, 79]. p75NTR also promotes 
amyloid-induced neuritic dystrophy [80], while soluble 
ectodomain of p75NTR is neuroprotective against Aβ [73]. 
Phosphorylation of APP promotes amyloid processing of 
APP along the amyloidogenic pathway. NGF induces the 
binding between TrkA and APP, which downregulates 
APP phosphorylation, and enables its retrograde traf-
ficking into the TGN thereby bypassing β-secretase pro-
cessing [81, 82]. Taken together, the imbalance between 

proNTs and NTs, and the expression levels of their recep-
tors may shift their function from being neuroprotective 
to amplifying neurodegenerative processes.

Introduction to VPS10p‑D receptor family
VPS10p-D receptor family comprises five single-span 
type 1 transmembrane receptors SorLA, Sortilin, SorCS1, 
SorCS2, and SorCS3. All members of this receptor family 
have been recently identified as AD risk loci, and are now 
considered hotspots in LOAD [14, 83, 84]. Notably, SorLA 
has been also associated with familial EOAD [85–87]. 
Accordingly, based on several GWAS studies, VPS10p-
D receptors exhibit key functions in the causal pathways 
influencing Alzheimer’s disease risk such as APP catabolic 
processes, cholesterol and lipid metabolism, endocytosis, 
cellular sorting and trafficking, and immune responses 
[2, 13–18]. They are involved in the etiology of a number 
of neurological and psychiatric disorders [88–90] includ-
ing AD and frontotemporal dementia [84, 91–94]. Strik-
ingly, genetic variants in all VPS10p-D receptors have 
been associated with AD, with their expression being 
predominantly decreased in the diseased brains. We pre-
sent an overview of the structure and genetic association 
of the VPS10p-D receptors with AD in (Fig. 2). Except for 
SorCS2, the receptors functionally interact with a number 
of canonical AD proteins including APP, Aβ, secretases, 
and ApoE. We summarized the functional interactions of 
the receptors with AD-related proteins in (Table 2).

Expression of VPS10p-D receptors is regulated in spa-
tiotemporal manner from embryonic development to 
adulthood [119–123], with SorCS1-3 being particularly 
sensitive to external stimuli [124–127]. In adult brain, 
SorCS1-3 expression predominates in neurons, whereas 
Sortilin and SorLA are also expressed by immune cells 
such as microglia/macrophages or T and B lymphocytes 

Table 1  Reported changes in transcriptional and/or protein 
levels of neurotrophin signaling components exhibited by AD 
patients

NEUROTROPHIN 
SIGNALING

EXPRESSION LEVELS IN AD PATIENTS

Upregulation Downregulation

proNGF ↑ in brain [59, 62–64];
↑ in CSF [65]

NGF ↑ in brain [68]

proBDNF ↓ in brain [59, 60]

BDNF ↓ in brain [59, 60]

p75NTR ↑ in brain [68–71];
↑ in serum [72, 73]

↓ in CSF [72, 73]

TRKA ↓ in brain [59, 74–77]

TRKB ↓ in brain [77]

TRKC ↓ in brain [77]
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[128]. For more insights regarding the cell-type specific 
expression of VPS10p-D receptors please explore e.g. 
Brainseq.org database. SorLA, SorCS1, and SorCS2 exist 
in more splice variants and cleavage products, but they 
can also exist in soluble forms that can modify cell sign-
aling over long distances (so far shown for SorLA and 
Sortilin). These features broaden molecular interactions 
and signaling diversity of VPS10p-D receptors across dis-
tinct cell types [129–131]. VPS10p-D receptors act by two 
different signaling modalities; either they control signal 

transduction at the cell membrane where they bind their 
ligands and co-receptors, or they sort multiple types of 
cargoes by endocytosis and intracellular trafficking thus 
targeting them to distinct cellular compartments. Dys-
function in endosomal and lysosomal pathways typically 
causes cytotoxic protein aggregation and altered cell sign-
aling, a major cause behind the progression of AD neu-
rodegeneration. Importantly, VPS10p-D receptors also 
bind synaptic components, in particular pro- and mature 
neurotrophins and their respective receptors, to control 

Fig. 2  VPS10p-D receptors – their structure, and genetic and transcriptional relations to AD. The VPS10-D receptors are produced as proforms 
containing a propeptide which is cleaved by Furin. Except for SorLA, the receptors exhibit similar structure, mostly differing in the sequence of their 
intracellular cytoplasmic tails. SorLA can dimerize at neutral pH while Sortilin forms dimers only at acidic pH, for example in lysosomes. SorCS1-3 are 
paralogs that tend to form stable homodimers. All the receptors have been genetically linked to AD. Independently from the genetic background, 
AD patients display changes in the receptors’ expression levels within the brain parenchyma. These are predominantly diminished, and likely 
contribute to the disease progression such as decreased neuroprotection
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synaptic plasticity, synaptogenesis and cell fate decisions. 
These processes are also severely affected in AD [52, 132, 
133]. The reported functional interactions between the 
VPS10p-D receptors, neurotrophins and their receptors 
are listed in (Table 3).

The VPS10p-D receptor family is named after the yeast 
sorting protein VPS10p-D that forms their N terminus. 
A schematic representation of the receptors’ structure is 
illustrated in (Fig.  2). All the receptors contain an extra-
cellular propeptide typically removed by Furin-mediated 
cleavage in the late-Golgi compartments within the secre-
tory pathway (Fig. 2). This proteolytic event is considered 
a stringent requirement for receptor activation, since 
it primes the VPS10p-D domain for ligand binding. So 
far, this has been demonstrated for SorLA and Sortilin 
[145–147]. The propeptide is followed by the archetype 
VPS10p-D domain, which is a 10-bladed β-propeller ini-
tially identified in the yeast S. cerevisiae, and that serves as 

binding site for many target proteins [148]. All VPS10p-D 
receptors can undergo ectodomain shedding to a different 
extend, thus releasing a soluble fragment into the extracel-
lular space [91, 115, 149–151].

Structurally, the receptors differ from each other 
also by the unique sequences within their cytoplasmic 
domains, which determine their distinct signaling fea-
tures and sorting capacities due to diverse interactions 
with adaptor molecules. However, given that some adap-
tor molecules can interact with more than one VPS10p-D 
receptor, and that several ligands are shared between the 
receptors, the VPS10p-D receptors sometimes exhibit 
redundant or complementary functions [133, 148]. 
VPS10p-D proteins can form homodimers or heterodi-
mers with each other [152], as well as engage in forma-
tion of receptor complexes with other transmembrane 
proteins including APP, p75NTR, TrkA and TrkB [153].

Importantly, the receptors differ also by their pre-
ferred oligomeric states and conformational dynamics. 
For example, Sortilin exists only as a monomer at neu-
tral pH, and dimerizes selectively in acidic environment 
[154, 155]. On the other hand, SorCS1-3 prefer forming 
stable dimers at neutral pH (by 79% for SorCS3) [135, 
152, 156], which is likely determined by posttranslational 
modifications of monomers such as glycosylation levels 
[152]. So far three different dimeric conformations have 
been identified for SorCS3 [156]. Interestingly, SorLa 
seems to have an even preference for monomeric (by 
52%) vs dimeric (by 48%) assembly at neutral pH, while 
the bound within the dimer is less stable [157]. Unfor-
tunately, conformational states of SorCS1-3 and SorLA 
at acidic pH have not been resolved yet. Similarly, we 
still lack complete crystal structures of the receptors 
determining their intracellular tails or ligand-dependent 
conformational changes to obtain complex insights into 
their structural features.

Table 2  Reported functional interactions of VPS10p-D receptors with canonical AD-related proteins

• - Functional interaction

x - Transcriptional changes (indirect interaction)

AD-RELATED PROTEINS VPS10p-D RECEPTORS

SorLA Sortilin SorCS1 SorCS2 SorCS3

APP • [95–100]
x [101, 102]

• [97, 103–105] • [106–108]
x [101]

• [84]
x [101]

Amyloid β • [109–111] • [93, 104, 112]
x [113]

x [106, 108]

β-secretase BACE1 • [114] • [97, 103, 105]

γ-secretases (PSEN1/2) • [91, 115] • [91] • [91, 115] • [84, 115]

APOE • [110, 116] • [93]

α-secretases (ADAM10, ADAM17) • [91, 115, 117, 118] • [91]

Table 3  Reported functional interactions of VPS10p-D receptors 
with components of neurotrophin signaling

• - Functional interaction

x - Transcriptional changes (indirect interaction)

NEUROTROPHIN 
SIGNALING

VPS10p-D RECEPTORS

SorLA Sortilin SorCS1 SorCS2 SorCS3

proNGF • [52, 53, 134] • [55, 132, 135]

NGF • [52] • [135] • [136]

proBDNF • [134]
x [113]

• [54, 132, 135]

BDNF x [137] • [117, 138] • [36, 54, 139]

proNT3 • [140, 141]

p75NTR • [52, 53, 134]
x [113]

• [55, 132]

TrkA • [142]

TrkB • [143] • [142] • [144] • [54] • [144]

TrkC • [142]
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Put together, oligomerization diversity in different sub-
cellular compartments together with the precise compo-
sition of their protein complexes determine signaling and 
sorting actions of the VPS10p-D receptors which span 
from e.g. APP processing and Aβ turnover to cell sur-
vival and proapoptotic cell behavior. Moreover, the dis-
tinct expression profiles, various protein interactions, and 
high mobility of the VPS10p-D receptors highlight their 
pleiotropic function in neuronal trafficking and cell-to-
cell communication in developing CNS as well as in adult 
brain [121, 122, 132]. A few studies suggested synergistic 
activity of these receptors, likely due to their structural 
similarities and overlapping ligands when expressed in the 
same tissue, i.e. in the hippocampus [121, 152]. This may 
explain why their shared heritability can result in epistatic 
effects in developing AD [84]. Here we present an over-
view of the many joint but also distinct roles played by the 
VPS10p-D receptors in neuronal communication, with a 
particular focus on their contribution to AD pathogenesis.

Main text
SorLA biology and its role in AD
The strongest genetic link to AD occurs for the SORL1 
gene that has been included in the exclusive list of genes 
that can act as causal for AD (together with PSEN1, 
PSEN2, and APP [2]). Initially found in LOAD cohorts 
[83, 158–164], rare SORL1 variants were recently iden-
tified also in EOAD patients [85–87, 165–169], and 
in  cases  with  familial AD [85, 170, 171].  Its protein 
product, sorting-related receptor with A-type repeats 
(SorLA, also known as LR11), is the largest member of 
the VPS10p-D receptor family. It was first identified in 
1996 as a non-canonical member of the low-density lipo-
protein receptor family that, in addition to the VPS10p-
D, also contained 11 complement-type repeats, one 
EGF-type repeats, and six fibronectin type III domains 
[116, 172, 173]. A recent study by Zhang et al. used a sin-
gle-particle cryogenic electron microscopy to determine 
that SorLA can exist as a monomer (52% of the particles) 
as well as a dimer (48% of the particles) at neutral pH. 
Unfortunately, the authors failed to explore conforma-
tions at acidic pH and contribution of the C-terminus to 
dimerization [157].

SorLA is found in most regions of the mammalian 
CNS with a predominant neuronal expression. It is 
mostly localized in endosomal sorting compartments, 
where it mediates the trafficking of variety of cargo mol-
ecules such as APP [95], β-secretase 1 (BACE1) [114], 
Aβ [109], or Glial cell line-derived neurotrophic factor 
(GDNF) [174]. The extensive role of SorLA in control-
ling protein sorting is defined by cytosolic adaptors that 
recognize specific motifs located within the receptor 
tail. Once at the cell surface, SorLA can be internalized 

via a clathrin-dependent mechanism through binding to 
the clathrin adaptor protein 2 (AP-2) [175]. Internalized 
SorLA molecules are trafficked from endosomal com-
partments either directly back to the plasma membrane, 
which is dependent on its interaction with retromer and 
SNX-27 [176, 177], or to the TGN by retrograde sorting 
facilitated by cytosolic adaptors PACS1 and the retromer 
complex containing VPS26 [177, 178]. From the TGN, 
SorLA can return to the endosomes by anterograde 
transport guided by adaptors Golgi-localized γ-ear-
containing Arf-binding proteins GGA1 and GGA2 [179] 
and AP-1 [175]. Jointly, these trafficking events establish 
an endosome-TGN shuttle. Interestingly, AP-1, a key reg-
ulator of dendritic targeting of transmembrane receptors 
[180], was also shown to facilitate the polarized transport 
of SorLA towards somatodendritic domains in primary 
cultures of rat hippocampal neurons [181]. Recently, the 
heat shock protein 12A (HSP12A) was identified as a 
novel adaptor molecule able to selectively target the cyto-
plasmic domain of SorLA in an ATP-dependent fashion, 
affecting its internalization and subcellular localization 
[182]. Also, the last three amino acids “VIA” at the C ter-
minus of SorLA mediates binding to Protein Interacting 
with C Kinase-1 (PICK1), a protein known to promote 
transport of different cargos to endosomes including 
postsynaptic AMPA glutamate receptor (AMPAR) [183].

