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Abstract
Stroke and late-onset Alzheimer’s disease (AD) are risk factors for each other; the comorbidity of these brain 
disorders in aging individuals represents a significant challenge in basic research and clinical practice. The 
similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, 
have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that 
are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). 
Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal 
function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and 
excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within 
hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models 
and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from 
months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in 
the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a 
downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are 
primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a “gatekeeper” role 
in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke 
and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for 
preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was 
approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with 
variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR 
antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This 
anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of 
AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and 
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Background
Acute ischemic stroke is a leading cause of death and dis-
ability in aging populations [1, 2]. One-third of stroke 
patients develop post-stroke dementia within 3 years 
and show pathological alterations resembling those of 
Alzheimer’s disease (AD), including the development 
of delayed cell death, cognitive decline, and β-amyloid 
(Aβ) deposition in the brain [3, 4]. As progressive neu-
rodegenerative diseases, late-onset AD and AD-related 
dementia (ADRD) account for over 60–80% of dementia 
cases in people over 65 [5, 6]. These patients have a high 
risk of stroke; over half of them experience at least one 
stroke attack and suffer more severe outcomes, includ-
ing increased mortality rates than non-AD patients [7]. 
A national longitudinal cohort study (2007–2017) com-
pared 12,629 ischemic stroke patients with dementia to 
57,954 matched stroke non-dementia controls. The study 
identified dementia before stroke as an independent pre-
dictor of death. Over time, mortality in patients with 
dementia remained increased [8]. Even though stroke and 
late-onset AD/ADRD are interrelated common comor-
bidities in the same aging/aged individuals [7, 9, 10], the 
pathophysiology associated with different time courses 
of disease development and their destructive impacts 
on each other are not explicitly understood. Historically 
and currently, stroke and AD have been investigated in 
separate research fields and are regarded as distinct acute 
and chronic brain disorders, respectively. Increasing evi-
dence, however, has revealed that stroke and AD share 
many hallmark pathophysiological alterations, including 
overactivations of glutamatergic N-methyl-D-aspartate 
(NMDA) receptors (NMDARs), increases in intracellu-
lar free Ca2+ ([Ca2+]i), disruptions of energy metabolism, 
excitotoxicity-induced neuronal loss, programmed cell 
death, synaptic/neural network impairments, neurovas-
cular damage, neuroinflammation, Aβ/tau deposition, 
and progressive psychological/cognitive decline [2, 11–
15]. Up to now, there is no effective disease-modifying 
treatment for either stroke or AD patients. After decades 
of study in both research fields, many neuroprotective 
and anti-amyloid treatments have failed clinical trans-
lations, showing inconsistent or no functional benefits 
because of a variety of dilemmas and obstacles [16–18].

Currently, approved treatments for ischemic stroke 
are limited to recombinant tissue plasminogen activa-
tor (rTPA) and endovascular thrombectomy, both of 
which can be highly effective within narrow therapeutic 
windows (4.5 and 6  h after stroke onset, respectively). 

Unfortunately, only a small fraction of stroke patients 
qualify clinically for these treatments [19]. For AD 
patients, cholinesterase inhibitors and the NMDAR low-
affinity, uncompetitive antagonist memantine (MEM) are 
among the few drugs approved by FDA as symptomatic 
treatments for moderate-to-severe AD, albeit with vari-
able efficacy [20]. Aducanumab is a human monoclonal 
antibody directed against aggregated soluble and insolu-
ble forms of Aβ. Two Phase III clinical trials (EMERGE 
and ENGAGE) in mild cognitive impairment (MCI) 
and mild AD patients ended with conflicting results: 
EMERGE of high dose aducanumab slowed cognitive 
decline, but ENGAGE observed no clinical benefits and 
the trial had to be terminated early [21, 22]. Noticeably, 
among patients treated with high-dose aducanumab, 
∼35% of them experienced amyloid-related imaging 
abnormalities (ARIAs), such as ARIA-related cerebral 
edema (ARIA-E), and a further ∼20% had ARIA-related 
microhemorrhages (ARIA-H), among other side effects. 
Even higher rates (43–65%) of ARIAs were observed in 
ApoE ε4 carriers [23]. These results were consistent with 
other clinical studies using anti-Aβ therapies [21, 24, 25]. 
Moreover, clinical trials with aducanumab and similar 
compounds have been carried out via FDA “accelerated 
approval”, their clinical efficacy, adverse effects, and risks 
including mortality remain to be further validated in 
peer-reviewed reports and clinical practice. The repeated 
failures and disruptive side-effects of anti-Aβ treatments 
based on the mechanism of familial AD (FAD) call for 
alternative strategies with innovative and out of the box 
thinking on the pathogenesis of late-onset AD in order to 
develop clinically effective and safe treatments for most 
AD cases.

Compelling findings from clinical analyzes reveal that 
ischemic stroke and AD/ADRD are significant risk fac-
tors for each other [8, 26–28]. A better understanding of 
the relationship and interactions between these two neu-
rological diseases of the central nervous system (CNS) 
should help the development of treatments that target 
the shared mechanisms and show efficacy for both disor-
ders in susceptible individuals. As a lesson learned from 
previous successes and failures, such clinical therapies 
can only be developed through unbiased, fact-based, and 
disease-specific mechanism-driven approaches consis-
tent with clinical observations but not by digging further 
with conventional hypotheses inconsistent with clinical 
cases. If successful, multidisciplinary research will pro-
vide a breakthrough opportunity for the treatment of two 

downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD 
and stroke.
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neurological disorders that affect millions of people in 
the US and around the globe.

Challenges in stroke and AD research and therapy 
development
There have been several groundbreaking discoveries 
from decades of neuroscience research that have encour-
aged cautious optimism for therapy developments of 
neurological disorders such as stroke and AD. Signifi-
cant advances may include the identification of gluta-
mate excitotoxicity mediated primarily by overactivation 
of NMDARs and a downstream TRPM-mediated path-
way, of distinct roles of the synaptic and extrasynaptic 
NMDARs (sNMDARs and eNMDARs, respectively) in 
synaptic plasticity and neuronal excitotoxicity, and of 
robust neuroprotection achievable by using NMDAR 
antagonists as well as the endogenous protective mech-
anisms elicitable by preconditioning strategies against 
brain injuries. Unfortunately, none of these advances 
in basic and preclinical research has been successfully 
translated into clinical therapies, with MEM as an excep-
tion of limited success for advanced AD patients.

The failure of NMDAR antagonists in stroke clinical 
trials may be attributed to noticeable side effects, nar-
row therapeutic windows, the lack of vascular protec-
tion to restore local blood supply, and the complexity of 
cellular and molecular injury mechanisms in the human 
brain [16, 29, 30]. Despite these hurdles in the develop-
ment of therapies for stroke, continual research confirms 
NMDAR-mediated excitotoxicity as the primary cell 
death mechanism [31], and the development of novel 
and safe NMDAR antagonists remains a top priority in 
stroke research. Consistent evidence suggests that the 
undesirable side effects of many NMDAR antagonists 
are possibly due to the paradoxical actions at synaptic 
and extrasynaptic NMDARs [32]. Therefore, in addition 
to the desire of targeting downstream pathways, more 
selective eNMDAR antagonists have become preferred 
choices to minimize side effects while enhancing the neu-
roprotective efficacy.

In basic and clinical AD research, the amyloid hypoth-
esis has been challenged by compelling observations of 
Aβ-independent pathogenesis, pathophysiology, and 
pathology in animal models and human patients [33–36]. 
Commonly used transgenic mouse models generated 
using FAD genes such as a forced expression of mutant 
amyloid precursor protein (APP) and/or Aβ cascade 
genes do not accurately mimic late-onset sporadic AD 
in multiple aspects, including the trigger, origin, and 
time course of Aβ production as well as the lack of neu-
ronal loss and tau pathology in some widely used FAD 
mice [37–39]. In some models with overexpressed APP, 
widespread Aβ deposition occurs but shows no subse-
quent cognitive deficits [40]. In a human APP (hAPP) 

transgenic mouse model of young and old ages (2–24 
months of age), there was no evidence of amyloid depos-
its or neurodegeneration, even though the synaptic dis-
ruption was evident [41]. More significantly, while the 
Aβ pathology has been the diagnostic standard of AD 
and changes in Aβ deposition/plaques or soluble Aβ 
have been shown during AD development, many healthy 
individuals may have significant Aβ plaques and tau tan-
gles in the brain while no signs of cognitive deficits [34, 
42–44]. Some studies identified that at least 20–30% of 
healthy aging individuals showed substantial amyloid 
deposits in the brain but never developed dementia in 
their lifetimes [45]. Furthermore, clinical trials of anti-Aβ 
therapies that can successfully remove amyloid plaques 
have resulted in few functional improvements [33, 34, 45, 
46].

It is now recognized that AD pathophysiology begins 
many years prior to clinical diagnosis, with various 
degrees of severity and different time courses of progres-
sion [47]. It is recognized that the onset age of Aβ depo-
sition in the human brain is approximately 50 years old 
[48]. During the aging process before and around this 
age, the root mechanism triggering abnormal Aβ pro-
duction in late-onset AD has been unclear except for 
propositions of genetic influence [48] and vague concepts 
such as “cognitive reserve” [49]. Aside from extensively 
delineated mechanisms of amyloid metabolism, there 
has been little information on the initial trigger(s) and 
year/decade-long process of endogenous amyloid pathol-
ogy. Collectively, these inconsistencies and the lack of an 
endogenous association of Aβ pathology in disease pro-
gression suggest that alternative or additional mecha-
nisms may be responsible for neuronal damage and the 
development of sporadic AD/ADRD [33–36].

