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Simple model systems reveal conserved 
mechanisms of Alzheimer’s disease and related 
tauopathies
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Abstract 

The lack of effective therapies that slow the progression of Alzheimer’s disease (AD) and related tauopathies high-
lights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these 
diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate 
the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress 
response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegen-
eration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the bud-
ding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, 
focusing on models of AD and related tauopathies. We further address the potential of simple model systems to bet-
ter understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
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Background
Alzheimer’s disease (AD) is the most common form of 
dementia. It is characterized by the accumulation of 
amyloid-beta in senile plaques and hyperphosphorylated 
Tau in neurofibrillary tangles (NFTs) [22]. Mutations in 
the amyloid precursor protein (APP) or the proteins that 
cleave it, the presenillins, PSEN1 and PSEN2 (as part of 
the gamma secretase), have been identified in familial AD 
[325]. Familial cases are of early onset and account for 
only a small percentage of AD cases. Most cases of AD 

are considered sporadic, but many genes associated with 
altered disease risk have been identified [151].

AD begins with a preclinical stage where no symp-
toms are evident but amyloid plaques and neurofibril-
lary tangles are present in the brain. Mild or early stage 
AD is characterized by loss of concentration, disorienta-
tion, and mood changes that occur due to pathological 
changes in the cortex and hippocampus. The moderate 
stage is associated with increased memory loss, difficulty 
in reading, writing, and speaking as neurons in the cer-
ebral cortex begin to degenerate. In late-stage, patients 
suffer from severe cognitive decline and motor impair-
ments [252]. Tau pathology is well correlated to disease 
severity. Tau pathology begins in the transentorhinal cor-
tex (Braak stage I). As the disease progresses, Tau pathol-
ogy spreads to the hippocampus (Braak stage II/III) and 
later to regions of the cerebral cortex (Braak stage IV/V) 
[21]. Tau modification is also an important predictor of 

*Correspondence:
Lesley T. MacNeil
macneil@mcmaster.ca
1 Department of Biochemistry and Biomedical Sciences, McMaster 
University, Hamilton, Canada
2 Farncombe Family Digestive Health Research Institute, McMaster 
University, Hamilton, Canada
3 Michael G. DeGroote Institute for Infectious Disease Research, McMaster 
University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13024-023-00664-x&domain=pdf
http://orcid.org/0000-0001-9562-8754


Page 2 of 23Jiang and MacNeil  Molecular Neurodegeneration           (2023) 18:82 

degeneration, abnormal Tau phosphorylation is observed 
before the formation of neurofibrillary tangles.

Models of AD and other tauopathies have been devel-
oped in many animals, including rodents, primates, and 
simple model organisms [4, 69, 108, 144, 269]. In addi-
tion, mammalian cell culture and yeast models have been 
used to study molecular events that contribute to Tau 
and Aβ toxicity. However, no single AD model is ideal for 
all questions. Non-human primates most closely mimic 
human biology with a well-developed prefrontal cortex 
and development of age-associated senile plaques but due 
to cost and ethical considerations, are not suited to dis-
covery-based research. Mouse models are widely used in 
AD research and have provided important insights. They 
can recapitulate phenotypes in relevant brain areas that 
cannot be studied in simpler organisms or cell culture 
models. However, it is a challenge to perform large-scale 
unbiased genetic or chemical screens in mice. Simpler 
models are more amenable to this type of analysis. Here 
we review genetic modifiers of Aβ and Tau-based AD 
models,we restrict our discussion to three organisms in 
which large-scale screens have been accomplished, S. cer-
evisiae, C. elegans, and D. melanogaster.

Simple model organisms offer several advantages for 
studying neurodegenerative diseases, including low-cost, 
unbiased high-throughput screening capabilities, ease 
of genetic manipulation, and availability of resources 
such as mutant and transgenic strains. Importantly, 
many human disease-associated genes have orthologs in 
these organisms [225]. 62% of human disease genes are 
conserved in flies [89]. At least 42% of human disease 
genes have a C. elegans orthologue [53] and 83% of the 
C. elegans proteome has a human homolog [171]. These 
organisms have orthologs of many neurodegenerative 
disease-associated genes, and cellular processes associ-
ated with neurodegeneration are largely conserved. Fur-
thermore, expressing human disease-associated proteins 
in these models recapitulates many features of neurode-
generative disease [32, 42, 167].