Recently, an alternatively spliced SORL1 variant was 
identified and designated “SORL1-38b” due to the inclu-
sion of an additional exon 38b. SorLA-38b lacks four 
fibronectin domains, the transmembrane domain, and 
the cytoplasmic tail giving rise to a truncated and solu-
ble receptor [184]. As opposed to the full-length receptor, 
which is enriched in the soma, SorLA-38b predominates 
in dendrites, suggesting it may assist synaptic functions 
in a manner that does not require receptor trafficking. 
Notably, the number of SORL1-38b transcripts is sub-
stantially decreased in the cerebellum of AD patients, 
whereas the expression of full-length receptor is unal-
tered. The protein truncation at the C-terminus disables 
SorLA interaction with cytosolic adaptors, which is likely 
involved in distinct biological processes than the full-
length receptor [184].

SorLA also interacts with transmembrane receptors at 
the synapse such as TrkB [143], GDNF receptors GFRα1 
and RET [174], and EphA4 [96] in order to modulate 
neuronal integrity and synaptic plasticity events. It is 
worth noticing that SorLA undergoes differential traf-
ficking and polarized distribution, which subsequently 
influences axonal or dendritic guidance of its cargos 
[181]. Strikingly, SORL1 transcription can be enhanced 
by BDNF leading to an increased production of SorLA, 
which has a neuroprotective effect, and also reduces 
the production of Aβ levels [137]. In addition to its 
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intracellular functions, the ectodomain of SorLA can be 
liberated by ADAM17 and released into the extracellular 
space as soluble receptor (sSorLA) [115]. It was shown 
that sSorLA binds and activates EGF receptor to induce 
neurite outgrowth and neurite regeneration [150]. In the 
following paragraphs we will describe molecular interac-
tions of SorLA with AD-related pathways and its role in 
neuroprotection. A schematic representation of SorLA 
functions is shown in (Figs. 3 and 4).

SorLA interactions in amyloidogenic cascade
While uncovering differences in gene expression between 
AD and control brains, Scherzer et  al. discovered that 
SORL1 expression is dramatically reduced in hippocam-
pus and frontal cortex of patients with sporadic AD [185, 
186]. Soon after, SorLA was identified as an interaction 
partner for APP that determines APP intracellular traf-
ficking and processing (Fig. 3) [95]. SorLA activity influ-
ences APP metabolism by retaining APP in the TGN, and 

by escorting APP out of endosomes thereby preventing 
proteolytic cleavages of APP into Aβ peptide in endoso-
mal compartments [95]. SorLA also regulates polarized 
distribution of APP within a neuron [97, 181]. Kinetic 
studies from Schmidt et al. revealed that the receptor is 
able to inhibit oligomeric assembly of APP both in vitro 
and in  vivo, which influences its processing as the APP 
dimer is a preferred substrate of its secretases [98]. These 
observations were confirmed using a SorLA deficient 
mouse line that exhibits increased production of Aβ pep-
tides in the brain parenchyma [187]. AD mouse models 
APP/PSEN1 and PDAPP further revealed that cerebral 
levels of Aβ peptides and the deposition of plaques were 
significantly exacerbated in a SorLA concentration-
dependent manner [187, 188]. Interestingly, overex-
pressed SorLA mediates an increased uptake of sAPP 
from the medium [97]. It is worth noticing  that both, 
reduced levels of soluable SorLA [189] as well increased 
levels of soluable SorLA [190] have been detected in CSF 

Fig. 3  The role of SorLA in APP processing. A APP is directed from the trans-Golgi network (TGN) to the plasma membrane via the secretory 
pathway. APP molecules are either cleaved by α-secretase at the plasma membrane or recycled through endocytosis, and trafficked by early 
endosomes. There, APP is sequentially cleaved by β- and γ-secretases, thus generating Aβ monomers that are secreted to the extracellular space. B 
A model of SorLA involvement in the amyloid cascade. 1.-3. SorLA interacts with APP in TGN acting as a retention factor, which reduces α-secretase 
cleavage and secretion of sAPPα from the cell surface. 4.-7. In addition, SorLA forms a complex with APP that shuttles between the TGN and 
endosomes. The anterograde transport is dependent on SorLA’s interaction with AP-1 and GGA (4.), while the retrograde transport is determined by 
its binding to retromer or PACS1 (7.). SorLA’s interaction with retromer and SNX-27 in early endosomes additionally enables the sorting of APP along 
the recycling pathway to the plasma membrane (5.). This way, the sorting receptor is responsible for reducing the interaction between APP and 
β- and γ- secretases (5.). Importantly, binding of SorLA to BACE1 blocks the APP-BACE1 interaction, which reduces the production of secreted Aβ 
peptides (6.). Last but not least, SorLA also engages with Aβ peptides in endosomes and navigates them for the lysosomal degradation (8.)
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of AD patients.  Altogether, these findings propose that 
SorLA may critically influence amyloidogenic events 
underlying the AD pathology and nominate the receptor 
as a potential target for the therapeutic interventions.

The physical interaction of SorLA with APP occurs 
within the complement-type repeats cluster of SorLA. 
The two proteins form a 1:1 stoichiometric complex 
observed more efficiently at acidic rather than neutral 

Fig. 4  SorLA localization within a neuron and its signaling in AD. SorLA predominantly localizes in neural soma and dendrites, either in sorting 
vesicles or at the plasma membrane. Box A) The presence of extracellular BDNF in human brain mediates expression of SORL1, which increases 
SORLA protein levels attenuating the production and secretion of Aβ. Box B) A scheme of how SorLA regulates EphA4 signaling. Under 
physiological conditions (left panel), EphA4 binds its juxtapositioned ligand EphA1 which triggers clustering of EphA4 receptors, and their 
subsequent phosphorylation. EphA4 activation triggers disassembly and retraction of F-actin filaments causing growth cone collapse crucial e.g. 
for dendritic spine pruning. AD patients (right panel) show increased levels of EphA4 in close proximity to Aβ plaques. Moreover, EphA4 binds Aβ 
oligomers which results in increased AphA4 activation and abnormal actin filaments retraction causing dendritic spine retraction and synaptic 
loss. SorLA (middle panel) binds EphA4, which prevents EphA4 clustering. Increased SorLA levels thus diminish the EphA4 activation, which lowers 
the responsiveness of the neurons to growth cone retraction even in presence of AβO, thus protecting the neurons against synaptotoxicity. Box 
C) SorLA binds and traffics TrkB receptor towards the synapse where they remain as a receptor complex. Upon BDNF release and subsequent 
activation of TrkB, SorLA further drives TrkB internalization, which is a critical step for the subsequent BDNF-dependent neurotrophic response and 
synaptic plasticity
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pH. This finding fosters a model of SorLA and APP inter-
acting inside of the secretory and endosomal vesicles 
where the luminal pH is maintained in a range of 5.5 – 
6.5, as opposed to the neutral pH at the cell surface [99]. 
Maturation of APP O-glycans in the Golgi compartment 
is required for the APP precursor release into the secre-
tory pathway, determining how APP cleavage is regu-
lated, thus affecting the formation of its soluble forms 
(sAPPα and sAPPβ) [191, 192]. Interestingly, engineered 
SorLA mutants were found to influence the APP break-
down by regulating its O-glycosylation, which exempli-
fies yet another mechanism how this receptor interferes 
with amyloidogenesis [99]. Furthermore, a splice vari-
ant of SORL1 that incorporates a novel exon 30B and 
denoted SORL1-30B, is present in most brain regions 
with the highest expression in the temporal lobe and 
the hippocampus [193]. The receptor variant specifically 
lacks the binding sites for Aβ and APP, leaving the rest of 
the receptor intact. This observation suggests that alter-
native transcription may provide SorLA the ability to 
control the ligand specificity.

Besides APP trafficking and processing, SorLA con-
trols additional events in the amyloidogenic cascade. 
Overexpression studies by Spoelgen et  al. showed that 
SorLA’s cytoplasmic tail forms a protein complex with 
BACE1, a secretase initiating the proteolysis of APP. As 
SorLA interacts with both BACE1 and APP, the authors 
proposed that SorLA can render APP less accessible to 
the secretase, by which it prevents the formation of the 
BACE1-APP complex in the endosome, thus reducing 
the APP cleavage. SorLA-BACE1 interaction therefore 
directly affects APP processing and Aβ production [114]. 
Importantly, the secreted form of the receptor, sSorLA, is 
released into CSF, which was found to positively correlate 
with sAPPβ and Tau in AD patients [194].

SorLA has been also demonstrated to bind ApoE at 
the cell surface and mediate ApoE-dependent Aβ endo-
cytosis. A biochemical study by Yajima et  al. revealed 
a stronger binding of ApoE4 isoform to SorLA when 
compared to ApoE3. On the other hand, ApoE2 isoform 
exhibited the lowest affinity for SorLA. Similarly, SorLA 
mediated higher cellular uptake of ApoE3 and ApoE4 
in contrast to ApoE2 isoform. The same isoform prefer-
ence was observed when examining the ApoE-dependent 
uptake of extracellular Aβ by SorLA [110]. Although 
these findings suggest a role of SorLA in clearing out 
extracellular ApoE/Aβ oligomers in an ApoE-isoform-
dependent manner, a caution should be taken to its phys-
iological relevance since the experiments were conducted 
in cell lines that overexpress the receptor. Indeed, Carlo 
et  al. failed to show accumulation of ApoE on endog-
enous levels in mice genetically deficient for Sorl1, thus 
questioning the significance of this endocytic pathway 

[93]. SorLA engages in Aβ metabolism also through their 
direct interaction [111]. Structural studies demonstrated 
that Aβ can physically interact with a peptide-binding 
site inside of the propeller tunnel of the VPS10p-domain 
[109]. Although unable to mediate Aβ uptake when over-
expressed in mice, SorLA could target newly generated 
Aβ peptides from the late endosomal compartment to 
the lysosomes for its degradation, thereby controlling the 
amount of Aβ secreted into the extracellular space [109, 
111]. Accordingly, a SORL1 variant p.G511R that segre-
gates with AD in a family [87] was impaired in Aβ bind-
ing to the VPS10p-D, providing a mechanistic link how 
disturbed SorLA functionality may increase Aβ levels 
[111]. Impairments in these processes may increase neu-
ronal vulnerability, a feature that could escalate the intra-
cellular concentration of Aβ, and thus provide extensive 
pool of peptides to form cytotoxic AβO.

SorLA is linked to AD also through its interaction with 
subunits of retromer [177, 195], an evolutionary con-
served heteropentameric complex and key player in neu-
ronal protein endosomal recycling [196]. The complex is 
required for cargo export from the endosome both in the 
retrograde pathway to Golgi/TGN and recycling to the 
cell surface [195, 197, 198]. Retromer is composed of two 
sub-complexes: the trimer VPS26-VPS29-VPS35 forming 
the core assembly, and the dimer of sorting nexin pro-
teins (i.e. SNX-1 and SNX-2) binding to phosphatidylino-
sitol phosphate membrane lipids [195]. The interaction 
between SorLA and the retromer occurs via binding of 
the VPS26 subunit to a hexameric FANSHY amino acid 
sequence located in the cytoplasmic tail of SorLA. The 
deletion of the retromer binding site in SorLA is cor-
related with defective endosomal sorting and the con-
sequent misguidance of cargo proteins. These findings 
are in agreement with SorLA and retromer forming 
a functional unit that engage in neuronal endosomal 
recycling [177]. The tail of SorLA also interacts with 
SNX-27, another trafficking component that mediates 
recycling of specific receptors (e.g. AMPAR or NMDAR) 
from the endosomes to the cell surface, which is often 
retromer-dependent [176]. Similarly to retromer, SNX-
27 downregulation has been linked to AD via increased 
intracellular production of Aβ [199]. These processes are 
depicted in the (Fig. 3).

SorLA in AD‑related neurotrophin signaling and synaptic 
transmission
Rohe and colleagues showed that BDNF is a specific 
enhancer of Sorl1 transcription in  vitro and in  vivo, 
whereas Sortilin expression was not altered [137]. 
Accordingly, BDNF treatment was able to reduce Aβ pro-
duction in the brain of wild-type mice but not of SorLA-
deficient animals. These data were supported by neuronal 
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differentiation experiments using human induced pluri-
potent stem (iPS) cells from AD patients carrying SNPs in 
SORL1 [200]. The authors screened a number of SORL1 
genetic risk variants for their ability to respond to BDNF 
and to produce Aβ. Individuals carrying mutations in the 
5’ end of SORL1 gene showed reduced response to BDNF. 
Together, the studies demonstrate that SorLA is required 
for BDNF to decrease the production of Aβ peptides 
[137, 200]. These findings may have therapeutic potential 
as the induction of SorLA via BDNF treatment reduces 
the production of Aβ by 40% (Fig. 4, BOX A) [137]. Later 
studies uncovered that the BDNF receptor TrkB is not 
only upstream but also downstream of SorLA. Hence, 
SorLA can physically associate with TrkB to enhance its 
anterograde and retrograde trafficking between the cell 
body and its synaptic destinations, thereby potentiating 
BDNF-dependent neurotrophic signaling and synaptic 
plasticity (Fig. 4, BOX C) [143]. Any impairments in this 
machinery via abnormal SorLA activity therefore likely 
reduces neurotrophic signaling, synaptic plasticity and 
ultimately deterioration of synapses, and thus propel the 
neurodegenerative processes.