As a significant paradigm shift in the understanding of 
AD progressive pathophysiology, modulations of brain 
hyperexcitability and the balance of excitatory/inhibi-
tory activities are an emerging research area based on 
the Ca2+ hypothesis in AD pathogenesis [50–54]. For 
example, the anticonvulsant drug levetiracetam, which 
modulates glutamate release and neuronal excitatory/
inhibitory balance, has been explored as a disease-mod-
ifying therapy for AD and has advanced to clinical tri-
als [51, 53, 55, 56]. More evidence suggests that chronic 
attenuation of neuronal hyperactivity leads to reduced 
APP/Aβ accumulation, implying that neuronal hyperac-
tivity can be an upstream event in the development of 
amyloid pathology [57]. However, the causal mechanism 
of slowly evolved degenerative excitotoxicity and distinc-
tions between acute and chronic forms of excitotoxicity 
have not been explicitly defined. A better understanding 
of the causal mechanisms of glutamatergic hyperactivity, 
especially in both Aβ-dependent and Aβ-independent 
manners, may shed new light on the root pathogenesis 
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and aid in the development of early treatments for late-
onset sporadic AD and ADRD.

Ionotropic glutamatergic NMDA receptors and subunits
Glutamate is the primary excitatory neurotransmit-
ter in the CNS, and ionotropic glutamate receptors are 
responsible for neuronal communications crossing excit-
atory synapses. There are three subfamilies of ionotropic 
glutamate receptors: α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors, kainate 
receptors, and NMDARs [58–60]. Of these subtypes, 
NMDARs play major roles in Ca2+ homeostasis, neu-
ronal excitability, synaptic plasticity, and excitotoxicity 

in neurophysiology and neuropathophysiology [61, 62]. 
NMDARs comprise GluN1 (NR1) subunits, GluN2 
(NR2) subunits (GluN2A-2D), and a pair of GluN3 (NR3) 
subunits (GluN3A and GluN3B) [63, 64].

Although functional NMDARs can be formed by het-
erotetramers of two glycine/d-serine-binding GluN1 sub-
units paired with two glutamate-binding GluN2 subunits 
[65, 66] (Fig. 1), more recent research established that the 
majority of native NMDARs are triheteromers composed 
of two GluN1 and two unique GluN2 or a combination of 
GluN2 and GluN3 subunits [67, 68]. In contrast to dihet-
eromeric structures, triheteromeric NMDARs display an 
intermediate sensitivity to glycine and glutamate due to 

Fig. 1 Composition of NMDA receptors and the regulatory role of the GluN3 subunit. Functional NMDA receptors are transmembrane heterotetramers 
embedded in the phospholipid bilayer of glutamatergic neurons, containing two GluN1 and two GluN2 subunits. The binding of the ligand leads to the 
opening of the receptor cation channel in an Mg2+- and voltage-depolarization manner. The NMDAR activity and its mediated Ca2+ influx have significant 
impacts on synaptic transmission, neuronal plasticity, psychological/cognitive functions, and cell fates. A GluN3 (GluN3A and 3B) subunit can replace one 
GluN2 in the triheteromeric complex, resulting in restrained single-channel opening activities and smaller whole-cell currents compared to GluN1/GluN2 
receptors. The NMDA current traces are our unpublished data, which were recorded in an Mg2+-free extracellular solution
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either differences in channel ion conductance, open/close 
kinetics, or both as a result from the presence of various 
GluN2/3 subunits [67, 68]. Specifically, GluN3 subunits 
are differentiated by a positive charge in the pore-lining 
sequence that confers a unique structural alteration to 
receptors. NMDARs containing the GluN3 subunit are 
triheteromers composed of GluN1, GluN2, and GluN3 
subunits. These receptors exhibit reduced Ca2+ perme-
ability compared to GluN1/GluN2 receptors and attenu-
ated Mg2+-block at hyperpolarized membrane potentials. 
Thus, the GluN3 subunit plays a unique role as a dom-
inant-negative modulator in triheteromeric NMDARs 
[69–72]. In this event, GluN3 subunits may facilitate 
NMDA receptor activation resulting from their reduced 
magnesium sensitivity and reduce their conductance rel-
ative to GluN2A or GluN2B subunits. GluN1 and GluN3 
can form diheteromeric receptors that are activated by 
glycine but not by glutamate [73]. Thus, strictly speak-
ing, the GluN1/GluN3 complex is a glycine receptor, but 
essentially no longer a glutamate receptor.

NMDARs have been identified in non-neuronal cells, 
including astrocytes, oligodendrocytes, polydendrocytes 
(i.e. NG2 glial cells), and blood lymphocytes [74–76]. 
Since glial cells play important physiological and patho-
physiological roles in the CNS, NMDAR subunits in these 
cells may exhibit special characteristics different from 

those of neurons. Our previous studies revealed GluN3A 
containing NMDARs even present in conducting cells 
of the kidney, which may regulate urinary concentrat-
ing capacity and play a protective role under ischemic/
hypoxic conditions [77, 78]. The physiological and patho-
logical roles of NMDARs in non-neuronal cells are not 
well understood and require further investigations.

Functional roles of NMDARs and subunits at synaptic and 
extrasynaptic sites
NMDARs are located not only at synapses but also at 
extrasynaptic sites [79, 80] (Fig.  2). Synaptic NMDARs 
are enriched with GluN2A, while eNMDARs are 
more likely to contain GluN2B, GluN3A, GluN3B, or 
GluN2C/2D subunits [81, 82]. GluN3A and 3B are mostly 
associated with the perisynaptic site of the postsynaptic 
density (PSD) [83]. There have also been reports of pre-
synaptic localizations of GluN1, GluN2, and GluN3B 
[84]. The control of NMDAR activity and Ca2+ influx is 
critical for the induction of long-term potentiation (LTP) 
and long-term depression (LTD), which are believed to 
be closely associated with synaptic plasticity and learn-
ing/memory functions [85–87]. Early studies suggested 
that synaptic GluN2A-containing NMDARs and extra-
synaptic GluN2B-containing NMDARs are differentially 
linked to the generation of LTP and LTD, respectively 

Fig. 2 Age-dependent subunit alternations of synaptic and extrasynaptic NMDA receptors and functional consequences. NMDA receptors are mainly 
located in the post-synaptic membrane inside and outside of the synaptic cleft. Synaptic NMDARs are directly involved in excitatory neurotransmission 
and synaptic plasticity, while extrasynaptic NMDARs have regulatory roles in these activities. Glutamate concentrations are markedly different between 
the cleft and extrasynaptic spaces. Glutamate released by astrocytes and microglia (not shown) are likely the main components of extrasynaptic gluta-
mate, together with that spillover from the synaptic cleft. The distribution and topography of NMDARs are subjected to age-dependent alterations. In 
addition to a developmental switch of increased GluN2A/GluN2B ratio [340, 341], the GluN3 expression also undergoes an age-dependent change, from 
the initial locations of both synaptic and extrasynaptic sites to extrasynaptic/peri-synaptic site in the mature brain. This developmental change is likely as-
sociated with the functional needs of NMDAR regulation at different life stages. For example, high levels of GluN3A in immature brains is neuroprotective; 
while in the adult brain, the absence of GluN3 in the synaptic site allows synapse maturation and elevated plasticity. In the adult brain, GluN3 remains to 
exist in the extrasynaptic membrane as an endogenous neuroprotective mechanism against brain damage and neurodegeneration. In the aging/aged 
or degenerative brain, loss or weakening of this regulatory mechanism due to either increased GluN2B expression or deficiency of GluN3 will lead to 
enhanced eNMDA activity and Ca2+ dysregulation, which aggravate acute and chronic excitotoxicity associated with ischemic stroke and late-onset AD.

 



Page 6 of 29Yu et al. Molecular Neurodegeneration           (2023) 18:43 

[88]. More recent evidence implicates that extrasyn-
aptic NMDARs act as regulators of both LTP and LTD 
[86, 89, 90]. There is also some evidence to support that 
GluN2C/2D containing eNMDARs can regulate synaptic 
currents and interneuronal/intrinsic excitability [91–95]. 
For example, eNMDARs can regulate neuronal and neu-
ral network activity in striatal neurons [96]. The current 
view of the contribution of NMDARs to brain physiol-
ogy and pathology does not solely rely on a dichotomy 
between GluN2A- and GluN2B-containing NMDARs, 
or between synaptic and extrasynaptic NMDARs. Under 
certain conditions, both sNMDAR and eNMDAR may 
influence different aspects of synaptic plasticity [97, 98].

In neuronal cultures, a comparable [Ca2+]i increase 
induced by the activation of eNMDARs, but not by 
sNMDAR activation, leads to mitochondrial dysfunc-
tion and cell death [79, 99, 100]. Evidence indicates that 
eNMDARs containing GluN2B are primarily related to 
excitotoxicity in stroke and neurogenerative diseases 
[99, 101, 102]. A few studies showed that GluN2D, likely 
in eNMDARs, contributes to excitotoxicity in retinal 
injury [103]. On the other hand, GluN2A-containing 
sNMDARs may play a role in excitotoxic cell death under 
certain experimental conditions [104–108]. For exam-
ple, in hippocampal slices, the excitotoxicity induced by 
50 µM NMDA for 30  min was attributed to sNMDARs 
based on the co-agonist D-serine and other pharmaco-
logical tools [87]. The discrepancy may be explained by 
the proposition that the balance between sNMDAR and 
eNMDAR activities is important in determining whether 
stimulation by NMDA or glutamate is neurotoxic or not 
[109]. It is more likely that drastic overactivation of both 
sNMDARs and eNMDARs accompanied by massive Ca2+ 
influx in vivo is a typical trigger of acute excitotoxicity 
commonly seen after ischemic strokes [110, 111]. Intrigu-
ingly, it was shown that GluN2C expression increased in 
hippocampal slices in response to ischemia; knocking out 
GluN2C exacerbated neuronal death in the CA1 area of 
the hippocampus and reduced spatial working memory 
compared to wild-type mice. In vitro and in vivo exami-
nations revealed that GluN2C-expressing hippocampal 
neurons showed marked resistance to NMDA-induced 
toxicity and reduced Ca2+ influx, which is consistent with 
the notion that GluN2C-containing NMDARs exhibit a 
low Ca2+ permeability [112].