While no single model can recapitulate all aspects of 
human disease, each model brings unique strengths that 
can provide important insights. The baker’s yeast S. cer-
evisiae is a powerful tool for studying gene function and 
genetic interactions. In addition to its ease of manipu-
lation, S. cerevisiae has the most complete gene dele-
tion collection of any eukaryote. In addition, available 
genome-scale protein–protein and genetic interaction 
datasets provide the ability to gain a more global view of 
gene function [50, 105, 268, 291, 330].

Drosophila and C. elegans have easy-to-visualize neu-
rons and short lifespans suitable for aging studies. The 
simple neuroanatomy of C. elegans, together with its 
transparency, allows individual neurons to be studied in 

their correct biological context [2, 76]. The fruit fly Dros-
ophila has a more complex nervous system [281] with 
more than 200,000 neurons, and a simple brain that can 
support complex behaviours [91]. Behavioural assays in 
C. elegans and Drosophila allow the assessment of neu-
ronal function and the identification of dysfunction that 
precedes physical signs of neurodegeneration.

This review summarizes the genetic modifiers and 
evolutionarily conserved cell signaling pathways identi-
fied from high-throughput screens and targeted studies 
in S. cerevisiae, C. elegans, and Drosophila models of AD 
and related tauopathies. Similar analyses found overlap 
in genetic modifiers between these species and between 
models of different neurodegenerative diseases [40], van 
Ham et  al. 2009). In this study, we focus specifically on 
models of AD and provide an updated list of reported 
genetic modifiers that includes 1,000 yeast genes, 176 
C. elegans genes, and 953 Drosophila genes (Tables S1, 
S2, S3). These modifiers are associated with key cellular 
processes including protein synthesis, proteostasis, traf-
ficking, mitochondrial function, cytoskeletal regulation, 
metabolism, cell signaling, and immune response.

Main text
Simple models of Alzheimer’s disease
The main defining pathological features of AD are the 
accumulation of amyloid-β (Aβ), a proteolytic prod-
uct of the amyloid precursor protein (APP), and the 
aggregation of the microtubule-associated protein 
Tau (MAPT) [18]. Abnormal Tau aggregation is also 
observed in other neurodegenerative diseases, including 
Pick’s disease, progressive supranuclear palsy and fron-
totemporal dementia, collectively known as tauopathies 
[162, 232]. Despite extensive research, the function of 
Aβ, how its accumulation promotes neurodegeneration, 
and the link between Aβ and Tau aggregation, are not 
fully understood [158, 270].

Loss of function mutations in the C. elegans and 
Drosophila orthologs of APP and MAPT are viable, ena-
bling the investigation of conserved functions of these 
genes [25, 46, 80, 132]. However, APP processing differs 
among these organisms. In mammals, the Aβ peptide 
is produced by proteolytic processing of the amyloid 
precursor protein (APP) by β and γ secretases. APP 
cleavage produces different forms of Aβ, including the 
majority species Aβ40 and the more toxic species Aβ42 
[335]. Aβ42 peptides, which account for approximately 
10% of total Aβ produced, are more prone to aggrega-
tion [24]. An increased Aβ42/40 ratio is observed in 
familial AD, suggesting a crucial role for Aβ42 in disease 
pathogenesis [7, 267]. Moreover, an elevated ratio of 
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Aβ42/40 induces Tau aggregation in cultured neuronal 
cells [169].

C. elegans and Drosophila lack a BACE homolog, the 
β-secretase that cleaves APP and the amyloid-precur-
sor-protein-like (APL-1 of APPL) proteins shows little 
homology to the human protein in the Aβ region, sug-
gesting they do not produce an Aβ equivalent. However, 
Drosophila APPL is processed by secretases to form 
secreted fragments, an Aβ-like peptide, and an intra-
cellular fragment [35]. This processing is similar to the 
human protein, but the order of the cleavage sites on 
the protein is reversed. Interestingly, although APPL 
does not contain the human Aβ-like sequence, APPL 
can be cleaved by a fly β-secretase-like enzyme to form 
neurotoxic peptides that aggregate into amyloid depos-
its, suggesting that APPL may produce a structurally 
similar peptide [32].