More recently, a new role for SorLA in signal trans-
duction recently surfaced thanks to its interaction with 
Ephrin type-A receptor 4 (EphA4) [96], a tyrosine kinase 
regulating synaptic structure and functionality [201]. 
EphA4 binds multiple ligands at the plasma membrane, 
such as Ephrin A1, which is necessary for EphA4 clus-
tering and its subsequent activation prior to axonal 
outgrowth and synaptic plasticity [202]. EphA4 exhib-
its altered distribution in hippocampus of AD patients, 
where it localizes in Aβ plaques [203]. Aβ oligomers bind 
EphA4 leading to aberrant activation of the receptor, 
which ultimately enhances synaptotoxicity and memory 
deficits in AD mouse models. This interaction is inhibited 
by SorLA [204–206]. While SorLA does not modulate 
EphA4 localization, it reduces the aberrant clustering and 
activation of EphA4/c-Abl pathway triggered by intracel-
lular AβO, particularly in response to Ephrin A1 ligand 
binding. This is why EphA4 may become a novel thera-
peutic target for AD [204]. SorLA interacts with the 
extracellular region of EphA4 via its YWTD/EGF-like 
domain, by which it controls growth cone collapse 
in hippocampal neurons [96]. Interestingly, a SORL1 
genetic variant translating into SorLA-T947M recep-
tor mutant was identified in LOAD patients, and carries 
an amino acid substitution in the YWTD domain [207]. 
Functional studies exploring this mutation further dem-
onstrated that SorLA-T947M is unable to bind EphA4 
(without or in presence of Ephrin A1), and to repress its 
Aβ-dependent activation. Strikingly, elevated EphA4 acti-
vation in human AD brains correlates with the reduced 
SorLA-EphA4 association [96]. Huang et al. also showed 

that SorLA-mediated inhibition of EphA4 improved spa-
tial learning and memory of mice injected with human 
AβO. This mechanism might thus be fundamental for the 
potential use of SorLA as a neuroprotective agent against 
cognitive impairment in AD patients resulting from 
abnormal activation of EphA4. SorLA interaction with 
EphA4 signaling is schematized in (Fig. 4, BOX B).

Overall, the versatility of SorLA as a crucial player in 
distinct sorting pathways, amyloidogenic, neurotrophic 
as well as neuroprotective processes makes the receptor 
a powerful clinical target for approaching synaptic plas-
ticity impairments, and impeding the AD onset and pro-
gressive neurodegeneration.

SorLA in AD‑related pathology and associated disorders
AD etiology is influenced by non-genomic risk factors 
such hyperglycemia and insulin resistance, dyslipidemia, 
and obesity, which may explain why AD is commonly 
comorbid with diabetes mellitus, cardiovascular dis-
eases, and metabolic syndrome [3]. In the past decade, 
elevated levels of circulating sSorLA have been correlated 
to increased body mass index and adiposity [149, 208], 
and to increased intima-media thickness of carotid arter-
ies in patients with organic coronary stenosis and Type 
2 diabetes mellitus [3, 209, 210]. Indeed, overexpression 
of SorLA in vascular smooth muscle cells enhances their 
migration from media to intima layer, a key step for for-
mation of atherosclerosis. Hyperglycemic condition was 
proposed as a promoting factor for SorLA expression in 
the intimal cells that could contribute to stenosis [209].

Expression of lipoprotein receptors is commonly regu-
lated by lipids, for example essential fatty acids and cho-
lesterol. Accordingly, Sorl1 expression can be induced by 
Omega-3 docosahexaenoic fatty acid in primary cortical 
neurons [211]. Interestingly, obesity and caloric intake 
in Type 2 diabetes mellitus patients with morbid obe-
sity and cognitive decline enhance SORL1 expression in 
peripheral mononuclear cells of plasma, together with 
other AD-related genes such as APP, PSEN2, ADAM9, 
and GSK3β. Such expression profile is reduced after gas-
tric bypass surgery [212] or diet [212, 213]. However, 
interesting data came from a rat model of mild cognitive 
impairment and dementia. These rats were chronically 
fed with high-fat diet to become metabolically obese but 
of normal weight. In contrast to the peripheral blood, the 
expression analysis of hippocampi revealed decreased 
Sorl1 and Sort1 mRNA levels while expression of APP, 
TNFα and CASP3 remained increased [214]. Strikingly, 
patients of normal weight suffering with metabolic syn-
drome also exhibit decreased SorLA levels in peripheral 
blood mononuclear cells [215]. Such findings indicate 
different regulatory mechanisms of SorLA induction in 
the brain compared to the peripheral tissue. This should 
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be taken in consideration when targeting SorLA in AD 
patients since high levels of sSorLA might contribute to 
the development of non-genomic AD risk factors.

The role of SorLA in regulating energy metabolism 
was also supported by functional experiments. Whittle 
et al. showed that enhanced sSorLA suppresses thermo-
genesis in adipose tissue by inhibiting BMP/TGFβ sign-
aling [149]. Strikingly, Sorl1-/- mice are protected from 
high-fat diet obesity due to increased browning of white 
adipose tissue (WAT), and hypermetabolism [149, 208]. 
Schmidt et  al. further proposed the existence of gene-
dosage effect of SorLA on obesity and glucose intolerance 
as SorLA overexpression in WAT blocked hydrolysis of 
triacylglycerides and caused excessive adiposity [208]. 
SorLA expression in WAT was also positively corre-
lated with insulin-induced suppression of lipolysis, and 
inversely with lipolytic enzyme activities. They suggested 
that SorLA expressed by adipocytes in WAT functions 
as a sorting and recycling factor for insulin receptor 
(IR) that redirects IR molecules from endosomes to the 
plasma membrane, to enhance IR surface expression, and 
to reinforce insulin signaling [208]. Interestingly, high 
expression of SorLA was also found in adipocyte precur-
sors in juvenile visceral WAT. The authors proposed that 
upon high-fat diet, elevated levels of SorLA in these cells 
increases their sensitivity to insulin stimulation, which 
promotes the mitotic expansion of the visceral precursor 
cell pool in juvenile mice. In contrast, low levels of SorLA 
in subcutaneous precursors blunt their response to insu-
lin, and prevent their proliferation [216]. Taken together, 
these studies highlight the complex regulation of SorLA 
expression and its functional versatility, underscoring 
SorLA as a key regulator also of activities that might not 
be directly involved in canonical AD pathophysiology, 
but could further contribute to it.

Sortilin biology and its role in AD
Belenguez et  al. recently identified SORT1 as a high-
impact AD risk gene [14]. The magnitude of the associa-
tion was similar whether the patients were diagnosed by 
questionnaires or clinical evaluation, which substantiates 
the robustness. Among the SNPs, the lead observations 
encoded a rare missense variant that substitutes an argi-
nine with a glutamic acid at residue 302, which is located 
in the β-propeller of the VPS10p-domain, and harbors 
the ligand binding site. In a Swedish cohort, Anderson 
et  al. identified SORT1 SNPs that are associated with 
reduced disease risk, suggesting the existence of gain of 
function variants [217]. On contrary to SorLA, Sorti-
lin protein levels are higher in temporal cortex and cer-
ebellum of some AD patients, and in a transgenic mouse 
model of AD (APP/PS1dE9) [103, 104, 113, 218]. It has 
been suggested that this increase positively correlates 

with the severity of AD pathophysiology since no changes 
are observed in patients with mild cognitive impair-
ments [219]. One explanation for this apparent paradox 
could be that increased Sortilin may act as a compensa-
tory event to counteract disease progression in those AD 
patients not harboring a risk SORT1 SNP. Interestingly, 
C-terminal fragments of Sortilin are deposited in neuritic 
Aβ plaques in human cerebrum [218] but not in brains 
from transgenic AD mouse models nor aged macaques 
exhibiting amyloid plaque deposition [220] suggesting 
the interspecies differences in the formation/composi-
tion of senile plaques in regards to VPS10p-D receptors. 
Despite an overlap in the sorting machinery used by Sor-
tilin and SorLA, their structural difference and opposite 
regulation of expression suggest that they exhibit distinct 
activities in AD pathogenesis.

Sortilin was identified as the second member of the 
VPS10p-D receptor family in 1997 [221]. Its expression 
is highly abundant in the CNS and in peripheral nerv-
ous system (PNS) neurons [142, 222], and it is enriched 
in forebrain, particularly in temporal cortex [222, 223]. 
Sortilin binds a vast number of ligands to control their 
sorting or signaling activities [153]. Important roles of 
Sortilin is to mediate anterograde trafficking from the 
secretory pathway along neurites and to endosomes and 
lysosomes, and to mediate endocytosis and retrograde 
transport from the cell surface to the TGN by evading 
lysosomal targeting and degradation [224]. The low pH 
within the endolysosomal compartments causes confor-
mational change and dimerization of Sortilin. This results 
in collapse of the binding site, which triggers the release 
of Sortilin’s cargo, and enables recycling of the recep-
tor back to the cell surface by TGN-coupled retrograde 
transport [155]. Similarly to SorLA, Sortilin trafficking 
pattern is controlled by binding to a number of cyto-
plasmatic proteins including GGA1-3 [224], AP1 and -2 
[225], Rac-p21-activated kinases 1 to 3 (PAK1-3) [226], 
and Ras-related protein (Rab7b) [227]. The retromer 
complex also binds Sortilin and is required for its proper 
sorting [228, 229]. Interestingly, Belenguez et  al. also 
identified the retromer subunit SNX-1 as a novel top-risk 
gene for AD, similarly to SORT1 [14].

Among other ligands, Sortilin transports BACE1 and 
APP, by which it regulates the production and endocyto-
sis of sAPP [97]. Similarly, Sortilin facilitates the uptake of 
AβO [112] and ApoE [93]. Perhaps most well established 
is the role of the receptor in regulating neurotrophic 
signaling. It forms a receptor complex with p75NTR at 
the plasma membrane by which it modulates binding of 
proNTs, and controls their pro-apoptotic activity [52, 53, 
134, 140]. Sortilin also enables the anterograde transport 
of neurotrophin receptors such as TrkB and the secretion 
of its ligand BDNF [138, 142], the latter being dependent 
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on the complex formation with Huntingtin associated 
protein-1 (HAP1) [230]. Sortilin undergoes ectodomain 
shedding at the cell surface as well as during intracellu-
lar trafficking which inhibits lysosomal degradation of its 
cargos including BDNF [117]. Put together, any impair-
ment of Sortilin function affects cell survival and homeo-
stasis in the brain, particularly during aging [53]. In the 
following paragraphs, we will discuss studies that high-
light the function of Sortilin in AD and related disorders.

Sortilin interactions in amyloidogenic cascade
Sortilin transports BACE1 and APP [97, 103, 105], and 
regulates the production and endocytosis of sAPP [97]. 
The intracellular trafficking of BACE1 between TGN 
and endosomes is necessary for its functioning [231, 
232], and it is governed by adaptor proteins including 
GGA3 [233], which targets BACE1 for its lysosomal deg-
radation [234]. Accordingly, inhibition of GGA3 activ-
ity results in local, cytotoxic accumulation of BACE1 
in axonal swellings leading to enhanced BACE1 activ-
ity, and later axonal dystrophy observed even before 
enhanced levels of Aβ [235]. Indeed, reduced levels of 
GGA3 protein in AD brains correlate with increased 
levels of BACE1, APP, and Aβ [234, 236]. Sortilin cyto-
plasmic tail also contains a consensus motif for binding 
GGA adaptor proteins that facilitates Sortilin transport 
from the Golgi compartment to endosomes and lys-
osomes [224, 237, 238]. Finan et  al. showed that Sorti-
lin forms a complex with BACE1 in the human brain, by 
which it regulates retrograde trafficking of BACE1 from 
the early endosomes back to the perinuclear region of 
TGN (Fig. 5, BOX B). The authors further s

uggested that Sortlin-BACE1 interaction facilitates 
BACE1-mediated first cleavage of APP, leading to an 
increased formation of sAPPβ and accumulation of Aβ 
peptides. Importantly, they showed that this process 
is partially regulated by Sortilin’s but not by SorLA’s or 
SorCS1b’s cytoplasmic tails [103]. These data highlight 
the non-redundant, pro-amyloidogenic function of Sor-
tilin, and the specificity of its cytoplasmic tail in BACE1-
dependent first cleavage of APP (Fig. 5, BOX C).