GluN3 is highly expressed in many subcellular com-
partments during early development and is particularly 
concentrated in PSD-associated perisynaptic and extra-
synaptic locations [70, 113] (Fig. 2). This is supported by 
ultrastructural evidence that GluN3A is more abundant 
at perisynaptic and extrasynaptic sites in both juvenile 
and adult animals [113, 114]. This pattern of expres-
sion appears consistent with the function of GluN3 in 
constraining eNMDAR activity during early life to limit 

excessive Ca2+ influx, which is favorable for protect-
ing the immature brain. The reduction of GluN3A later 
on during CNS development relieves the restriction on 
local Ca2+ upregulation and facilitates synaptogenesis, 
including the modulation of experience-driven synapse 
refinements [115]. Thus, the downregulation of GluN3A-
containing NMDARs provides a developmental switch 
for activity-dependent maturation and stabilization of 
selected synapses, which are essential steps in synapto-
genesis and memory consolidation [115]. Compared to 
the level in the neonatal brain, the total expression level 
of GluN3 is significantly reduced after brain develop-
ment. Nevertheless, abundant GluN3 expression is still 
readily detectable in the adult brains of rodents as well as 
humans [116–120], suggesting that GluN3 has important 
functional roles in adult physiology and pathophysiol-
ogy. Being a unique subunit affecting NMDAR activi-
ties, GluN3A exhibits functional roles in synaptic as well 
as extrasynaptic activities [121, 122]. The topography of 
GluN3 localization and activity are critically important 
across the lifespan. We propose that GluN3 acts as a tire-
less gatekeeper to prevent overactivations of eNMDARs 
and excessive Ca2+ influx, which is vital in maintaining 
Ca2+ homeostasis, cell viability, and normal neuronal 
functions (Fig. 2).

Some reports suggest that sNMDAR activation and 
eNMDAR activation contribute equally to excitotoxic-
ity [123]. Alternatively, it was proposed that the sub-
unit composition of NMDARs, such as the expression 
of GluN2B, but not the cellular location, is a determin-
ing factor for their effect on neuronal fate [124]. An 
imbalance between synaptic and extrasynaptic NMDA 
receptor activity could be a pathogenic factor for neuro-
degenerative diseases such as AD and Huntington’s dis-
ease (HD) [12, 107]. The disrupted balance may result 
from a malfunction or deficiency of an NMDAR subunit 
due to genetic mutation, mislocalization, or traffick-
ing deficits of the subunit [125]. Imbalances may also be 
created by dysregulated glutamate concentrations in the 
vicinity of NMDARs. In this case, eNMDARs are directly 
responsible for glutamate excitotoxicity and cell death 
[79, 99, 100, 123]. For instance, the increased extrasyn-
aptic composition of GluN2B-containing NMDARs or 
a deficiency of extrasynaptic GluN3A subunit induces 
enlarged tonic NMDAR currents that are closely associ-
ated with chronic excitotoxicity [80, 126, 127].

Regulation of glutamate concentration in the 
extrasynaptic space and excitotoxicity
As the primary excitatory neurotransmitter in neuro-
nal communications, the glutamate concentration in the 
synaptic cleft is highly dynamic and tightly controlled, 
with rapid rises and falls (in milliseconds) within the 
µM to mM range to convey neuronal activity [128–131]. 
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Glutamate is not restricted to the synaptic cleft; it also 
exists in the extrasynaptic space due to the spillover 
from the presynaptic release and secretion of glutamate 
by adjacent astrocytes and microglia [132–135] (Fig.  2). 
According to early assessments, the basal concentration 
of extrasynaptic glutamate is sustained at low µM levels 
[131, 136–139]. This might be an overestimation of the 
resting concentration; improved measurements in acute 
hippocampus slices have assessed the concentration to be 
approximately 100 nM [140, 141].

Studies on mixed cell cultures of neurons and astro-
cytes show that the glutamate concentrations that can 
lead to acute cell death (in hours to a few days) are in the 
high µM range (EC50 = 205 µM) [142]. This range appears 
too high for the extrasynaptic glutamate to reach in a 
persistent manner. On the other hand, sustained glu-
tamatergic hyperactivity and Ca2+-associated chronic 
excitotoxicity are clearly identified in neurodegenerative 
diseases, such as AD. At present, little is known about 
the relationship between the glutamate concentration 
threshold and the duration of elevated extrasynaptic 
glutamate for inducing the slowly developed degenera-
tive excitotoxicity underlying the prolonged process of 
neurodegeneration.

The extrasynaptic glutamate level is sensitive to abnor-
mal and pathological conditions. For example, in rodents, 
stressful stimuli such as body restraint, forced swimming, 
and hypoxic insults can selectively increase the extrasyn-
aptic glutamate concentration to over 30 µM or higher 
[143–145]. In stroke and brain injuries, the reduced 
extracellular volume associated with brain edema ele-
vates the extrasynaptic glutamate concentration as a 
contributing factor in excitatory neuronal damage [146]. 
Extrasynaptic glutamate is taken up by neurons and 
astrocytes mostly via excitatory amino acid transporters 
(EAATs) and is metabolized in astrocytes to glutamine 
[147]. Multiple alterations of cellular and subcellular 
activities may cause increases in extrasynaptic glutamate. 
Among them, aberrant burst firing of presynaptic inputs 
and reduced glutamate clearance due to lower EAAT1-3 
activity at depolarized membrane potentials can be the 
primary causes of increased extrasynaptic glutamate 
[146]. Other sources of increased extrasynaptic gluta-
mate may include reversed operation of glutamate trans-
porters [146].

In AD pathophysiology, deficient glutamate uptake 
and recycling contribute to elevated levels of extrasyn-
aptic glutamate [148, 149]. Studies in neuronal cell cul-
tures demonstrated that various species of Aβ peptides 
caused increased glutamate availability via their dete-
riorating effects on glutamate transporters [150–152]. It 
was proposed that Aβ-induced excitotoxicity is mediated 
by increasing extracellular glutamate concentrations due 
to decreased glutamate uptake from the synaptic cleft, 

which is correlated with impaired function of EAAT2 in 
perisynaptic astrocytes. Glutamate release from glial cells 
such as astrocytes and microglia [153] and decreased 
recycling of glutamate [154] may also contribute to 
chronic excitotoxicity.

The role of interplay between astrocytes and neurons 
has been further strengthened through recent work 
in human and rodent transcriptome analysis indicat-
ing weakened metabolism coordination between these 
cells under neuropathological conditions. In particu-
lar, reactive glia were less evident in TREM2-R47H and 
TREM2-R62H carriers than in noncarriers, implicating 
TREM2 and glia-neuron interactions in both mouse and 
human AD [155, 156]. In AD patients, decreased expres-
sion and capacity of glutamate transporters, specifically a 
selective loss of vesicular glutamate transporter (vGlut), 
were detected [154, 157]. Moreover, EAAT2 located in 
perisynaptic astrocytes displayed malfunction in the AD 
brain [158]. These increasing observations align with the 
proposition that enhanced glutamate levels in the extra-
synaptic space are an important contributor to slowly 
developed excitotoxicity and neurodegeneration in AD 
development.

Glutamatergic hyperactivity in ischemic stroke and AD
Upon an acute ischemic attack, the sudden reduction in 
cerebral blood flow causes dramatic consequences in the 
affected region within minutes to a few hours, includ-
ing a loss of oxygen supply and disrupted mitochondrial 
function, ATP deficiency, and membrane depolarization, 
which collectively trigger augmented glutamate release 
and impaired uptake [146, 159]. The overall increase in 
glutamate concentration leads to the overactivation of 
glutamate receptors at synaptic and extrasynaptic sites of 
excitatory neurons, causing massive Ca2+ influx and ionic 
homeostasis disruption, cell swelling, and cell membrane 
deterioration, all of which are characteristics of necrotic 
cell death [31, 160, 161]. Cells surviving the initial isch-
emic insult may die a few days or weeks later in a “hybrid” 
form due to the activation of programmed cell death and 
aberrant autophagy pathways [162].

In addition to its well-documented roles in ischemia/
hypoxia, eNMDAR activation has been implicated in 
the pathogenesis of neurodegenerative disorders, espe-
cially morphological and functional deteriorations in 
AD [153, 163, 164] and HD [109, 165]. Neuronal and 
NMDAR hyperactivity during the progression of AD and 
related dementia has regularly been detected in animal 
AD models as well as in AD patients [50, 51, 166, 167]. 
This abnormality occurs during the early stages of late-
onset AD development [11, 12, 168]. The mechanism of 
action for the lasting time course and pathogenic effect of 
NMDAR hyperactivity, however, has been poorly defined. 
Intriguingly, brain hyperexcitability may not depend on 
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amyloid plaque formation [169]. The sustained trigger of 
NMDAR hyperactivity at the initial stage of sporadic AD 
before endogenous Aβ deposition is largely unknown. 
Moreover, instead of hyperactivity, impaired NMDAR 
activity and signaling in the cortex and hippocampus 
can be observed in the aging/aged AD brain [170, 171]. 
This is a possible consequence of neurodegeneration as 
a result of chronic excitotoxicity and Aβ aggregation. In 
AD research, while the Aβ hypothesis has been demon-
strated in different amyloid transgenic mouse models, 
basic research on the triggering and mediating mecha-
nisms of neuronal toxicity has been solely focused on the 
toxic effects of amyloid and tau pathology. As a result, 
neuronal hyperactivity and NMDAR overactivation are 
attributed as consequences of the amyloid cascade both 
in vitro and in FAD transgenic mice [172–175]. This 
popular concept, however, has been challenged by com-
pelling preclinical and clinical observations that neuronal 
and NMDAR hyperactivity can often be observed in the 
absence of amyloid deposition [33–36, 169].