Later studies revealed that Sortilin’s extracellu-
lar domain can bind APP in vitro and in vivo [97, 105], 
and that Sortilin is a substrate for all three secretases 
involved in APP processing [91, 115, 117, 118, 239, 240]. 
The α-secretases ADAM10 [117, 118] and ADAM17 
[115] that are responsible for the first non-amyloido-
genic cleavage of APP, also facilitate Sortilin ectodo-
main shedding [117]. Interestingly, Sortilin is a target of 
γ-secretase [91, 239], and it has been a predicted sub-
strate for BACE1-mediated processing [240]. These data 
suggest that Sortilin might be cleaved in the same subcel-
lular compartments as APP, perhaps when bound to each 

other. Indeed, Yang et al. showed that Sortilin co-localizes 
with APP in perinuclear space and in axons of cultured 
neurons, where it facilitates APP trafficking from the late 
endosomes to the lysosomes for its degradation [105]. 
Remarkably, C-terminal fragments of Sortilin liberated 
by γ-secretase are deposited in neuritic Aβ plaques of 
human cerebrum [218]. Even though there is no experi-
mental explanation yet, one might speculate that Sortilin 
can be sequentially processed when in complex with APP 
resulting in shedding of Sortilin’s ectodomain by the α- 
of β-secretase, later followed by γ-secretase cleavage. The 
C-terminal tail may be then either released from neu-
rons, and subsequently captured in Aβ plaques, or it may 
associate with Aβ already intracellularly, and be released 
upon neuronal demise. Both possible interpretations are 
schematized in (Fig. 5, BOX A).

The cleavage of APP and ectodomain shedding of 
Sortilin may explain why the C-terminal domain of the 
receptor accumulates, and represent a prominent con-
stituent of the amyloid plaques [218, 220]. However, 
these data were contradictory with Gustafsen et al. who 
proposed that APP and Sortilin primarily co-localize 
in the neurites [97]. Gustafsen et  al. found that Sortilin 
directly enhances the production of secreted sAPPα, and 
mediates uptake of the extracellular sAPP. Interestingly, 
the authors detected decreased levels of sAPPβ in the 
presence of Sortilin, contrary to the Finan study [103]. 
The authors proposed that Sortilin increases APP pro-
cessing in non-amyloidogenic pathway (sAPPα) when 
compared to the pro-amyloidogenic pathway (sAPPβ). 
This is in contrast to SorLA that reduces the levels of 
both, sAPPα and sAPPβ [97]. These observations are sup-
ported by a recent study by Ruan et al. that used a triple 
transgenic AD model (APP/PSEN1) deficient in Sortilin. 
They reported that the lack of Sortilin enhances the Aβ 
deposition, neuronal loss, and astrocytic activation dur-
ing aging. They also demonstrated that Sortilin’s intracel-
lular domain mediates APP degradation [104]. According 
to these studies, Sortilin thus has a neuroprotective fea-
ture against APP-dependent amyloidosis likely because it 
consequently decreases the cleavage of cytotoxic sAPPβ. 
These two opposing models are depicted in (Fig. 5, BOX 
C). Nevertheless when combined, these studies demon-
strate that the proteolytic cleavage of APP differs depend-
ent on the expression levels, protein localization, and 
perhaps activity of the specific VPS10p-D receptors. For 
example, high Sortilin levels might increase APP cleav-
age and Aβ release, while increased SorLA retains APP in 
TGN, thus protecting the cell against cytotoxicity. How-
ever, the biochemical studies addressing Sortilin localiza-
tion and the mechanism of its action on APP processing 
are not consistent, likely due to the differences between 
the experimental models. For instance, the Finan and 
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Yang studies employed a C-terminally tagged Sorti-
lin variant [103, 105], whereas Gustafsen et al. used the 
untagged receptor [97]. The C-terminal tagging will likely 
lead to aberrant Sortilin localization since binding of the 
GGA adaptors requires the C-terminal acid cluster of 
the receptor tail, as demonstrated by Cramer et al. [241]. 
More functional studies using either untagged proteins 
or both models in parallel are required to determine the 
precise molecular mechanism by which Sortilin regulates 

APP transport and catabolism in non/amyloidogenic 
pathways.

It is well established that Sortilin forms a receptor 
complex with p75NTR which mediates pro-apoptotic cell 
responses [52, 134]. Accumulation of extracellular Aβ 
oligomers facilitates the neurotoxicity and neuronal cell 
death via their physical binding to p75NTR [242], while the 
addition of Aβ peptides increases expression of Sortilin 
in vitro likely via activation of the p75NTR/RhoA pathway 
[113]. In line with these data, Takamura et al. found that 

Fig. 5  Functional involvement of Sortilin in AD-related signaling. Sortilin localizes in sorting vesicles and on the plasma membrane (PM) in neuronal 
somas, dendrites and axons. Box A) Sortilin undergoes ectodomain shedding by ADAM10/17, which produces soluble Sortilin fragments. In 
humans, C-terminal fragments are found within the Aβ plaques, however, their precise origin and trafficking route is unknown (marked as “?”). Box 
B) Sortilin binds BACE1 in TGN and facilitates its intracellular trafficking via anterograde and retrograde pathways, the later directed either towards 
the recycling pathway or for the lysosomal degradation. Box C) Sortilin binds APP at PM; however, its involvement in APP processing is controversial. 
Left panel—Sortilin binds APP at axonal PM where they undergo internalization. Sortilin either traffics APP for its lysosomal degradation (a.) or 
engages in amyloidogenic pathway by enhancing APP cleavage by BACE1 (b.), subsequently causing an increased formation and secretion of 
sAPPβ and Aβ. Sortilin is also a PSEN1/2 substrate. Right panel – Sortilin has a neuroprotective role as it mediates the uptake of soluble APP from 
the extracellular space (1.) for lysosomal degradation thus decreasing their extracellular concentration. Moreover, Sortilin binds APP in neurites 
where it drives its preferential cleavage by ADAM10/17 (2.), thus elevating sAPPα levels. Consequently, there is less APP internalized (3.) prior the 
sequential cleavage by β- and γ-secretases (4.), resulting in decreased production of sAPPβ and Aβ (4.-5.). However, the molecular mechanisms are 
rather unknown (marked with “?”). Box D) Upon proNGF binding, Sortilin forms a complex with p75NTR receptor, which mediates pro-apoptotic cell 
responses (left). The presence of AβO increases Sortilin expression, which likely enhances the formation and activity of Sortilin-p75NTR complexes. 
Sortilin-p75.NTR complex binds and internalizes AβO leading to increased intracellular neurotoxicity, and later cell death (middle). Sortilin can also 
bind and sequester extracellular ApoE, subsequently facilitating its lysosomal degradation, which has a neuroprotective effect (right). It is not clear if 
Sortilin sequesters ApoE-Aβ complexes (marked as “?”)
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extracellular AβO, as opposed to non-oligomerized Aβ, 
act as Sortilin ligands, and that Sortilin loss-of-function 
suppresses AβO-targeted autophagy and AβO-induced 
cell death [112]. Interestingly, extracellular AβO triggers 
the co-localization of Sortilin with p75NTR at the neu-
ronal surface, proposing a model where Sortilin-p75NTR 
receptor complex mediates apoptotic response upon 
binding of AβO, a mechanism that can contribute to the 
progressive neurodegeneration in AD patients [112].

Besides regulating the amyloidogenic cleavage of APP, 
Sortilin is the major neuronal ApoE receptor for endo-
cytic uptake and catabolism of Aβ [93]. Binding studies 
revealed that Sortilin is able to interact with each of the 
three major ApoE variants with slightly higher affinity 
for the cytotoxic ApoE4 [93]. Carlo et al. further showed 
that crossing AD mice (PDAPP and FAD lines) with mice 
deficient in Sortilin increases Aβ and ApoE levels in cor-
tex and hippocampus [93]. There was no difference in 
sAPPα, sAPPβ, and BACE1 expression. Importantly, no 
changes in ApoE levels were seen in glia cells, known to 
be the main site of apolipoprotein synthesis. Remarkably, 
however, the absence of Sortilin significantly attenuated 
cellular uptake of ApoE-Aβ complexes, demonstrating 
that impaired ApoE clearence by Sortilin causes accu-
mulation of Aβ in the brain [93]. Given Aβ handling was 
unchanged in knockout neurons in the absence of ApoE, 
this suggests that Sortilin exclusively but potently medi-
ates the Aβ uptake when in complex with ApoE. These 
observations were in marked contrast to SorLA deficient 
mice that exhibited no accumulation of ApoE, support-
ing the model of Sortilin’s direct effect on ApoE and Aβ 
turnover [93]. Most recently, the same research group 
studied the relevance of the Sortilin-mediated uptake of 
ApoE for brain lipid metabolism [243, 244]. They found 
that Sortilin is required to accumulate and facilitate the 
metabolism of polyunsaturated fatty acid into endocan-
nabinoids; lipids with potent anti-inflammatory and 
neuroprotective functions. Remarkably, Sortilin expres-
sion had no impact on endocannabinoid production in 
transgenic mice expressing the AD risk variant ApoE4, 
demonstrating that this function was restricted to the 
ApoE3 isoform. The authors explain this apparent para-
dox by ApoE4 being unable to uncouple from Sortilin in 
the endosomal compartment, which disrupts recycling 
and re-exposure of the receptor at the plasma membrane. 
The combined findings are schematized in (Fig.  5, BOX 
D) and suggest a protective role of Sortilin in AD by low-
ering Aβ levels, reducing production of neuroinflamma-
tory cytokines [244, 245], stimulating synapse function, 
and sustaining neuron viability.

Sortilin in AD‑related neurotrophin signaling and synaptic 
transmission
Sortilin is also an important neurotrophic receptor. The 
proneurotrophins proBDNF, proNGF, and proNT3 can 
form ternary complexes with Sortilin and p75NTR, which 
promotes signaling towards neuronal cell death [52, 53, 
134, 140]. For instance, the proNGF-Sortilin-p75NTR 
complex is fundamental for pruning of retinal ganglion 
cells, and is involved in degeneration of acutely injured 
and senescent neurons [53]. Surprisingly, Sortilin and 
p75NTR also support trophic activities induced by mature 
neurotrophins. While it was well-established that p75NTR 
strengthens binding of NGF, BDNF and NT3 to their 
cognate receptor [9], Vaegter et  al. found that Sortilin 
works in tandem with p75NTR to empower neurotrophin 
signaling by facilitating the anterograte transport of their 
respective Trk receptors along axons to postsynaptic den-
sities [142]. In particular, they found that peripheral neu-
rons in Sortilin deficient mice on the genetic background 
of p75NTR–/– were normally developed but underwent a 
marked age-dependent neurodegeneration leading to 
severe neuronal demise, and sensory and motor impair-
ments [142].

Sortilin also regulates BDNF secretion. proBDNF sort-
ing to lysosomes is blunted upon ADAM10-mediated 
and activity-dependent Sortilin’s ectodomain shedding 
from the cell membrane and intracellular compartments, 
thus providing more BDNF for secretion [117]. Interest-
ingly, proBDNF binding to HAP1 is important for Sorti-
lin to traffic proBDNF in neurites, and to stimulate BDNF 
processing and secretion [138, 230]. Sortilin may also tar-
get proBDNF for lysosomal degradation to blunt BDNF 
secretion [117]. When and how Sortilin acts as a regu-
latory switch to increase or decrease BDNF secretion 
has not yet been resolved, but possibly the levels of the 
receptor expression are involved. To further increase the 
complexity, proBDNF increases the expression of Sorti-
lin and p75NTR in vitro. This prevents proteolytic cleavage 
and processing of proBDNF, possibly as a consequence of 
its binding to the high-affinity Sortilin and p75NTR recep-
tor complex [113, 134]. Chen et al. showed that binding 
of proBDNF to Sortilin is mediated by the prodomain of 
proBDNF (amino acids 44–102), and that this interac-
tion is reduced in the BDNF-Val66Met mutated protein 
[138]. They further showed that Sortilin traffics wild-type 
BDNF into the pathways for regulated secretion, whereas 
the BDNF-Val66Met mutation disrupted this sorting 
[138]. The reduced binding of BDNF-Val66Met to Sortilin 
may explain the faster cognitive decline in AD that har-
bors this mutation [37–39]. A recent study from Fleitas 
et al. further proposed that accumulation of reactive oxi-
dative species (ROS) in AD patients stabilizes proBDNF 
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and disables its maturation into BDNF. This will subse-
quently increase proapoptotic signaling and blunt trophic 
actions of BDNF [57]. The authors examined hippocam-
pal tissue from AD patients and found a significant 
increase in Sortilin and proBDNF levels, which translated 
into an enhanced proBDNF/BDNF ratio in CSF of the 
patients. Strikingly, when the authors applied CSF from 
AD patients on cultured WT hippocampal neurons, they 
observed enhanced proBDNF-p75NTR-dependent apop-
tosis in contrast to CSF from healthy controls [57]. These 
data propose the proBDNF/BDNF ratio as a biomarker 
for AD diagnosis or disease progression.

A hallmark of AD is the early and progressive dysfunc-
tion, synaptic loss, and degeneration of basal forebrain 
cholinergic neurons (BFCN). The reason for their selec-
tive vulnerability is not fully understood but BFCN are 
reliant on mature NGF that is produced by and trans-
ported retrogradely back from their target neurons in 
cortex and hippocampus. In AD patients, NGF levels 
and TrkA expression are decreased in BFCN whereas 
proNGF is increased [10, 62, 74, 246]. Given the expres-
sion of p75NTR and Sortilin is preserved in AD brains, 
these alterations favor an increase in proapoptotic 
signaling on the expensive trophic stimulation. Indeed, 
transgenic mice expressing an anti-NGF-antibody elec-
tively targeting mature NGF and leaving the proform 
unperturbed, exhibited accelerated BFCN pathology 
and cognitive impairments [247]. Likewise, mice with 
proNGF overexpression develop age-dependent memory 
impairments, cholinergic deficits, and, surprisingly, also 
increased formation of Aβ oligomers [248]. To demon-
strate the requirement of the p75NTR-Sortilin receptor 
complex for executing these functions, BFCN pathol-
ogy and cognitive impairments were rescued in mice 
expressing the neutralizing anti-NGF antibodies on the 
genetic background of p75NTR–/– and Sort1–/–, respec-
tively [249, 250].

Sortilin in AD‑related pathology and associated disorders
Increased Tau phosphorylation, its subsequent misfold-
ing and prion-like spreading are common pathological 
features in AD brains [4]. By using mutant Tau trans-
genic mice (P301S), prion-propagation assay, and inhibi-
tory antibodies against Sortilin, Johnson et al. found that 
Sortilin activity suppresses replication of Tau prion in 
the forebrain thus protecting it against neurotoxic pTau 
aggregation. On contrary, Sortilin expression is lower in 
the hindbrain where it does not protect against p-Tau 
accumulation [223]. AD shares several other mechanisms 
with Prion diseases, a group of fatal neurodegenerative 
disorders which major genetic component is neuronal 
Prion protein (PrPC). PrpC is a transmembrane recep-
tor localized in lipid rafts [251] that regulates neuronal 

excitability and neurite outgrowth [252]. PrPc inhibits 
BACE1 and Tau expression, which subsequently reduces 
the levels of Aβ in the brain [253]. During AD, PrPC con-
verts into its polymerizing, misfolded form called scrapie 
isoform PrPSc, which binds AβO, and transduces their 
cytotoxic signals across the neuronal membrane [254–
256] causing synaptic failure and cognitive impairments 
[257–261]. Upon AβO binding, PrPC is phosphorylated 
by Fyn kinase leading to hyperactivation of NMDAR 
channels, and subsequent glutamate toxicity. Further-
more, AβO-PrPC complex physically binds its co-recep-
tor the metabotropic glutamate receptor 5 (mGluR5), 
which activates the Fyn kinase, followed by eEF2 phos-
phorylation, and consequent loss of neuritic spines and 
memory [262–264]. At the plasma membrane, PrPC 
binds Aβ oligomers with high-affinity, yet during aging, 
AβO-PrP complexes eventually accumulate extracellu-
larly in form of plaques, even before AD manifestation 
[265]. Thus, targeting receptors involved in AβO signal 
transduction such as PrPC and mGluR5, or disrupting the 
AβO-PrPC complex holds therapeutic potential in AD 
patients [266]. Indeed, a recent study discovered that a 
PrPC antagonist blocks the protein aggregation, and res-
cues the Aβ-related synapse loss and memory deficits in 
AD transgenic mice [267], similarly to mGluR5 antago-
nist [262].  Strikingly, Uchiyama et  al. showed that Sor-
tilin is neuroprotective against the prion spreading as it 
internalizes PrPC and PrPSc, and transports them into 
lysosomes for their degradation. However, PrP can be a 
determinant of Sortilin activity since increased accumu-
lation of cytotoxic PrPSc leads to lysosomal degradation 
of Sortilin resulting in progressive propagation of PrPSc 
[268]. Accordingly, Sortilin deficiency leads to early 
accumulation of PrPSc, and accelerated disease progres-
sion and death of the mice. These observations pinpoint 
the neuroprotective role of Sortilin sorting against pro-
tein misfolding and prion-related spreading that might 
include internalization of other proteins than just Tau 
and PrP.

Along with aggregation of TAR DNA-binding protein 
43 (TDP-43), Tau pathology is also a hallmark of fronto-
temporal dementia (FTD) [269]. Haploinsufficiency for 
GRN, a gene encoding progranulin (PGRN) that is a pro-
tein with widespread neuroprotective and anti-inflam-
matory functions, is one possible causative for FTD 
[270]. Haploinsufficent patients have a 50% reduction in 
PGRN levels, why inhibiting its clearance from the brain 
extracellular space has been proposed as a therapeu-
tic approach. In a human cohort, a SNP in SORT1 that 
increases Sortilin expression is associated with reduced 
plasma PGRN concentration [271]. Hu et  al. found 
that Sortilin binds PGRN and mediates its endocytic 
uptake and extracellular clearance, and that preventing 
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its function can normalize PGRN levels in Grn+/– mice 
[272]. Accordingly, a phase II clinical trial using a Sortilin 
inhibiting antibody recently achieved positive results in 
FTD patients [270].

TDP-43 pathology is also common in AD with more 
than 55% of the patients having these inclusions [273]. 
Interestingly, SORT1 can be alternatively spliced to gen-
erate an mRNA transcript named Ex17b that includes a 
premature stop codon translating into a truncated soluble 
receptor variant that retains its ligand binding abilities 
[274, 275]. In the healthy brain, nuclear TDP-43 inhib-
its this splicing which leads to exclusion of Ex17b, and 
expression of the full-length receptor. In FTD and AD, 
the nucleus is depleted from TDP-43, favoring its cyto-
plasmic aggregation. This will drive splicing and produce 
the soluble and dominant-negative Ex17b decoy recep-
tor [274, 275]. The functional link between Sortilin, FTD, 
and AD is further supported by Bellenguez et al. who, in 
addition to SORT1, also identified GRN as a critical risk 
gene in AD [14]. Remarkably, the rare Sortilin K302E 
variant, which is a predicted loss of function mutation 
present in AD patients [14], has been also identified as a 
causal patient-only variant in FTD patients [94].

Sortilin has been also extensively studied for its con-
tribution to hyperlipidemia, cardiovascular disease, dia-
betes mellitus, obesity, and metabolic syndrome [275, 
276]. In the following paragraphs we will pin point the 
key observations on Sortilin’s involvement in glucose 
and lipid metabolism, while we refer to these two recent 
reviews [276, 277] for complete overview of the topic.

Obesity in humans and mice is associated with down-
regulation of Sortilin in subcutaneous WAT and liver 
[278–280], while Sortilin deficiency results in slower 
weight gain on western diet [281, 282]. These findings 
are in contrast to SorLa which expression is upregu-
lated upon hyperglycemic condition, obesity, and high 
caloric intake [209, 212, 213]. Interestingly, Sort1–/– 
mice on the genetic background of the LDL receptor 
(LDL-R) knockout exhibit improved function of brown 
adipose tissue [283]. These data point at a negative 
feedback-loop where high body mass index down-
regulates Sortilin expression to prevent further weight 
gain. Other studies reported that deprivation of glu-
cose attenuates Sortilin levels in skeletal muscle [284], 
and that insulin resistance induces hepatic degradation 
of Sortilin in mice [285], suggesting Sortilin’s role also 
in glucose homeostasis. Indeed, Sortilin enables the 
biogenesis of glucose transporter 4 (GLUT4) storage 
vesicles by binding and targeting GLUT4 into matur-
ing vesicles, and by controlling GLUT4 recycling [286–
290]. When insulin levels decline, GLUT4-positive 
vesicles are retrieved from the plasma membrane to the 
endosomal compartment. Here, the cytoplasmic tail 

of Sortilin will engage the retromer complex, enabling 
GLUT4 retrograde transport and reuse [291]. Paradoxi-
cally, studies on Sort1−/− mice have so far not shown 
any signs of insulin resistance or reduced glucose han-
dling [282, 292]. Only one study found increased glu-
cose uptake and insulin sensitivity [282].

A vast number of GWAS have identified SNPs in 
SORT1 strongly associated with LDL cholesterol and 
risk of cardiovascular disease [277]. Kathiresan et  al. 
[293]and Musunuru et  al. [294] were first to identify a 
SNP that associated with LDL cholesterol. Carriers of 
the minor allele have lower LDL and increased hepatic 
expression of Sortilin, suggesting that Sortilin is pro-
tective against cardiovascular disease. Unfortunately, 
studies in mice have yielded conflicting results about 
the directionality of LDL cholesterol versus levels of 
Sortilin expression. Using viral-mediated overexpres-
sion, Musunuru et al., confirmed an inverted correlation 
between Sortilin expression plasma LDL [294]. A similar 
directional correlation was confirmed by Rader’s group 
who suggested that Sortilin destines LDL for lysosomal 
degradation during its biosynthesis, and enables hepatic 
LDL clearance [280, 295, 296]. In marked contrast, 
Kjølby et  al. showed the opposite correlation; i.e. low 
Sortilin expression equals low LDL cholesterol [297]. The 
authors demonstrated that Sortilin facilitates the forma-
tion and hepatic export of ApoB10-containing lipopro-
teins. Another study reported that Sortilin also supports 
secretion of Proprotein convertase subtilisin/kexin type 
9 (PCSK9), which targets the LDL receptor for degrada-
tion, thereby further increasing plasma cholesterol [298]. 
The confusion for the discrepant results remains, with a 
similar number of papers arguing for a positive and neg-
ative correlation between Sortilin expression and plasma 
lipids, respectively. The conflicting results from animal 
models have been largely discussed [276, 277], and might 
be explained by the strong interplay between glucose 
and lipid metabolism, which is highly regulated by the 
composition of diet, weight, age, genetic background, 
and hormonal stimulation. Moreover, Sortilin expression 
itself is greatly regulated by metabolic activity and, as 
described in the previous sections, even minor changes 
in receptor expression may have substantial functional 
implications, similarly to SorLA.

To conclude, there is substantial evidence that Sortilin 
regulates a number of activities involved in Aβ produc-
tion and clearance, neurotrophic signaling, tau pathology, 
prion-related spreading, as well as metabolic disorders 
that are comorbid with AD. The complex modalities by 
which Sortilin operates with some functions being pro-
tective and others detrimental, may explain why certain 
SORT1 SNPs reduce whereas others increase the AD risk.
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SorCS1 biology and its role in AD
SorCS1 was identified as the first SorCS protein from 
mouse brain by Hermey et al. in 1999 [129], followed by 
SorCS2 and SorCS3 in 2001 [123, 131]. SorCS1, 2 and 3 
hold high structural homology, and thus they likely par-
tially overlap in their functions when expressed in the 
same tissue. They mostly differ from each other in their 
cytoplasmic tail, which interacts with various adaptors 
to control cellular trafficking and signaling [121, 131]. 
SorCS1 is unique as it exists in (at least) five isoforms, 
SorCS1a-e, that vary in their cytoplasmic tails and in 
their expression pattern. When overexpressed, murine 
SorCS1a undergoes rapid internalization via its binding 
to clathrin adaptor AP-2, whereas SorCS1b predomi-
nates at the plasma membrane, and shows little traffick-
ing activity [299]. Rather, SorCS1b may engage in signal 
transduction given that its cytoplasmic tail contains con-
sensus sequences for a SRC Homology 3 Domain (SH3) 
binding motif. SH3 motif is recognized by protein tyros-
ine kinases including Src family such as Src, Fyn, Blk or 
Lyn, which regulate many cellular functions including 
cell proliferation, differentiation, migration, and sur-
vival [300]. SorCS1c can bind VPS35, the core protein of 
the retromer complex that controls transport out of the 
endosomal compartment but its intracellular domain also 
harbors interaction site for adaptors involved in cellular 
signaling [106, 133, 148, 299]. As a consequence, SorCS1 
is present both in the soma, dendritic vesicles, and at the 
plasma membrane in neurons [107, 301, 302] (Fig. 6). The 
physiological functions of the receptor variants are only 
slowly emerging and needs to be investigated in more 
detail. SorCS1 can form homodimers as well as heterodi-
mers with SorCS2 and -3 but the functional consequence 
has not been studied [303]. However, the N-terminal 
propeptide of human SorCS1 can bind Sortilin, which 
substantially reduces the ability of Sortilin to mediate cel-
lular uptake of its ligands and hampers its ability to sup-
port signaling by ciliary neurotrophic factor [304] (Fig. 6, 
BOX A). SorCS1 can also bind SorLA and VPS35, while 
Sorcs1−/− mice exhibit decreased expression of these two 
genes in the brain [92]. SorCS1 shows the highest expres-
sion in neurons from cerebral cortex, amygdala, hip-
pocampus, and thalamus, while it is mostly expressed in 
forebrain during mouse development [122, 301]. SorCS1 
expression is very dynamic and can be regulated by syn-
aptic activity [121, 301]. For example, kainic acid, a glu-
tamate analog, induces high expression of SorCS1 in the 
hippocampus [121, 301]. More physiologically, SorCS1 
has been detected as the most correlated gene expressed 
in mouse hippocampus after novel object recogni-
tion performance [305]. Rao-Ruiz et  al. further showed 
that SorCS1 is upregulated 220-fold in engram cells, 
the cells that encode a specific memory during memory 

consolidation [126]. Whether this upregulation is specific 
to one or more of the splice variants is not known.