Activation of eNMDARs and tonic NMDAR currents
In contrast to the phasic and intensive activation of 
sNMDARs, eNMDARs are associated with tonic NMDA 
currents induced by lower concentrations of extracellular 
glutamate. Consistent with their extrasynaptic locations, 
eNMDAR-mediated currents are insensitive to tetrodo-
toxin (TTX), which selectively blocks the synaptic release 
of glutamate [176, 177]. In line with their nonsynaptic 
nature, eNMDARs can be constitutively activated, and 
the activation may persist even in the absence of neuro-
nal and/or synaptic activity [178]. In contrast, sNMDAR 
activity remains unaffected when tonic NMDA currents 
are blocked [176]. These characteristics clearly define 
two populations of NMDARs, one located inside and one 
located outside of the synaptic cleft.

Compatible with the lower concentrations, extrasyn-
aptic glutamate preferably activates the main population 
of eNMDARs of higher affinity, e.g., GluN2B-containing 
NMDARs. GluN2B-containing eNMDARs were pro-
posed to be responsible for ischemia-induced excitotox-
icity [179, 180], and extrasynaptic glutamate is a primary 
contributor to ischemic and traumatic damage in the 
brain [143, 146, 181]. The activation of eNMDARs, per-
haps together with the impaired protective function 
of sNMDARs, contributes to downstream cascades of 
necrotic and programmed cell death pathways [179, 182]. 
The tonic NMDA current is likely triggered by glutamate 
released mainly from astrocytes, which participate in 
neuron-glia communications, such as the regulation of 
neuronal excitability and synaptic strength that subse-
quently affect learning and memory formation [80, 134, 
178]. The cellular properties of excitability and synaptic 
strength can be a part of neuroendocrine regulation as 

well as neuromodulatory actions or even sleep homeo-
stasis [147].

Synaptic NMDAR activity is closely coupled to gluta-
mate released from presynaptic vesicles and the clearance 
of glutamate from the synaptic cleft, while eNMDAR 
activation is characterized by exposure to chronic ago-
nism by surrounding glutamate [183]. Ca2+ influx evoked 
by intense sNMDAR activation alone may not be harm-
ful, as it can trigger genomic processes that render neu-
rons more resistant to apoptotic and oxidative insults. It 
was shown, however, that long-term tonic activation of 
sNMDARs in hippocampal neurons under hypoxic con-
ditions was able to induce excitotoxic cell death [104]. 
Thus, prolonged sNMDAR activation may also trigger 
pro-death signaling. In cultured cortical neurons, long-
term, but not short-term, treatment with high-dose 
NMDA or oxygen-glucose deprivation triggered cell 
death and suppressed prosurvival signaling. The authors 
proposed that the co-activation of sNMDARs and 
eNMDARs is needed for excitotoxicity [106]. It is likely 
that any shift in balance to reduce sNMDAR or enhance 
eNMDAR signaling could be detrimental to neuronal via-
bility [184, 185]. Thus, the NMDAR signaling inside and 
around the synapse must be maintained at a proper level 
so that it is enough to maintain neuronal activity and via-
bility but not enough to become harmful so as to cause 
excitotoxic neurodegeneration [79, 154, 183].

Taken together, a large body of evidence supports the 
existence of a critical role for enhanced eNMDAR activ-
ity in the pathogenesis of stroke and AD [107, 108]. 
While the NMDAR localization hypothesis is not univer-
sally accepted, the majority of experimental data support 
that the stimulation of eNMDARs is a common early fea-
ture of acute and chronic neurological disorders. Acute 
and chronic excitotoxicity in stroke and neurodegenera-
tive diseases, however, show distinct features in terms of 
glutamate intensity, time course, signaling pathways, and 
cell death mechanisms. Targeting eNMDARs can be a 
promising target for developing safe and effective thera-
pies for these neurological disorders by decreasing extra-
cellular glutamate spillover/release and tonic eNMDAR 
activation and ultimately maintaining the balance of syn-
aptic and extrasynaptic NMDAR signaling under stress-
ful and pathological conditions.

Distinct signaling pathways associated with synaptic and 
extrasynaptic NMDARs
The fact that different NMDAR subtypes locate at syn-
apses and extrasynaptic sites raises the question of 
whether specific NMDAR subtypes and locations are 
responsible for distinct functions. Indeed, synaptic 
GluN2A-containing NMDARs are generally associ-
ated with cell survival, whereas extrasynaptic GluN2B-
containing NMDARs are linked to cell death cascades 
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[186, 187]. The activation of sNMDARs is related to the 
transcription of pro-survival genes and anti-apoptotic 
genes, which are favorable for cell survival through the 
phosphorylation of intracellular factors such as the tran-
scription factor Cyclic-AMP response element bind-
ing protein (CREB) [188, 189]. Consistent data suggest 
that ERK1/2 is activated and inactivated by sNMDARs 
and eNMDARs, respectively [190]. The Ca2+ influx 
mediated by sNMDARs leads to consequent Ca2+ 
release from internal stores, generating Ca2+-activated 
kinases and transcription factors in the nucleus, such 
as Ca2+-calmodulin kinase IV (CaMKIV) and CREB, 
while inhibiting the transcription factor FOXO3α [189, 
191]. The L-type voltage-gated channel is another main 
player in mediating the Ca2+ elevation in this signal-
ing pathway [192]. The transcription induction results 
in the expression of brain-derived neurotrophic factor 
(BDNF) [189]. The activation of sNMDARs also increases 
Wnt/MAPK/ERK1/2 survival signaling activity [190, 
193] and PI3K/Akt activity to promote the inhibition of 
FOXO [191]. JACOB is a caldendrin binding partner and 
a synapto-nuclear signaling protein [194]; ERK1/2 and 
the phosphorylation of JACOB appear to play a major 
role in communicating the origin of NMDAR activity 
to the nucleus, referred to as the synapto-nuclear traf-
ficking/signaling [194, 195] (Fig.  3). On the other hand, 
the malfunction of extrasynaptic glutamate signaling is 
an important contributor to several pathophysiologi-
cal conditions, including hyperexcitability, spreading 
depression, neurodegeneration, neuroinflammation, and 
demyelination [196]. The activation of eNMDARs leads 
to cell death by inhibiting survival signaling as well as 
promoting pro-death mechanisms such as the expression 
of cleaved caspase-3 [153, 197], the suppression of the 
CREB, p38 MAPK, and ERK1/2 pathways [190, 198], the 
activation of the FOXO transcription factor associated 
with AD neuropathology [191], and calpain-mediated 
cleavage of striatal-enriched protein tyrosine phospha-
tase (STEP) [79, 195, 199–201] (Figs. 3 and 4).

Glutamate-induced activation of eNMDARs in cul-
tured neurons is required to disrupt the mitochondrial 
membrane potential associated with excitotoxic injury 
[79], which is likely mediated by GluN2B-containing 
eNMDARs [100]. Mounting data indicate that both 
NMDA receptor dysfunction and mitochondrial impair-
ment are present in AD patients, animal models, and 
cell culture models. In neurons, Aβ and altered NMDAR 
function are linked with mitochondrial dysfunction 
through the dyshomeostasis of mitochondrial Ca2+ fol-
lowing Ca2+ influx mediated by GluN2B-NMDARs [202]. 
NMDAR-related mitochondrial dysfunction leads to 
increased production of reactive oxygen species (ROS), 
altered Ca2+ homeostasis, and decreased ATP produc-
tion, providing a pathological link between eNMDARs, 

metabolism, and neurodegeneration [154, 203, 204] 
(Figs. 3 and 4). On the other hand, sNMDAR activity is 
necessary to boost intrinsic antioxidant defenses, which 
may further explain its neuroprotective effect against the 
progression of pathological processes associated with 
oxidative damage [205].

Ca2+-associated excitotoxicity in ischemic stroke and AD
Ca2+-induced excitotoxicity was initially described in 
neuronal cultures and animal models of ischemic stroke 
in investigations of glutamate-induced neuronal cell 
death [111, 206–208]. This type of cell death was char-
acterized by drastic activation of glutamate receptors, 
mainly NMDARs, by excessive amounts of extracel-
lular glutamate due to augmented synaptic release and 
impaired uptake mechanisms [209, 210]. The overstimu-
lation of NMDARs results in massive Ca2+ influx and 
[Ca2+]i overload [211, 212], and acute neuronal injury 
featured by necrotic cell death [110, 117, 213] (Fig.  3). 
Consistent evidence has shown that Ca2+ entry through 
NMDARs was particularly more effective at killing neu-
rons than entry through other receptors and channels 
[111, 146, 159, 160, 207, 208, 214]. Continual investiga-
tions also identified that, in conjunction with necrotic 
damage, programmed cell cascades such as apoptosis, 
aberrant autophagy, and the activation of several other 
cellular death mechanisms could take place concurrently 
or consequently as a part or consequence of excitotoxic-
ity [162, 215–217].

In neurogenerative diseases such as AD and HD, no 
detectable acute excitotoxicity exists, while delayed and 
continuous neuronal loss are the hallmarks of neurode-
generation in those patients’ brains [218]. To explain the 
pathophysiology of chronic neuronal degeneration, the 
Ca2+ hypothesis proposed that moderate yet persistent 
[Ca2+]i increases can cause excitotoxic neuronal dam-
age in neurodegenerative diseases [127, 219–221]. Accu-
mulating evidence supports that AD pathophysiology 
includes a chronic “calciumopathy” caused by NMDAR 
overactivation and Ca2+-induced excitotoxicity [11, 12, 
168]. It was proposed that small but sustained increases 
in [Ca2+]i activate Ca2+-dependent deleterious signals as 
key events or even causal factors of AD development [11, 
12, 168, 222] (Figs. 4 and 5). The long-lasting (months in 
rodents and years/decades in humans) excitatory stresses 
are associated with not only increased Ca2+-activated sig-
naling pathways but also chronic metabolic and inflam-
matory burdens, slowly progressing neuronal loss, and 
ultimately morphological and functional deterioration, 
including cognitive symptoms (Figs.  4 and 5). In line 
with this cascade, CREB phosphorylation at serine 133, 
which is required for its transcriptional activity and cell 
survival, is decreased (“shut-off” of the CREB signal-
ing) after eNMDAR stimulation and in AD [79, 200]. At 
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Fig. 3 Distinctive Pro- and anti-survival mechanisms downstream from activation of synaptic and extrasynaptic NMDARs. This simplified graph illus-
trates a few main signaling pathways associated with the activation of synaptic and extrasynaptic NMDA receptors, respectively. Of note that although 
additional genes not mentioned in the text are shown in the graph, not all related signals can be included in the graph. For example, chronic stress of 
neuronal hyperactivity and Ca2+ elevations induce recurrent inflammation that is not shown here. In general, activation of sNMDARs leads to pro-survival 
effects beneficial for neuronal viability and synaptic plasticity, while activation of eNMDARs causes detrimental consequences associated with acute and 
chronic excitotoxicity. It is worth mentioning, however, that many signaling genes such as CaMK and MAPK kinases can play opposite actions most likely 
in subtype-dependent manners. In the pro-survival mechanism, the Wnt regulation of the expression of CaMKIV is an upstream protective signaling in 
neurodegenerative conditions [342]. Cyclic-AMP response element binding protein (CREB) plays a key function in medicating sNMDAR activation and 
expressions of pro-survival genes such as BDNF, MAPK, and Akt. CREB phosphorylation is mediated acutely by CaMKIV while long-term regulation may 
be controlled upstream by ERK1/2 [343, 344]. Activation of CREB via CaMKIV phosphorylation of CREB binding protein (CBP) requires translocation of 
transducer of regulated CREB activity (TORC) which is downstream of Ca2+ signaling from sNMDAR activation. Jacob and the synapto-nuclear trafficking is 
a relatively new mechanism linking downstream signaling of sNMDARs. Caldendrin binds to Jacob’s nuclear localization signal in a Ca2+-dependent man-
ner [194, 195]. In contrast to these CREB-activating signals of sNMDARs, eNMDARs suppress CREB activity via the inactivation of the Ras-ERK1/2 pathway 
and the nuclear translocation of Jacob, which promotes CREB dephosphorylation. Calcineurin-dependent dephosphorylation of TORC and subsequent 
CREB activation is also downstream of sNMDAR transmission [345]. Activation of sNMDARs suppresses apoptotic cascades via suppression of the BH3-
only domain gene Puma and p53, thereby limiting cytochrome c release. Downstream effectors of apoptosis including Apaf1, Caspase 3, and Caspase 9 
are also suppressed [346, 347]. Contrary to these pro-survival pathways, pro-death pathways are mediated by downstream activities of eNMDARs [189, 
348]. Interactions between the pro-survival and pro-death pathways may occur so that the suppression of CREB activity may result from inactivating the 
ERK1/2 pathway [79, 195]. Another shared pathway between synaptic and extrasynaptic NMDARs is the FOXO pathway. FOXO activity is suppressed by 
PI3K downstream of sNMDARs while activation of eNMDARs enhances FOXO nuclear import and the consequent transcription of FOXO3α, Bim, and Fas 
which lead to cell death via multiple mechanisms including excitotoxicity [205, 349]. Synaptic NMDAR activity enhances the transcription of PGC-1α, 
while excessive expression and activity of eNMDARs suppress CREB-dependent PGC-1α transcription [350]. In general, CaMKII is downstream of eNMDAR 
activity and acts as a carrier of Ca2+-regulated protease calpain to promote apoptotic cell death [351]. Moreover, Ca2+ dyshomeostasis resulting from 
NMDAR subunit composition such as GluN2B and GluN3A expression changes and its interaction with intracellular Ca2+ reservoirs in the ER and mito-
chondria play an important role in the maintenance of cellular bioenergetics, glucose metabolism, and normal mitophagy [352]. Ca2+ dyshomeostasis is 
thus a major trigger of the generation of ROS and increased apoptosis via the imbalance of mitochondria-initiated apoptotic genes including tBid, Bax/
Bcl2, Bak/BclxL, Bad, Apaf1, cytochrome c, and caspases [353, 354]. The NMDAR-TRPM interaction is a novel cell death mechanism downstream to NMDAR 
and TRPM activation, which stimulates the formation of the NMDAR/TRPM complex in the extrasynaptic location. Excitotoxicity is then triggered by the 
complex in a “Ca2+-independent” fashion, mediated by mitochondrial dysfunction, reduced activation of ERK1/2, shut-off of the transcription factor CRAB, 
and cell death [229]
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present, how NMDAR activity is persistently upregulated 
in the seemingly normal brain and its precise link to AD 
progression are poorly understood. Current research in 
this area has exclusively examined the NMDAR GluN1 
and GluN2 subunits. For example, an increase in GluN2B 
expression was attributed to Aβ-induced NMDA hyper-
activity [223].

Our recent investigation demonstrated for the first 
time that the deficiency of GluN3A plays a life-long 
pathogenic role in causing mild but persistent activation 
of eNMDARs, chronic Ca2+ dyshomeostasis, and degen-
erative excitotoxicity [127], as seen in clinical late-onset 
AD/ADRD patients [127, 224] (Fig.  5). GluN3A knock-
out (KO) mice age-dependently developed virtually all 
pathophysiological features of neurodegeneration and 
AD pathology, including programmed cell death signal-
ing activation, chronic neuronal loss, synaptic disruption, 
LTP suppression, and early symptoms of olfactory defi-
cits followed by progressive psychological and cognitive 
deficits [127]. In contrast to current FAD models and 
support an Aβ-independent AD mechanism, endogenous 

amyloid deposition and tau hyperphosphorylation spon-
taneously emerged in the GluN3A KO brain after, but not 
before, cognitive decline [127] (Fig. 5). Additionally, our 
recent study verified that selective knockout of GluN3A 
in the cortex and hippocampus of young adult mice (3 
months old) using the CRISPR/Cas9 method resulted in 
similar AD-like morphological and functional alterations 
3–6 months later [225]. The expression (knock-in) of 
GluN3A in the global GluN3A KO brain effectively pre-
vented AD progression [225]. We also showed that early 
MEM treatment in GluN3A KO mice of 3-month old 
before cognition decline and Aβ deposition significantly 
prevented the age-dependent AD development [127]. 
Based on observations in this novel late-onset sporadic 
AD model, we propose that neuronal hyperactivity medi-
ated by chronic up-regulation of eNMDAR activity, slight 
but persistent [Ca2+]i increases and resulted chronic exci-
totoxicity in the cortex and hippocampus are a causal 
pathogenic mechanism of AD/ADRD (Fig. 5).

Fig. 4 Acute and chronic excitotoxicity and shared mechanisms between ischemic stroke and sporadic AD. The sketch diagram illustrates similarities and 
differences between ischemic stroke and AD. Both brain disorders suffer from overactivations of eNMDARs that are subjected to regulations by glutamate 
concentration, expression of NMDAR subunits (e.g. GluN2 and GluN3), and other modulatory mechanisms. The vast and rapid Ca2+ influx upon cerebral 
ischemia and much mild but lasting Ca2+ stress in AD trigger distinctive Ca2+-dependent signaling pathways, leading to acute and chronic excitotoxic-
ity, respectively. Depending on the severity and region of damage, ischemic stroke causes transient or permanent deficits of locomotor/sensorimotor 
activities and psychological/psychiatric/cognitive functions. Cerebral ischemia is also known for causing mitochondria dysfunction and ER Ca2+ stress that 
may be responsible for post-stroke AD-like pathology. On the other hand, chronic excitotoxicity in AD is induced by long-lasting small Ca2+ increases and 
deteriorating signaling pathways that lead to synaptic and neural network interruptions in specific regions critical for cognition, followed by Aβ deposi-
tion via increased activities of β- and δ-secretases [355]. This chronic excitotoxicity may cause late-onset AD in Aβ-dependent or -independent manner, 
which remains to be further investigated
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A novel mediatory pathway downstream to NMDAR 
activation and Ca2+ increases
Transient receptor potential cation channel subfamily M 
members (TRPMs) have been identified as key modula-
tors of numerous Ca2+-dependent mechanisms such as 
the immune response, insulin secretion, myogenic tone 
of the cerebral artery, capillary fragmentation, and respi-
ratory rhythm regulation [226]. Among them, TRPM4 
is a Ca2+-activated monovalent cation channel [227, 
228]. More recently, an interaction between NMDARs 
and TRPM4 was identified in NMDA-induced acute 
excitotoxicity. It is proposed that excitotoxicity requires 
the physical interaction of NMDARs and TRPM4, via 
intracellular domains in the near-membrane portions 

of the receptors [229]. The disruption of the NMDAR/
TRPM4 complex does not affect NMDAR-mediated 
[Ca2+]i increases, suggesting that the NMDAR-TRPM4 
complex does not affect NMDAR activity or Ca2+ per-
meability, rather it influences downstream events fol-
lowing NMDAR activation. Meanwhile, blocking 
NMDAR-TRPM4 interactions reduces NMDA toxic-
ity and mitochondrial dysfunction, activates CREB and 
ERK1/2, boosts gene induction, and reduces neuronal 
loss in mouse models of stroke and retinal degeneration 
[229]. Interestingly, the NMDAR-TRPM2 coupling pro-
motes the surface expression of eNMDARs, ultimately 
leading to increased neuronal death [230], while MEM 
treatment modulates TRPM2-induced excessive [Ca2+]i, 