SorCS1 involvement in learning and memory is further 
supported by several human genetic studies that linked 
SNPs in SORCS1 gene to memory retention [306] and 
the risk of AD [83, 84, 108, 307–312]. Accordingly, gene 
expression analysis of amygdala from 19 AD patients 
revealed significantly lower SORCS1 expression com-
pared to healthy controls [108]. Furthermore, SORCS1 
genetically interacts with SNPs in APOE [313, 314], 
SORCS2 and SORCS3 [84], respectively, to increase AD 
risk suggesting that these proteins functionally associ-
ate in shared actions. Several SNPs in SORCS1 have also 
been linked to neurodegenerative transmissible spongi-
form encephalopathies caused by accumulation of PrPsc. 
Given that prion seeding characterizes many deteriorat-
ing brain disorders, it may suggest a broader involvement 
of SorCS1 in neurodegenerative processes, similarly to 
Sortilin [315].

SorCS1 interactions in amyloidogenic cascade
There are several functional studies uncovering the 
importance of SorCS1 in Aβ metabolism. They demon-
strated that APP can physically interact with both the 
SorCS1a, -b, and -c isoforms suggesting that SorCS1 may 
function in trafficking of and potentially also signaling 
by APP [106–108, 133]. In accordance with a function in 
cellular sorting, SorCS1c but not SorCS1b retains APP 
from insertion into anterogradely transported vesicles in 
hippocampal neurons [101, 107] (Fig. 6, BOX B). Knock-
down of SorCS1a and -c expression in neuroblastoma 
cells increase Aβ production [107, 108]. Furthermore, the 
disruption of SorCS1c internalization motif YAQM in its 
cytoplasmic tail perturbed APP sorting through endo-
somal compartments, decreased retrograde TGN traf-
ficking, and increased Aβ production, thus resembling 
SorCS1 loss of function [106]. On the other hand, over-
expression of SorCS1a, -b, and -c decreased levels of Aβ, 
as well as lowered levels of secreted APP products [92, 
106, 108] (Fig.  6, BOX D). Studies in SorCS1 knockout 
mice have confirmed many of the in vitro observations. 
Hence, receptor deficiency translated into an increase in 
APP C-terminal fragments in brain of females but appar-
ently the male mice were not affected by SorCS1 deletion 
[106]. This is especially interesting given that the genetic 
association between SorCS1 and AD was strongest for 
women. Strikingly, Hermey et al. recently found that the 
progressive amyloid plaque formation in aged AD mice 
(APP/PS1) decreases the levels of SorLA, SorCS1, and 
SorCS3 in frontal cerebral cortex, and to a minor extent 
also in hippocampus, forming a virtuous self-amplifying 
loop [101]. It has also been reported that SorCS1 itself is 
a substrate for PSEN-dependent γ-secretase cleavage [91] 
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and ADAM17 α-secretase, which will downregulate the 
receptor expression, adding yet another loop to the com-
plex function of SorCS1 (Fig. 6, BOX E) [115].

SorCS1 in AD‑related pathology and associated disorders
Type 2 diabetes mellitus (T2DM) is characterized by 
hyperglycemia and insulin resistance. T2DM is com-
monly comorbid with AD, increasing the risk of AD 

diagnosis by approximately 2–3 folds [316–318]. On 
contrary, approximately 80% of AD patients exhibit insu-
lin resistance and impaired glucose handling [319–321], 
suggesting that, likely, there are common molecular path-
ways involved in both disorders. Hyperinsulinemia is 
associated with impaired cognitive performance, while 
hyperglycemia increases Aβ accumulation, exacerbate 
oxidative stress, neuroinflammation, and mitochondrial 

Fig. 6  SorCS1 localization and signaling relevant to AD. SorCS1 localization is restricted to cell soma and dendrites. Box A) SorCS1 forms 
homodimers, but also heterodimers with Sortilin via SorCS1 prodomain, and with SorCS2/3. Box B) SorCS1 binds APP in vesicular compartments; 
however, SorCS1 variants control APP sorting in different manner. While SorCS1b mediates APP trafficking towards PM, SorCS1c blocks it. Box C) 
SorCS1 binds TrkB, which inhibits TrkB activation by BDNF stimulation. SorCS1 might be responsible (marked “?”) for TrkB sorting between TGN, PM 
and recycling pathway. Box D) This figure schematizes the possible consequences of SorCS1 loss and gain of function. In homeostatic state (middle 
panel), SorCS1 binds APP and the retromer complex via its VPS35 subunit. This protein complex is internalized and later recycled into TGN. SorCS1c 
remains in complex with APP and retromer, which retains APP in TGN, and subsequently regulates its cleavage by BACE1 and γ-secretase. This way 
SorCS1 could control the physiological levels of secreted sAPPβ and Aβ. The abortion of SorCS1c-VPS35 interaction (left panel) enhances the APP 
anterograde trafficking causing an increased production and release of neurotoxic Aβ and sAPPβ. SorCS1 overexpression (OE; right panel) seems 
to strengthen the APP retention in TGN, thus significantly reducing the production and secretion of Aβ and sAPPβ, which has a neuroprotective 
effect against the formation of Aβ oligomers. Box E) SorCS1 is a substrate for PSEN1/2 and ADAM17, which attenuates its protein levels. However, 
molecular mechanisms involved in this regulation are unknown. Box F) SorCS1 sorts and recycles a number of synaptic receptors including 
Neurexin, AMPAR or Neuroligin at the postsynaptic side, by which it establishes the correct axon-to-dendrite polarization of synaptic proteins, 
processes critical for correct neurotransmission, connectivity, and synaptic plasticity
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dysfunction, ultimately leading to impaired neuronal 
integrity and neurodegeneration. In recent years, this 
shared comorbidity is sometimes called Type 3 diabetes 
mellitus [321–325]. Interestingly, SorCS1 regulates insu-
lin metabolism and secretion as it facilitates the release 
of insulin from pancreatic β cells [326], in contrast to 
SorLA which establishes cellular sensitivity to insulin by 
trafficking the insulin receptor to the plasma membrane 
[208]. Therefore, it is not surprising that impairments in 
SorCS1 activity are strongly associated with Type 1 and 
Type 2 diabetes [327–331]. Strikingly, T2DM has been 
identified as a contributing risk factor to AD etiology 
patients carrying SNPs in SorCS1 [332]. Put together, 
these data suggest that aberrant SorCS1 function in the 
brain might fail to not only integrate the APP sorting and 
processing, but also the signaling of another contributing 
trophic factor, insulin. Impairments in SorCS1 can thus 
lead to the pathophysiological events that are behind the 
AD onset and progressive neurodegeneration.

SorCS1 in AD‑related neurotrophin signaling and synaptic 
transmission
A function of SorCS1 in neurotrophin signaling has 
been only sparsely studied. When exploring SorCS1 
interactome using recombinant SorCS1-ecto-His pro-
tein as a bait in synaptosomes from mouse brain, Savas 
et  al. identified TrkB as a candidate binding partner 
of SorCS1 [133]. In marked contrast to mice lacking 
SorLA [143] or Sortilin [104, 142], Subkhangulova et al. 
further showed increased TrkB signaling in a knock-
out mouse line that is devoid in both Sorcs1 and Sorcs3 
expression [144]. The authors proposed that SorCS1 
binds TrkB and likely facilitates its intracellular traffick-
ing and signaling abilities (Fig. 6, BOX C). Unfortunately, 
BDNF signaling was not studied in neurons deficient in 
SorCS1, precluding any conclusions as to whether the 
effect was reliant on this receptor. Better investigated 
is the function of SorCS1 in binding of the presynaptic 
cell adhesion molecules Neurexins, and the regulation 
of synapse structure. Decreased levels of synaptic mem-
brane proteins like Neurexins [333–335] and enlarge-
ment of early endosomes [336] have been proposed as 
novel biomarkers for AD diagnosis. The trans-binding 
of Neurexins expressed on the presynapse to Neuroli-
gins that are present at the postsynapse, is required for 
synaptogenesis and synaptic stabilization. However, 
Neurexins can also bind AβO, which disrupts the inter-
action with Neuroligins, leading to severe damages of 
excitatory synapses [337, 338]. Recently, Joris de Wit’s 
group described that SorCS1 is a key sorting molecule 
regulating the axonal-dendritic polarization of synaptic 
proteins, a critical feature for neuronal wiring and syn-
aptic plasticity [133, 302]. They discovered that SorCS1 

localizes into early and recycling endosomes, where it 
controls trafficking of Neurexin and AMPAR to the neu-
ronal surface. Since SorCS1 expression must be tightly 
regulated, the overexpression and the loss of SorCS1 
activity leads to perturbed sorting and shifted ratio in 
the localization of Neurexin-1α, AMPARs, Neuroligin, 
and other polarized synaptic adhesion molecules at the 
axonal and dendritic surfaces [133, 302] (Fig. 6, BOX F). 
The imbalance in synaptic proteins distribution is caused 
by impaired SorCS1 interaction with Rab11-family-
interacting protein 5 (Rip11), which governs the transi-
tion from early endosomes to Rab11-positive recycling 
endosomes. The alterations translate into reduced gluta-
matergic and GABAergic neurotransmission in cortical 
layer 5, an area where neurons are substantially affected 
in AD [133]. This is in accordance with observation that 
fluctuations in Neurexin and AMPA receptor activ-
ity sways the balance between excitatory and inhibitory 
neurotransmission in AD [339]. Notably, GABAergic 
and AMPA receptor neurotransmission is compromised 
in AD patients, and such alterations are associated with 
the cognitive decline [340–342]. Therefore, the impair-
ments in SorCS1-dependent APP catabolism, trafficking 
of adhesion molecules, neurotransmitter receptors and 
trophic receptors may jointly cause synaptic dysfunc-
tion, synapse loss and neurodegeneration in AD patients. 
Unfortunately, the molecular mechanisms of SorCS1 
signaling are still largely unknown. Future studies should 
thus functionally address the spectra of SorCS1 isoforms 
in relations to its binding partners in order to fully under-
stand the regulatory mechanisms directly or indirectly 
involved in AD pathogenesis.

SorCS2 biology and its role in AD
SorCS2 was described by Rezgaoui et al. in 2001 as a gene 
dynamically expressed during mouse brain development, 
particularly in dorsal thalamus and midbrain floorplate 
[123]. In adulthood, SorCS2 is highly expressed in hip-
pocampus (particularly in dentate gyrus, CA2 and CA3 
regions), piriform cortex, and in striatal medium spiny 
neurons [121, 123, 343, 344]. It is localized mostly in 
somatic vesicles, but also in neurites, dendritic spines, 
filopodia-rich projections, and in the growth cone of 
projecting axons [36, 54, 55, 132]. Like other VPS10p-
D receptors, SorCS2 engages in cellular trafficking and 
signaling controlled by its expression and the presence 
of co-receptors and ligands. Expression of SorCS2 can 
be altered by external stimuli, which was demonstrated 
by deep brain stimulation of subthalamic nucleus [127] 
(Fig. 7, BOX B). This feature is crucial for acute morpho-
logical responses, such as neurite regrowth, synaptogen-
esis as well as disassembling of synapses, and the control 
of synaptic plasticity [55]. Nykjaer’s group showed that 
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SorCS2 exists in three active isoforms: an immature pro-
form, and mature single- and two-chain variants. These 
isoforms are generated by sequential proteolytic cleav-
age, and are presented uniquely by neurons and glial cells 

during intercellular communication in order to activate 
either trophic (single-chain) or pro-apoptotic (two-chain) 
signaling [132] (Fig.  7, BOX A). The receptor can also 
form homodimers which may adopt at least two distinct 

Fig. 7  SorCS2 signaling in neuronal networks relevant for AD. SorCS2 is found in neural soma, dendrites and axons. Box A) SorCS2 exists in three 
isoforms that have different signaling profiles. SorCS2 is initially produced as a proform, which can be cleaved by Furin from its propeptide, 
giving rise to a single-chain receptor. The single-chain can be further cleaved within the leucine-rich domain, producing a two-chain isoform. 
Box B) SorCS2 expression changes upon external stimuli, which affects synaptic plasticity. Box C) SorCS2 interactions with neurotrophins. 1. 
SorCS2 single-chain binds p75NTR and Trio, which mediates Rac1 and Fascin signaling. Fascin activation leads to F-actin filaments assembly and 
growth cone outgrowth. 2. ProBDNF or proNGF binding to SorCS2 leads to dissociation of Trio causing Rac1 signaling inactivation, actin filaments 
disassembly and retraction, and grow cone collapse, which is important for synaptic pruning and neuronal wirening. 3. Propeptide of BDNF-WT 
binding to SorCS2 does not affect the growth cone outgrowth. 4. Propeptide of BDNF with Val66Met mutation exhibits high binding affinity to 
SorCS2, subsequently dissociating Trio, and inhibiting Rac1 signaling. This pathway promotes elimination of spines and loss of synaptic adaptability. 
5. SorCS2 two-chain binds p75NTR, which mediates proBDNF-dependent apoptosis. Box D) SorCS2 controls synaptic plasticity. Upon proBDNF 
release (1a.), SorCS2 mediates synaptic weakening (4a.) via its interaction with proBDNF and p75NTR (2a.), which induces long-term potentiation 
(LTD; 3a.). SorCS2 and the BDNF receptor TrkB are located outside of the postsynaptic density (PSD). Upon BDNF release (1b.), SorCS2 and TrkB 
relocate to the synapse (2b.) where they interact. TrkB binds BDNF, and undergoes phosphorylation and activation (3b.), subsequently inducing LTP 
(4b.) and synaptic strengthening (5b.). Box E) SorCS2 interacts with synaptic receptors GluN2A/2B, EAAT3, and TrkB at PSD of glutamergic neurons, 
and regulates their anterograde and retrograde trafficking. Impairments in these processes lead to increased cellular stress and neurodegeneration
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conformations that is controlled by binding of its ligands 
[135, 303]. Potentially, this might modify its interaction 
with co-receptors or cytosolic adaptor proteins, and 
thus regulate SorCS2-dependent signaling and sorting. 
Among its many functions, SorCS2 facilitates intracellu-
lar sorting and distribution of synaptic proteins, and pro-
tects neurons from oxidative stress and neuronal death 
[344, 345]. It also transduces signals that mediate neu-
ronal remodeling and synaptic plasticity [54, 55, 132]. As 
such, it has been genetically linked to a number of psy-
chiatric and neurodegenerative disorders [344]. Human 
genetic studies uncovered more than 18 SNPs in SORCS2 
that were associated to AD [83, 84]. They also observed 
epistatic interactions with SorCS1 and SorCS3 in AD 
patients [84]. Despite the genetic data and established 
functions in signaling and neurotransmission, SorCS2 is 
the least studied VPS10p-D receptor when it comes to 
AD. In the following paragraphs we will discuss the pos-
sible molecular and functional implications of SorCS2 in 
AD pathogenesis.