Fig. 5 NMDAR GluN3A deficiency induced sporadic AD. The graph shows age-dependent events and corresponding experimental evidence in the 
NMDAR GluN3A knockout mouse. A GluN3A deficiency caused by genetic mutation or functional dysfunction can result in slight but persistent neuronal 
hyperactivity and [Ca2+]i elevations, subsequently leading to chronic inflammation, metabolism burden, and slowly evolved degenerative excitotoxicity. 
The synaptic impairment and programmed neuronal cell death in the hippocampus and cortex are correlated to progressive cognitive decline. Interest-
ingly and important to note that significant endogenous Aβ plague formation in neurons and blood vessels occurs after, but not before, cognition decline 
and other functional deficits [127]
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hypoxia-mediated ROS production, and apoptosis [231]. 
It was also proposed that multiple TRPM2-mediated 
cellular and molecular mechanisms cause Aβ and/or 
oxidative damage in AD pathologies [232]. The novel 
mechanism of neuronal death shines a light on a regula-
tory pathway downstream NMDAR activation, providing 
a possible neuroprotective strategy against excitotoxicity 
without directly blocking NMDARs [230].

Interactions between NMDAR and Aβ: alternative 
consequences of pathogenic events
According to the amyloid hypothesis of AD, Aβ-triggered 
neuronal hyperactivity and NMDAR abnormalities 
have been extensively investigated for many years. For 
example, Aβ1–42 increased NMDAR-mediated Ca2+ 
influx [233, 234], and extracellular Aβ oligomers can 
bind to NMDARs containing the GluN2B subunit and 
mGluR1, consequently leading to synaptic disruptions 
[235, 236]. The Aβ effect was mediated by interaction 
with NMDARs, either directly or via synaptic proteins 
such as PSD95 [154, 237–239]. Aβ can increase NMDAR 
activity, Ca2+ influx, and Aβ-associated synaptic loss 
[240–242]. In transgenic AD animal models, NMDAR 
hyperactivity occurs following Aβ accumulation [243]. 
Aβ may directly activate GluN2A-containing NMDARs 
[244], and Aβ oligomers can evoke [Ca2+]i rise through 
activated NMDARs in cortical neurons [233]. Numerous 
studies have shown that soluble Aβ causes a reduction in 
synaptic glutamatergic transmission and inhibits synaptic 
plasticity. For example, applying Aβ1–42 in cultured corti-
cal neurons leads to the internalization of sNMDARs and 
the depression of NMDAR-mediated currents [245]. Aβ 
can also stimulate glutamate release from glial cells and 
activate eNMDARs [153]; glutamate release from cul-
tured microglia and astrocytes were significantly greater 
in Aβ-treated cultures [246]. Detailed information about 
the effects of Aβ on NMDARs and neuronal activity can 
be found in several excellent reviews [54, 244, 247–249].

Extrasynaptic NMDAR activity promotes tau protein 
overexpression in neuronal cultures, and tau ablation 
is protective against cell death mediated by eNMDARs 
[250]. The promoting effect on tau phosphorylation 
is mediated by various kinases linked to augmented 
tau toxicity [153, 251]. Glycogen synthase kinase 3β 
(GSK-3β) is a tau kinase that is activated by Aβ [252] 
and contributes to Aβ-induced tau phosphorylation and 
toxicity [253]. Exacerbated tau toxicity associated with 
Aβ-induced GSK-3β activation can be prevented by 
inhibiting GluN2B-containing NMDARs [253]. Consis-
tently, the Aβ impairment of axonal transport is signifi-
cantly attenuated by NMDAR antagonists or by GSK-3β 
inhibition [254], supporting a functional link between 
NMDARs and GSK-3β activation. Interestingly, a recent 
study in tau knockout mice revealed that the deletion of 

tau decreased the eNMDA current in hippocampal neu-
rons [255], which is consistent with the pro-degenerative 
roles of tau and eNMDARs via a similar receptor mecha-
nism in AD.

More recent evidence suggests that sustained eNM-
DAR activation acts as an upstream event to Aβ pro-
duction and secretion [241, 242] (Fig.  5). For example, 
overall NMDAR activation by bath NMDA application to 
cortical neuronal cultures increased the production and 
secretion of Aβ by upregulating the expression of APPs 
[256]. Synaptic activity and vascular exocytosis in the 
hippocampus drive the release of Aβ into the extracellu-
lar space [257], though the work did not identify involved 
NMDAR subtypes. In primary cultures of wild-type 
cortical neurons, prolonged stimulation of eNMDARs, 
but not sNMDARs, significantly increased the neuronal 
synthesis and release of Aβ [163]. This effect was pre-
ceded by a shift from APP695 (the neuronal isoform of 
APP) to KPI-APPs, which are isoforms exhibiting impor-
tant amyloidogenic potential. The authors suggested 
that the eNMDAR pool is associated with APP and Aβ 
metabolism. Supporting this idea, there are significant 
overlaps between the signaling molecules implicated in 
AD and those influenced by eNMDAR stimulation. The 
effect of Aβ on JACOB translocation is entirely blocked 
by the GluN2B-specific antagonist ifenprodil, imply-
ing a mediating role of eNMDARs [258]. BDNF release 
from the implanted cells can attenuate cognitive deficits 
in AD mice, suggesting that BDNF deficiency may play 
an essential role in AD pathophysiology [259]. Further-
more, it was shown that BDNF induction is suppressed 
by eNMDAR activity [200]. Additionally, BDNF release 
from astrocytes is known to regulate the hyperactivation 
of neuronal populations via TrkB [260]. Importantly, this 
functional benefit of BDNF is achieved without improve-
ment in either Aβ or tau pathology [259], suggesting a 
BDNF-dependent action downstream of the Aβ and tau 
cascade or an AD/tau independent mechanism. Endors-
ing these possibilities, viral delivery of CREB-binding 
protein (CBP) increases BDNF expression and improves 
cognitive function in an AD model without affecting Aβ 
or tau pathology [261].

As an underlying mechanism, sNMDAR activity 
increases α-secretase-mediated nonamyloidogenic pro-
cessing of APP [262], while Ca2+ influx via persistent 
activation of eNMDARs leads to intranuclear CaMKIV 
activation and, via a series of signaling cascades, results 
in a shift from α-secretase to β-secretase-mediated APP 
processing and thereafter an increase in Aβ production 
[101]. It was further postulated that eNMDAR-promoted 
production of Aβ creates a toxic positive feedback loop 
in which Aβ enhances eNMDAR activity and stimulates 
Aβ production and secretion [107]. Collectively, accu-
mulating evidence implicates that eNMDAR activation 
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and imbalanced sNMDAR/eNMDAR activity tone are 
possible causal factors acting upstream of late-onset AD 
pathophysiology, including Aβ and tau pathology (Figs. 4 
and 5).

MEM is an eNMDAR antagonist with neuroprotective 
properties and few side effects
For many years, the NMDAR contribution to excitotox-
icity has represented attractive therapeutic targets for 
various CNS disorders. However, NMDAR antagonists 
that show promise in blocking excitotoxicity also disrupt 
normal synaptic functions, resulting in unacceptable side 
effects [30, 32, 263]. For instance, conventional NMDAR 
antagonists MK-801, phencyclidine (PCP), and ketamine 
induce some deteriorating actions such as schizophrenia-
like symptoms in humans [264–266].

MEM is an uncompetitive low-affinity and use-
dependent NMDAR antagonist with unique voltage 
and Mg2+ dependency that acts only at moderate depo-
larization [20, 52, 267, 268]. More importantly, unlike 
classic NMDAR antagonists, MEM preferentially acts 
on extrasynaptic GluN2B and GluN2C/2D containing 
NMDARs over synaptic NMDARs [99, 183, 269]. This 
is true, especially at therapeutic doses (1–10 μm in vitro 
and 1–30  mg/kg in vivo). Using Ca2+ imaging, it was 
demonstrated in primary cortical cultures that MEM 
significantly blocked the [Ca2+]i increases mediated by 
eNMDARs and attenuated NMDA-induced neuronal 
cell death [99]. These unique pharmacological features 
of MEM imply minimal influence on the physiological 
activity of sNMDARs with effective suppression of over-
activated eNMDARs.