SorCS2 in AD‑related neurotrophin signaling and synaptic 
transmission
In the adult brain, the major function of SorCS2 is to 
govern synapse morphology, synaptic plasticity, and 
neurotrophin signaling; processes crucially involved in 
AD. SorCS2 binds and mediates intracellular sorting 
and synaptic localization of the NMDA receptor subu-
nits GluN2A and GluN2B [344, 346]. Strikingly, mass 
spectrometry analysis of rat brains revealed that SorCS2 
also interacts with Neurexin-1β [133]. These studies thus 
manifest a fundamental role of SorCS2 in synaptogen-
esis, synaptic proteome composition, and synapse sta-
bility. Importantly, SorCS2 might also regulate cellular 
responses to stress. Malik et  al. reported that SorCS2 
controls the functional expression of the excitatory 
amino acid transporter EAAT3 and protects neurons 
from oxidative stress, excitotoxicity, and neurodegen-
eration [345] (Fig.  7, BOX E). SorCS2 involvement in 
cellular fitness has been further demonstrated by Gos-
podinova et  al. who showed that SorCS2 loss enhances 
the incidence of Topoisomerase II-dependent DNA 
double-strand breaks in hippocampal neurons, which 
subsequently reduced neuronal viability [347]. This is 
interesting since DNA breaks accompany aging, and are 
common in neurodegenerative conditions. Recent study 
by Chaves et  al. suggested that DNA polymorphisms in 
SORCS2 and other members of the VPS10p-D family are 
causative to the neurodegenerative disorder Hunting-
ton’s disease [348]. Indeed, SorCS2 has been functionally 
associated with Huntington’s disease via its interaction 
with mutated huntingtin protein and its impaired sort-
ing [344]. Combined, there is a substantial evidence that 

SorCS2 might be involved in several aspects of neurode-
generative processes including its neuroprotective role 
against cellular stress.

Particularly well studied is SorCS2 function in signal-
ing established by pro- and mature neurotrophins, which 
is illustrated in Fig.  7, BOX C. ProNGF and proBDNF 
bind to SorCS2 at the plasma membrane, and both sin-
gle- and two-chain SorCS2 variants can be in complex 
with a proneurotrophin ligand and p75NTR [132], forming 
higher-order signaling assembly [135]. During neuronal 
development, the SorCS2-p75NTR complex is essential for 
proBDNF and proNGF to induce growth cone collapse of 
extending neurites thereby controlling neuronal wiring 
and connectivity. Notably, this activity is specifically reli-
ant on the single-chain isoform of SorCS2. In contrast, 
two-chain SorCS2 is required for pro-NTs-dependent 
induction of glial cells apoptosis [132]. Binding of the 
cytosolic guanine-nucleotide exchange factor Trio to 
SorCS2-p75NTR is required for the retraction of extending 
axon [55]. As demonstrated for proNGF, the engagement 
of the SorCS2-p75NTR complex with a proNT displaces 
Trio and downregulates Rac1 signaling while activating 
Protein kinase C. Jointly, these events destabilize actin 
filaments, and lead to impaired filopodia retraction and 
subsequent growth cone collapse [55]. If defective, such 
impairments perturb neuronal connectivity and synapse 
function, causing increased neuronal vulnerability and 
neuronal death in the aging brain [132, 349–351].

The biological function of single-chain SorCS2 is not 
limited to the neurodevelopmental stage. In the postna-
tal hippocampus, binding of proBDNF released from the 
presynapse towards the SorCS2-p75NTR complex located 
in the postsynapse will induce long-term depression 
(LTD) and synaptic weakening [54]. Notably, SorCS2 can 
engage with TrkB to enable the local recruitment of TrkB 
from extrasynaptic sites to PSD95-positive domains, 
which is necessary for induction of long-term potentia-
tion (LTP) and synaptic strengthening by mature BDNF 
[54, 352] (Fig. 7, BOX D). Studies by Mizui et al. further 
revealed that cleaved propeptide of BDNF (pBDNF) can 
be independently secreted in the activity-dependent 
manner to facilitate LTD [353]. Strikingly, the propep-
tide containing the naturally occurring pBDNF-Val66Met 
mutation, which is associated with memory impairment 
and predicts cognitive decline in AD patients [37–39], 
binds to SorCS2 with a greater affinity than pBDNF-WT 
[139]. While SorCS2 binding to pBDNF-WT increases 
LTD [353], the interaction with the pBDNF-Val66Met 
abolishes LTD as it induces Rac1 downregulation fol-
lowed by the loss of Trio-positive dendritic spines, and 
acute growth cone retraction [36, 139] (Fig.  7, BOX C). 
This regulation is followed by reduced dendritic spine 
density in CA1 region of hippocampus, altered prelimbic 
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projections and maturation of fear extinction circuitry 
[36, 139, 353].

So far, SorCS2 has not been studied in context of the 
amyloidogenic pathways. However, its multiple activities 
in neuronal wiring, synapse dynamics, neurotransmis-
sion, and synaptic plasticity governed by proNT-SorCS2-
p75NTR and BDNF-SorCS2-TrkB signaling and by 
trafficking of neurotransmitter receptors and transport-
ers, clearly demonstrate the critical role of SorCS2 in 
neuronal integrity and functionality. Although distur-
bances in SorCS2 increase neuronal vulnerability [344] 
and may precipitate earlier AD onset and propel dis-
ease progression for those at risk, functional studies are 
required to address whether SorCS2 may also directly 
impact on amyloid and Tau biology.

SorCS3 biology and its role in AD
Despite very limited knowledge about the molecular 
function of SorCS3, there is substantial evidence for its 
implications in AD. Similarly to SorCS1 and -2, SorCS3 
exhibits spatiotemporal expression during develop-
ment. In the adulthood, SorCS3 is expressed across the 
brain, with the highest expression in the CA1 region of 
hippocampus and in cerebral cortex [121, 122]. SorCS3 
mostly localizes at the plasma membrane where it binds 
its ligands. Using single-particle cryogenic electron 
microscopy at neutral pH, Dong et al. recently suggested 
that human SorCS3 exists mostly as a dimer since they 
observed 79% of dimer particles compared to 21% of 
monomer particles [156]. Interestingly, SorCS3 mono-
mer contained 10CC domain in different orientation 
than the dimers. They detected three different conforma-
tions of the dimers, and suggested that SorCS3 exhibits 
dynamic conformational changes, which differed from 
SorLA and SorCS2, especially in the possible ligand-
binding features. However, this structural study is still 
quite preliminary.

SorCS3 interacts with its binding partners even prior 
to its maturation by propeptide cleavage [136]. The 
SorCS3 cytoplasmic tail is responsible for its intracellu-
lar trafficking as it navigates SorCS3 into dendrites and 
to a lower extent also into axons [122] (Fig. 8). The major 
function of SorCS3 is to control synaptic structure and 
function, via binding of scaffold proteins and control-
ling glutamate receptor trafficking [354, 355]. However, 
SorCS3 involvement in neurotrophin signaling has been 
proposed [136, 144]. In 2013, Reitz et  al. described for 
the first time that SORCS3 is genetically associated to 
AD (12 SNPs). An epistatic analysis of the AD cohort 
revealed a strong interaction of SORCS3 mutations with 
those in SORCS2 (24 SNP pairs) and SORCS1 (8 SNP 
pairs). These mutations were all located in introns 1 and 
2, thus the introns contiguous to the exons encoding the 

ligand-binding VPS10 domain (similarly to SNPs found 
in SORCS1 and SORCS2) [84]. Further, a recent whole 
genome sequence analysis of a multiethnic cohort com-
prising 11,000 women, found a strong genome-wide sig-
nificant association between SORCS3 and dementia with 
an odds-ratio of no less than 4.4. Transcriptome analy-
sis confirmed that SorCS3 expression is indeed substan-
tially decreased in the context of AD [356]. These studies 
found that SorCS3 is consistently downregulated in AD 
[84, 357]. Recently, the Psychiatric Genomic Consor-
tium identified SORCS3 as a shared top-risk gene across 
8 different psychiatric disorders highlighting the pleio-
tropic though unclear function of SorCS3 in healthy and 
diseased human brain [90]. This is interestingly given 
a GWAS analysis from a Han Chinese cohort of AD 
patients with major depressive disorder further identified 
675 SNPs in SORCS3 gene, thus bridging these two com-
monly comorbid disorders [358, 359] with one risk factor 
[90, 360]. In the following paragraphs, we will discuss the 
direct and indirect functional links of SorCS3 to AD.

SorCS3 interactions in amyloidogenic cascade
Ni et al. found a differential expression of SORCS3 in AD 
brains when comparing hippocampus, entorhinal cor-
tex, frontal cortex, and temporal cortex [360]. Addition-
ally, Reitz et al. showed that expression of three SORCS3 
exons (exons 10, 17 and 21) is reduced in the amygdala of 
AD patients. In contrast, the occipital lobe and cerebel-
lum that also express SORCS3 were unaffected by the dis-
ease [84]. The authors proposed that SorCS3 is involved 
in the amyloidogenic pathway by regulating the activity 
of γ-secretase and APP processing. Indeed, overexpres-
sion of SorCS3 leads to downregulation of γ-secretase 
activity, whereas SorCS3 knock-down causes an increase 
in γ-secretase processing of APP [84] (Fig. 8, BOX B). A 
recent study by Hermey et al. investigated SorCS3 expres-
sion in specific brain regions during healthy aging and 
after amyloidosis. They compared SorCS3 expression in 
aging wild-type mice with APP/PS1 mice that model AD, 
and develop Aβ plaque within the first year. They found 
that amyloid plaques formation, but not aging, reduces 
SorCS3 expression in the frontal cerebral cortex, with no 
change in the hippocampus [101]. These data suggest that 
the AD pathogenesis is associated with impaired SorCS3 
activity in a brain region-specific manner.

SorCS3 in AD‑related neurotrophin signaling and synaptic 
transmission
During development, SorCS3 acts as a downstream effec-
tor of Transcription factor T-box brain1 (Tbr1) expres-
sion that restricts dendritic projections towards their 
synaptic targets [361] (Fig. 8, BOX A). Immature as well 
as cleaved SorCS3 receptor can bind proNGF and NGF 
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in  vitro but the functional consequences have not been 
explored [136]. However, a recent paper by Zhang et al. 
suggests that SorCS3, as opposed to Sortilin and SorCS2, 
prevents p75NTR signaling by increasing its internaliza-
tion and transport to lysosomes for degradation [362]. 
The implications for proNGF signaling, however, were 
not studied. As proposed for SorCS1, SorCS3 can physi-
cally interact with TrkB which abrupts BDNF-dependent 
TrkB activity in the hypothalamus, and likely contrib-
utes to energy metabolism balance [144] (Fig. 8, BOX C). 