MEM shows neuroprotective and neuroplasticity 
effects when it is administered acutely and chronically 
in stroke animals. In experimental acute treatments after 
permanent or transient ischemic stroke, MEM showed 
neuroprotective effects around 10–30  mg/kg (i.p., i.v. 
or oral) [270–273]. MEM can reduce ischemia-induced 
infarct formation and neuronal cell death acutely after 
an ischemic attack [271, 274]. In middle cerebral artery 
occlusion-reperfusion rats, MEM significantly prevented 
neuronal death by suppressing the activation of the cal-
pain-caspase-3 pathway and apoptosis, consequently 
attenuating brain damage and neurological deficits [273]. 
In transient (60  min) ischemic stroke mice, low-dose 
MEM (0.2  mg/kg/day) started 24  h before stroke and 
continued for a 48-hour recovery period significantly 
reduced lesion volume by 30–50% and improved behav-
ioral outcomes [275]. On the other hand, higher doses of 
MEM (20 mg/kg/day in this report) increased injury. The 
neuroprotective effect of MEM was also confirmed in 
stroke models using multiple species. In a rabbit multiple 
infarct embolic ischemia model, bolus injections of MEM 
at 25 mg/kg were lethal. However, slowly infused MEM 

was more tolerable and had substantial therapeutic bene-
fits after acute ischemic stroke [276]. Like other NMDAR 
antagonists, delayed MEM treatments, e.g., 30–60  min 
after stroke, showed little neuroprotective effects [274, 
276]. Unfortunately, pretreatment of MEM before stroke 
attacks is generally unpractical and hardly justifiable to 
apparently normal individuals.

In vivo studies verified that chronic oral MEM at clini-
cal doses (1–30  mg/kg/day, for months to years) is well 
tolerated without significant neuronal or neurological 
abnormalities [20, 277–281]. Clinical trials with MEM 
have consistently demonstrated its safety for short- and 
long-term use, with an adverse event profile “similar to 
that of placebo” [282–286]. MEM may cause a few side 
effects that have been clinically well characterized; the 
most common adverse reactions include dizziness, head-
ache, confusion, diarrhea, and constipation [287–289]. 
Other possible less common side effects include fatigue, 
pain, hypertension, weight gain, hallucination, confu-
sion, aggression, vomiting, and urinary incontinence. 
These reactions are not life-threatening, and symptoms 
are treatable and reversible. However, as seen with most 
drug therapies, continual use of high doses of MEM 
(e.g., ≥ 30  mg/kg) may block synaptic and extrasynaptic 
NMDARs and can show side effects of neuronal loss and 
functional impairments [109].

MEM is thus far the only clinically approved NMDAR 
antagonist for the treatment of moderate-to-severe AD 
[282–286] (Table  1). The rationale for using MEM as a 
symptomatic treatment for advanced AD patients, but 
not as a disease-modifying early treatment, is in line with 
the previous judgment that NMDAR abnormalities are 
merely a consequence of Aβ/tau pathology. This justifi-
cation, however, is noticeably inconsistent with mount-
ing evidence from basic and clinical observations that 
NMDAR and neuronal hyperactivity are early and patho-
genic mechanisms of AD development. According to the 
modified Ca2+ hypothesis of AD and recent evidence 
from our group and others that NMDAR overactivation 
and chronic Ca2+ dyshomeostasis are upstream events 
of AD pathology, including Aβ/tau alterations [127], it 
can be reasonably assumed that the marginal results of 
current MEM treatment in advanced AD patients are 
largely due to improper timing of the delayed treatment, 
which misses the pathogenic phase of neuronal hyper-
activity ongoing for years during the prodromal/pre-
clinical period of disease progression. A game-changing 
approach should be considered to start MEM treatment 
much earlier in individuals who show persistent signs of 
neuronal hyperactivities, Ca2+ dyshomeostasis, and other 
risk factors/early biomarkers of AD/ADRD (Fig. 6).
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Early MEM treatment as a disease-modifying therapy for 
AD and related dementia
MEM treatments at early phase of incubation period is 
essential for a disease-modifying or preventive therapy in 
order to maintain year-long normal NMDAR activity and 
physiological Ca2+ levels in individuals vulnerable to AD/
ADRD. In the GluN3A KO mouse, we demonstrated that 
presymptomatic MEM (10–20  mg/day) treatment from 
3-month of age for 3 months prevented or attenuated 
AD brain neuropathology, Aβ production/aggregation, 
and cognation decline [127, 290]. Audrain et al. examined 
preventive treatment in a late-onset AD rat model. The 
early MEM (20  mg/daily) administration for 6 months 
started at asymptomatic phase of 4 months old pro-
moted non-amyloidogenic cleavage of APP followed by a 
decrease in soluble Aβ42. MEM also prevented impair-
ments of LTP and cognitive decline in control AD rats, 
although tau hyperphosphorylation was unaffected [291].

Thanks to the identification of risk factors and associ-
ated mutant genes in human genome research [292–295], 
early and presymptomatic treatments become possible. 
Supporting this idea, clinical trials of MEM in mild cogni-
tive impairment (MCI)/mild AD patients showed signifi-
cant therapeutic benefits, such as maintained cognitive 
function and improved brain imaging findings [296–302] 
(Table  1); even so, MEM in these trials might not have 
been given early enough from presymptomatic phases. 
In fact, MEM has been frequently prescribed to MCI 
and mild AD/dementia patients based on many physi-
cians’ own clinical experience [303]. Despite the emerg-
ing evidence, a meta-analysis review of data involving 
early MEM approaches concluded that early MEM treat-
ments did not provide significant benefits for patients 
in trials analyzed. However, the authors also recognized 
that “Prospective trials are needed to further assess the 
potential for efficacy of memantine” [304]. Specifically, 
considering many failures of Aβ clearing therapies in 
clinical trials and documented benefits of MEM in MCI/
AD patients, it is necessary to verify the effect of early 
preventive treatment using MEM and other eNMDAR 
antagonists in both preclinical and clinical investigations 
[298–302] (Fig. 6) (Table 1).

Ketamine is a non-competitive NMDAR antagonist, 
initially developed as an anesthetic drug. Besides mul-
timodal analgesic actions, ketamine can induce a wide 
range of pharmacological effects, including neuropro-
tection, anti-inflammatory, anti-cancer, anti-depression/
suicidal attempts, and status epilepticus [305–307]. In 
dose-dependent and brain status-dependent manners, 
ketamine displays neuroprotective or neurotoxic prop-
erties. At anesthetic doses applied during neurodevelop-
ment, ketamine contributes to inflammation, autophagy, 
apoptosis, and enhances levels of reactive oxygen species 
[308]. On the other hand, a subanesthetic dose ketamine D
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triggers multiple neurotrophic and neuroprotective 
effects mediated by NMDAR-dependent and -indepen-
dent mechanisms. Regarding its anti-depression action, 
recent studies explored using ketamine to treat AD-
related depression [309–311]. Esketamine, which is ket-
amine formulated as a nasal spray, was approved by the 
FDA as an adjuvant drug to be used for treatment-resis-
tant depression (TRD) [312].

Being an NMDAR antagonist, ketamine has been 
tested in several stroke trials for safety and neuropro-
tective efficacy while no official reports are available up 
to now (Table 1). Despite potential ketamine’s cognitive 
effects, few clinical trials have examined its cognition 
benefits in AD patients. There has been no clinical trial 
to test ketamine as an anti-AD drug, mostly likely due 
to the current focus on the Aβ mechanism and concerns 
about possible side effects caused by prolonged use of 
ketamine.

Early preventive neuroprotective treatments for AD and 
stroke in the same individuals
Although multiple factors and shortcomings in preclini-
cal and clinical research may contribute to the failure of 
NMDAR antagonists in stroke trials, one critical dilemma 
is the narrow therapeutic window. An NMDA receptor 
antagonist, even if it has few side effects, must be admin-
istered before or soon after (within a couple/few hours) 
the onset of ischemic attack to show protective effects 
in animal stroke models, which is generally impractical 
in clinical settings [313]. Aside from acute neuroprotec-
tive treatment, mounting evidence demonstrated that 

the brain and neuronal cells can be preconditioned using 
sublethal ischemia/hypoxia or a variety of chemicals/
drugs to substantially enhance the tolerance to severe 
upcoming ischemic insults. This preconditioning strat-
egy and its potent and broad cytoprotection have been 
confirmed in different animal models and human studies 
[314–316]. Like NMDAR antagonists, preconditioning 
treatment faces the same hurdle in that it requires pre-
application well before the onset of an ischemic insult, 
and it is unfeasible to predict when somebody, even if he 
or she is known to be susceptible to stroke, will experi-
ence an ischemic attack in daily life.

Considering that stroke and AD share some key patho-
physiological mechanisms with different time courses, a 
continual prophylactic pretreatment targeting common 
underlying NMDAR-related mechanisms at the early 
stages of AD is expected to be preventive for both stroke 
and AD, i.e., slowing AD progression while simultane-
ously priming the same brain against ischemic attacks 
that might strike at any time in the same aging individual 
(Fig.  6). There has been no such ideal treatment target-
ing both stroke and AD because it has been believed for a 
long time that the pathogenesis of AD is solely due to Aβ 
and tau pathology, which is fundamentally different from 
the cerebral ischemia that causes acute brain neurovas-
cular damage.