Unfortunately, as for SorCS1, the functional impact and 
mechanistic insight of this crosstalk are not clear since 
only mice devoid in both Sorcs1 and Sorcs3 were studied. 
However, TrkB was enriched in synaptosomes in brain 
extracts of the double Sorcs1; Sorcs3 knockout mice while 
it was reduced in sorting vesicles. Accordingly, BDNF-
induced TrkB phosphorylation was stronger in cultured 
cortical neurons from mice lacking both receptors [144]. 
Hence, the VPS10p-D receptors jointly modulate all key 
functions of BDNF signaling. Strikingly, they do so by 

Fig. 8  SorCS3 localization and AD-related signaling. SorCS3 predominantly displays somatodendritic localization, especially at the plasma 
membrane where it binds its ligands. It is also found in axons but at minor extent. Box A) SorCS3 is a downstream effector of transcription factor 
Tbr1, which restricts dendritic projections to their synaptic targets during development (left panel). Moreover, SorCS3 transcription is inducible 
upon various external stimuli such as LTP, seizures or fear conditioning (right panel). Box B) SorCS3 signaling is involved in amoyloidogenic pathway. 
SorCS3 overexpression (OE) reduces γ-secretase activity and APP processing resulting in lower production and secretion of Aβ. SorCS3 gain of 
function is thus neuroprotective against accumulation of Aβ oligomers. In contrast, SorCS3 downregulation (KD) results in an enhanced γ-secretase 
activity and thus larger formation and secretion of Aβ into the extracellular space. Thus, SorCS3 loss of function is neurotoxic as it promotes the 
amyloidogenic pathway. However, molecular mechanisms behind these observations are unknown. Box C) SorCS3 can signal upon its ligands’ 
binding already as a proform. Both SorCS3 isoforms bind proNGF and NGF, however the functional consequences remain unknown. SorCS3 can 
bind TrkB, by which it blunts BDNF-mediated TrkB activation. It is believed that this signaling axis is important for energy metabolism balance. Box 
D) SorCS3 signaling at the synapse is critical for memory formation and consolidation of excitatory neurons. SorCS3 resides at the postsynaptic 
side of excitatory neurons where it interacts with PSD95 and probably with PICK1 (the interaction was shown only in the HEK293 cells), which was 
suggested to mediate the endocytosis and sorting of AMPA receptors, a critical step for GluR- and NMDAR-dependent long-term depression (LTD), 
spatial learning and fear extinction memory. Notably, Sorcs3 expression is upregulated in engram neurons during memory formation
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controlling specific steps in TrkB trafficking (for Sortilin 
also demonstrated with TrkA and TrkC [142]). Sortilin 
enables the anterograde transport of TrkB from the soma 
along axons to the synapse [142]. SorLA can do the same 
but it also facilitates its retrograde transport, potentially 
in signaling endosomes [143]. Locally at the synapse, 
SorCS2 takes over the TrkB from Sortilin and SorLA to 
target it from extrasynaptic sites to postsynaptic densities 
[54]. In marked contrast to the rest of the family, SorCS1 
and/or SorCS3 impedes BDNF signaling by removing 
TrkB from the synapse [144]. In all, the receptors jointly 
control and fine-tune BDNF signaling; a key regulator of 
neuronal integrity and vulnerability.

Aside from these observations, SorCS3 relations to 
neurotrophic signaling and plasticity remain unknown. 
Recent studies highlighted SorCS3 as an important 
regulator of synaptic events in excitatory neurons but 
with only minimal impact on the inhibitory input [354, 
355]. Moreover, SorCS3 deficient mice exhibit loss of 
NMDAR and mGluR-dependent LTD in the hippocam-
pal CA1 region, while LTP is preserved. These mice have 
no sign of brain atrophy but respond to repetitive stim-
ulation with synaptic facilitation and reduced synaptic 
depression; a phenotype that progressively worsened as 
the animals aged [355]. This is particularly interesting 
as SorCS3 expression is regulated by neuronal activity 
including LTP [124] and seizures [125]. Fear condition-
ing enhances Sorcs3 expression by no less than 170-fold 
in hippocampal engram cells arguing that SorCS3 sign-
aling and/or sorting contributes to memory formation 
and consolidation [126]. Indeed, studies using Sorcs3 KO 
mice reported that the animals exhibited impaired spa-
tial learning but increased fear extinction [354]. Interest-
ingly, protein levels of PSD95, AMPA receptors, NMDA 
receptors, mGluR5, p75NTR, and TrkB are not changed in 
postsynaptic density fraction extracted from hippocampi 
of Sorcs3 KO mice [354]. However, Breiderhoff et  al. 
showed that SorCS3 crosstalks with some synaptic pro-
teins. SorCS3 localizes at the postsynaptic density where 
it binds PSD95 via its putative PDZ domain binding 
motif in its cytoplasmic domain [354]. The authors also 
proposed that SorCS3 interacts with an adaptor molecule 
PICK1 by which it controls the necessary removal of the 
AMPA receptors from the postsynaptic side [354], simi-
larly to SorCS1 [133]. This study was further supported 
by electrophysiological observations that LTD defi-
ciency in CA1 region is age-dependent, and that the loss 
of SorCS3 impacts on AMPA receptors mobility [355]. 
SorCS3 actions at postsynapse of excitatory neurons dur-
ing memory formation are depicted in (Fig. 8, BOX D).

Given the genetic association to AD and the important 
functions of SorCS3 in APP processing, synaptic trans-
mission, and synaptic retraction of excitatory neurons 

involved in learning and memory, additional studies are 
merited to examine its role in the context of AD. SorCS3 
remains the least studied of the VPS10 p-D receptors. 
Future studies should thus: 1) Determine SorCS3 binding 
partners in amyloidogenic pathways and synaptic events, 
and 2) describe the molecular mechanisms by which 
SorCS3 regulates synaptic transmission in the healthy 
and AD brain. Moreover, SorCS3 possible interaction 
with the neurotrophic signaling deserves more attention 
as the rest of this receptor family serves critical functions 
in neurotrophin-dependent neuronal survival and death.

Therapeutic perspectives of VPS10p‑D receptors in AD
It remains unclear whether certain neurons in AD brains 
become vulnerable mostly due to intrinsic or extrin-
sic factors. The largest therapeutic potential used to lie 
within blocking the amyloidogenic cascade, and/or dis-
solving the amyloid plaques and Tau-containing tangles. 
Unfortunately, the current strategies are inefficient and 
do not stop the disease progression. In this review, we 
illustrated that the AD pathogenesis has been tightly con-
nected with impaired activity of VPS10p-D receptors in 
neurons. However, not much is known about VPS10p-D 
receptors signaling in the context of intercommunication 
between cell types such as microglia-neuron, a feature 
largely implicated in AD. Microglia are non-neuronal 
cells that support neurons by secreting trophic factors 
and performing phagocytic clearance during synapse 
remodeling and tissue repair. Together with astrocytes 
they are responsible for ApoE production which controls 
the deposition and clearance of Aβ peptides. With AD 
progression and increased Aβ accumulation, activated 
microglia compromise their phagocytic abilities, alter 
their secretome, and mediate chronic neuroinflamma-
tion leading to synaptic loss and AD neurodegeneration. 
The possession of ApoE4 allele triggers and sustains the 
microglia-driven neuroinflammation. Enhancing phago-
cytosis and decreasing neuroinflammation in AD patients 
has become a new therapeutic target, even though this 
cell communication remains a black box [363, 364]. Since 
neuronal VPS10p-D receptors closely and diversely inter-
act with ApoE, Aβ and synaptic proteins, understanding 
the molecular mechanisms involved in this intercellular 
communication is key when targeting AD pathogenesis.

The importance of VPS10p-D receptors in neuro-
trophic signaling during CNS development and homeo-
stasis also possesses a high translational value. Current 
advances in regenerative medicine show that reactivating 
the developmental features related to neurotrophic sign-
aling during trauma and neuroinflammation promotes 
healing and improves the cognitive decline as it provides 
substantial functional recovery [365]. The potential of cell 
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replacement therapies in AD represents a symptomatic 
solution with limited efficacy due to the broad spread of 
neurodegeneration. However, recent studies uncovered 
that elevating the neurotrophin levels (such as BDNF, 
NGF and GDNF) in AD mice supports neuronal inte-
gration of grafted cells into the circuits, which improves 
the cognitive deficits [366, 367]. Recent work from Choi 
et al. combined pharmacological and genetic approaches 
to elevate BDNF levels in the AD mouse model (5xFAD) 
to trigger adult neurogenesis in hippocampus. Indeed, 
this strategy improved cognitive performance of the mice 
[368]. Similarly, conditional BDNF delivery provided by 
astrocytes rescued dendrite outgrowth, neuronal connec-
tivity and memory deficits in another AD study [369]. As 
boosting the BDNF concentration increases the neuro-
protective levels of SorLA [137], such therapy could pro-
vide a relief of the AD symptoms.

Neurotrophins and Trk receptors facilitate a vast spec-
trum of functions in the CNS, and thus they represent a 
difficult therapeutic target. We therefore suggest that novel 
pharmacological interventions should instead aim for their 
binding partners, the VPS10p-D receptors, because they 
control more defined processes. Promoting the interac-
tion between Trk receptors and VPS10p-D receptors 
might have positive effects on neurotrophin-dependent 
cell survival. Sortilin KO mice are resistant to acute and 
senescent neurodegeneration [53]. Therefore, drug dis-
covery of Sortilin antagonists that block the ability of Sor-
tilin interaction with p75NTR also represents a novel way 
of intervention against progressive cell death in AD. This 
approach has been proven functional for treating another 
neurodegenerative disease, frontotemporal dementia 
(FTD) which exhibits impaired Sortilin-progranulin sign-
aling axis [272, 370]. Currently, there is an ongoing FTD 
immunotherapy entering Phase 3 clinical trials that uses 
a monoclonal anti-human Sortilin antibody called AL001 
(Identifier: NCT04374136) [371]. If approved, this treat-
ment could be expanded to AD patients.

Indeed, the various molecular interactions of VPS10p-
D receptors in AD-related cell communication, their 
functional involvement in amyloidogenic pathways, and 
most importantly, their genetic links to AD identify these 
receptors as highly promising clinical targets for future 
advances in AD diagnostics and therapy.

Conclusions
Several human genetic and functional studies have 
repeatedly linked the VPS10p-D receptor family to AD, 
and to its pathophysiological features including accu-
mulation of extracellular Aβ. Importantly, simultane-
ous deregulation of multiple members of this family 
has an epistatic effect on the AD onset. For example, 
both SorLA, Sortilin, and SorCS1 play a major role in 

controlling APP trafficking, but they guide the precur-
sor to different subcellular destinies. Similarly, SorLA 
directly interacts with Aβ, whereas the other receptors 
influence amyloid accumulation by acting in its meta-
bolic processing. Impaired signaling of VPS10p-D pro-
teins also leads to altered ratio between the amount 
of immature and mature neurotrophic factors thereby 
altering synaptic plasticity and neuronal cell fate, com-
mon features of AD. Last but not least, VPS10p-D 
receptor family has been linked to major depressive 
disorder, prion-like infections, and diabetes mellitus, 
thus diseases that often accompany AD diagnosis. At 
present, we still have poor understanding about the 
precise molecular mechanisms by which these recep-
tors signal in healthy and AD brains. Nevertheless, it 
is indeed clear that the versatility of VPS10p-D recep-
tors and their broad molecular interactions with AD-
related pathways can help explaining the AD diversity 
and its comorbidities. We therefore expect that this 
exciting field will soon escalate, and lead to uncovering 
many new diagnostic and therapeutic possibilities for 
AD patients in the future, in particular with focus on 
SorLA, Sortilin, and SorCS1/3.
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Glutamate (NMDA) receptor subunit 2A/2B; GLUT4: Glucose transporter 4; 
GRN: Granulin; GSK3β: Glycogen synthase kinase-3 beta; GWAS: Genome-
wide association studies; HSP12A: Heat shock protein 12A; iPS cells: Induced 
pluripotent stem cells; IR: Insulin receptor; LDL: Low-density lipoprotein; 
LOAD: Late-onset Alzheimer’s disease; LTD: Long-term depression; LTP: Long-
term potentiation; mGluR5: Metabotropic glutamate receptor 5; NGF: Nerve 
growth factor; NMDAR: N-methyl-D-aspartate receptor; NT3/4: Neurotrophin 
3/4; p75NTR: Neurotrophin receptor denoted p75; PAK 1-3: Rac-p21-activated 
kinases 1 to 3; pBDNF: Propeptide of BDNF (after cleavage of proBDNF); PCSK9: 
Proprotein convertase subtilisin/kexin type 9; PGRN: Progranulin; PICK1: 
Protein interacting with C kinase 1; PNS: Peripheral nervous system; proBDNF: 
Precursor of brain-derived neurotrophic factor; proNGF: Precursor of nerve 
growth factor; proNTs: Proneurotrophins; PrPC: Prion protein; PrPSc: Scrapie 
isoform of prion protein; PSEN1/2: Presenilin 1/2; pTau: Hyperphosphorylated 
Tau; Rab7/11: Ras-related protein 7/11; Rac1: Rac Family Small GTPase 1; RET: 
Ret proto-oncogene; sAPP: Soluble Amyloid-beta precursor protein; SNP: Sin-
gle nucleotide polymorphism; SNX-1: Sorting nexin 1; SNX-27: Sorting nexin 
27; Sorl1/SorLA/LR11: Sortilin-related receptor 1; SORL1-30B: Splice variant of 
SORL1 containing novel exon 30B; SORL1-38b: Splice variant of SORL1 contain-
ing inclusion of additional exon 38b; Sort1: Sortilin; sSorLA: Soluble SorLA; 
T2DM: Type 2 Diabetes Mellitus; TDP-43: TAR DNA-binding protein 43; TGFβ: 
Transforming growth factor beta; TGN: Trans-Golgi network; TNFα: Tumor 
necrosis factor alpha; TrkA/B/C: Tropomyosin receptor tyrosine kinases A/B/C; 
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VPS10p-D: Vacuolar protein sorting 10p-Domain; VPS35: Vacuolar protein 
sorting-associated protein 35; WAT​: White adipose tissue.
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