To this end, we have performed the first investigation 
to test the preventive anti-stroke and anti-AD effects of 
MEM in the novel sporadic AD model of GluN3A KO 
mice as well as conventional 5XFAD mice [317]. Meman-
tine (10 mg/kg/day in drinking water) was administered 

Fig. 6 Hypothetic timelines of late-onset AD and common comorbidity of stroke. Late-onset AD is a slow and progressive disease; its early pathophysio-
logical cascades cultivate years to decades before clinical diagnosis and likely precede significant Aβ deposition which is a pathological event emerging in 
patients’ brains of around 50 years old [48]. Different from the most popular diagram showing the events after Aβ deposition [356], this graph emphasizes 
possible triggering mechanisms before Aβ and tau pathology. In this hypothetic model, neuronal hyperactivity and Ca2+-associated chronic excitotoxicity 
exist well before neuronal loss, functional deficits, increased APP processing, and Aβ/tau pathology. Meanwhile, these underlying mechanisms signifi-
cantly increase the risk of stroke attacks accompanied by acute excitotoxicity. Accordingly, a preventive disease-modifying intervention such as MEM 
treatment is necessary in the preclinical phase, which can also serve as a preconditioning therapy against stroke that strikes more than 50% of AD patients
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during the prodromal/preclinical stage to 3-month-old 
mice when olfactory deficits and neuronal hyperactivity 
were detectable but no cognitive dysfunction was pres-
ent. After 3 months of treatment, significant benefits 
were observed in mice in the MEM group, showing a 
slowing of AD neuropathology and functional deteriora-
tion. Focal ischemic stroke was then induced in AD mice 
with and without MEM treatments to mimic the strokes 
commonly occurring in over 50% of AD patients. Com-
pared to the vehicle group, the infarct volume and neu-
ronal loss in AD mice that received 3 months of MEM 
treatment were significantly reduced 3 days after stroke. 
Continual monitoring and inspection of these animals 3 
months later revealed less neurodegeneration and fewer 
cognitive deficits in the AD-stroke mice that received 
long-term MEM treatments. This ongoing investigation 
provides the first supporting evidence that early MEM 
treatment can be a preventive/preconditioning therapy 
for aging individuals susceptible to stroke and AD. Based 
on previous and our investigations, this innovative early 
approach is mechanistically justified, clinically feasible, 
and bears great clinical significance. More basic and pre-
clinical research studies will help to reveal the detailed 
mechanisms of the dual effects of MEM against acute 
and chronic excitotoxicity. Clinical trials using MEM as 
a preventive therapy at the prodromal and mild MCI/
AD stages should be carried out, and the effect of MEM 
on the prevalence and severity of stroke in AD patients 
should be explicitly analyzed and compared with that in 
patients not taking MEM. Meanwhile, the interaction 
between NMDARs and TRPMs as a downstream path-
way to excitotoxicity provides another target for produc-
ing effective therapies against stroke and AD/ADRD. A 
better understanding of its physiological functions will 
help to predict the safety and efficacy of this approach.

Development of selective eNMDAR antagonists for 
enhanced therapeutic benefits
There has been increasing enthusiasm for the develop-
ment of eNMDAR antagonists as potential treatments 
for stroke or neurodegenerative diseases such as AD and 
HD [107, 108]. Most of these compounds were MEM 
derivatives, such as MN-08 (a MEM nitrate) [153, 268, 
318], fluoroethylnormemantine (FENM) [319, 320], and 
NitroSynapsin [153]. In vitro experiments with MN-08 
demonstrated its anti-NMDAR effect and reduced Ca2+ 
influx, regulation of the ERK and PI3K/Akt/GSK3β path-
ways, and attenuation of glutamate-induced neuronal 
loss. In APP/PS1 transgenic mice and 3xTG-AD mice, 
several months of MN-08 daily treatments attenuated 
Aβ accumulation, neuronal and dendritic spine loss, 
and cognitive deficits. In addition, MN-08 had favorable 
pharmacokinetics, blood-brain barrier penetration, and 
safety profiles in rats and beagle dogs. These findings 

suggest that the novel memantine nitrate MN-08 may be 
a useful therapeutic agent for AD [321]. To improve the 
therapeutic potential and benefits of MEM, the Lipton 
group generated a series of drugs known as NitroMe-
mantines, including the derivative of MEM-designated 
NitroSynapsin [153, 268, 318]. NitroSynapsin is a chemi-
cal adduct between an aminoadamantane moiety and 
a nitro group. Unlike MEM, NitroSynapsin acts as a 
dual-allosteric antagonist of eNMDARs, with aminoa-
damantane serving to target the nitro group to redox-
modulatory/inhibitory sites on the extracellular surface 
of the receptor via S-nitrosylation. The pharmacological 
and therapeutic properties of NitroSynapsin have been 
examined and compared with those of MEM through in 
vitro and in vivo experiments. Patch clamp single-chan-
nel recordings confirmed that, like MEM, NitroSynapsin 
is a selective eNMDAR antagonist and can antagonize 
α-synuclein-induced synaptic damage and neuronal loss 
[322]. Human iPS cells (hiPSCs) and organoids bearing 
familial AD mutations exhibit aberrant electrical activity 
manifested as increased spontaneous action potentials, 
slow oscillatory events, and hypersynchronous network 
activity. NitroSynapsin, but not MEM, abrogated this 
hyperactivity [323].

To improve the specificity of the action of MEM on 
eNMDARs, a bioengineering approach was taken to 
design a hybrid nano-compound (AuM) with MEM 
attached via polymer linkers to a gold nanoparticle, the 
size of which is larger than the synaptic cleft [324]. AuM 
efficiently and selectively inhibited eNMDARs without 
inhibiting sNMDARs, and in comparison to MEM, AuM 
exhibited superior neuroprotective properties against 
NMDA-induced excitotoxicity and Aβ oligomer-induced 
dendritic spine loss [324]. This interesting drug design 
may represent a novel rational strategy for a new class 
of neuroprotective drugs with enhanced selectivity for 
eNMDARs that are effective in the treatment of stroke 
and neurodegenerative diseases.

Neramexane, a noncompetitive moderate open chan-
nel NMDAR antagonist as well as an inhibitor of cholin-
ergic nicotinic receptors, has been shown to be efficient 
in enhancing long-term memory in adult rats and well 
tolerated in humans, suggesting potential therapeutic 
applications [325, 326]. In a clinical trial of the treatment 
of tinnitus, four weeks of 50 mg/day neramexane signifi-
cantly improved functional scores compared to placebo 
[327]. Some early phase II/III clinical trials with nera-
mexane for moderate-to-severe AD, however, showed 
contradictory results [326], which may be a reflection of 
the broader effects of neramexane and the timing of the 
drug administration, as discussed in this review.

Ifenprodil, a specific GluN2B receptor antagonist, pre-
vents Aβ-induced endoplasmic reticulum (ER) stress, 
hippocampal dysfunction, and microtubule deregulation 
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as well as Ca2+ rise [233]. Ifenprodil also prevents 
Aβ-induced inhibition of LTP, impairment of synaptic 
transmission, and retraction of synaptic contacts [328]. 
In acute hippocampal slices, the selective GluN2B antag-
onists ifenprodil and Ro25-6981 efficiently rescued LTP 
inhibition caused by soluble Aβ [328]. These results sug-
gest that targeting the GluN2B subunit of NMDARs may 
be a promising way to prevent AD progression.

The compound 4-(5-(4-bromophenyl)-3-(6-methyl-
2-oxo-4-phenyl-1,2-dihydroquinolin-3-yl)-4,5-di-
hydro-1 H-pyrazol-1-yl)-4-oxobutanoic acid (DQP-1105) 
is a representative member of a new class of NMDAR 
antagonists and shows a preferred effect on GluN2C/2D 
subunits [329]. DQP-1105 was more potent for blocking 
currents evoked by bath-applied NMDA than for block-
ing synaptic NMDA currents. Thus, DQP-1105, like 
MEM, seems to have the potential to provide efficacy 
in therapeutic treatment while displaying minimal side 
effects.

With high clinical feasibility, the clinical drug lithium, 
which has been used for treating bipolar disease and 
depression, has drawn increasing attention for its mul-
tifaceted neuroprotective and regenerative mechanisms 
in the treatment of neurodegenerative diseases [330, 
331]. Among its effects on cellular and molecular sig-
naling pathways, lithium has been shown to reduce free 
radical-induced neurotoxicity and stabilize aberrant Ca2+ 
dyshomeostasis by an inhibitory action at NMDARs 
[332–334]. Lithium prevents intracellular Ca2+ overload 
by suppressing IP3R-mediated ER Ca2+ release, subse-
quently attenuating Aβ accumulation and tau hyperphos-
phorylation and rescuing impaired hippocampal synaptic 
plasticity [335, 336]. Lithium is also a GSK3β inhibitor 
[337], which can be an underlying mechanism to attenu-
ate Aβ-induced tau phosphorylation and toxicity [253]. 
Lithium is a tolerable drug, and its anti-excitotoxicity and 
anti-AD properties merit further investigation.

Conclusion
Excitatory hyperactivity associated with the imbalance 
of the excitatory/inhibitory activity and overactiva-
tion of NMDARs, especially eNMDARs, and increased 
[Ca2+]i cause the acute and chronic excitotoxicity of 
brain injuries such as ischemic stroke and neurodegen-
erative diseases such as AD [185, 338]. These decisive 
roles of NMDARs position them as major molecular and 
cellular players in critical brain functions and pertinent 
potential therapeutic targets for neurological disorders 
[61]. However, the cause of degenerative excitotoxic-
ity and distinctions between acute and chronic forms of 
excitotoxicity has not been explicitly defined. Retrograde 
assessments regarding stroke prevalence and outcomes 
in MCI/AD/ADRD patients who were and were not pre-
scribed chronic MEM treatments may provide indicative 

evidence for the dual efficacy of MEM; this clinical analy-
sis, however, has so far not been performed.

A growing consensus considers that Aβ pathology is 
unlikely the initial pathogenic mechanism, at least not 
the only pathogenesis, for late-onset AD/ADRD. A better 
understanding of the causal mechanism of Aβ deposition, 
glutamatergic hyperactivity and downstream cascades, 
either in Aβ-dependent or -independent manners, will 
shine a new light onto the initial pathogenesis and aid 
in the development of early, preventive/preconditioning 
drug therapies with dual effects against late-onset AD/
ADRD and ischemic stroke that often occur in the same 
individuals.
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GSK-3β  glycogen synthase kinase 3β
FAD  familial AD
FENM  fluoroethylnormemantine
HD  Huntington’s disease
hiPSCs  human iPS cells
KO  knockout
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