The lack of conservation in the cleavage of amyloid 
precursor proteins precludes the use of the full-length 
human disease-associated APP transgenes as a model 
for AD. The expression of a secreted human Aβ42 pep-
tide is therefore used to overcome this challenge [51, 139, 
182]. While this approach may limit our ability to study 
some aspects of AD biology, including the regulation of 
APP expression and APP cleavage, modifiers with known 
association to AD have been identified in genetic screens 
using these models.

Yeast models have been used to study the oligomeriza-
tion, aggregation, and toxicity of Aβ [9]. In yeast, cyto-
plasmic or ER-targeted Aβ42 has been used to model 
different aspects of Aβ toxicity. When Aβ is targeted to 
the ER, it progresses through the secretory pathway but 
is retained by the yeast cell wall, allowing it to interact 
with the plasma membrane and endocytic machinery 
[297]. Both ER-targeted and cytoplasmically expressed 
Aβ reduce growth rate, a phenotype that has been used to 
identify suppressors and enhancers of Aβ-associated tox-
icity [27, 55, 297]. Yeast, as single-cell eukaryotes, have 
the advantage of simplicity in studying cell-autonomous 
functions, however, they cannot recapitulate neuron-
specific processes and organismal responses that may be 
critical in the development of neurodegeneration.

In C. elegans, the secretion of Aβ42 from muscle leads 
to paralysis [64, 82, 182]. This model has been exten-
sively used because it provides an easy-to-score phe-
notype and is amenable to large-scale screening [154]. 
Pan-neuronal expression of Aβ42 has also been used in 
C. elegans. These animals have defects in chemotaxis, 
behavioural responses, and movement but do not pro-
duce the dramatic paralysis phenotype observed with 
muscle-specific expression [63, 277]. Large-scale RNAi 
screens have been performed with both models, with 

only one gene, the HSP70 family member hsp-1, found 
in both screens [154, 165].

Similar to other models, expression of AD-related pro-
teins in flies results in aggregation and impaired cellular 
functions. Expressing hAPP in flies, together with the 
cleaving enzyme BACE and presenilins, in photoreceptor 
cells generates amyloid plaques and leads to neurodegen-
eration [110]. In addition, ubiquitous expression of these 
genes caused ectopic wing vein formation and a short-
ened lifespan. Amyloid deposition and neurodegenera-
tion were also observed when human Aβ42 was expressed 
in the fly brain [84, 138]. Interestingly, expressing Aβ40 
causes age-dependent learning defects but no obvi-
ous neurodegeneration, consistent with observations in 
mammalian systems where Aβ40 is less fibrillogenic and 
toxic than Aβ42 [139, 216].

Tau‑based models of disease
Tau is a highly soluble protein that binds tubulins and 
promotes the assembly and stabilization of microtubules. 
In the human brain, six major Tau isoforms are generated 
by alternative splicing [104]. Isoforms have one (1N), two 
(2N) or no amino-terminal inserts (0N) and differ in the 
exclusion or inclusion of exon 10, resulting in a protein 
with either 3 (3R) or 4 (4R) microtubule-binding regions. 
In a normal adult brain, the ratio of 3R to 4R isoforms 
is approximately equal [124]. Both 3R and 4R isoforms 
are found in the AD brain but the ratio of the two may 
change during the course of the disease [124]. The phos-
phorylation status of Tau also changes in AD. Hyper-
phosphorylation of Tau precedes its aggregation into 
NFTs [3]. Although MAPT mutations are not a cause of 
AD, they are causal in other tauopathies including fron-
totemporal dementia (FTD) and Pick’s disease [141].

Expression of FTD-associated Tau variants (V337M, 
V301L, R406W) has been used to model AD in both 
flies and worms [2, 107, 204, 245]. Expression of these 
Tau variants in C. elegans induces disease-associated 
pathologies, including phosphorylation of Tau at disease-
relevant sites, accumulation of insoluble Tau aggregates, 
synaptic loss, decreased neuronal function and neurode-
generation [23, 167, 209]. In studies comparing wild-type 
and mutant Tau, disease-associated mutations produced 
more severe phenotypes [167]. Transgenic flies express-
ing mutant human Tau show increased Tau phosphoryla-
tion and disease-associated Tau conformations, reduced 
lifespan, and vacuolization and degeneration of cortical 
cells [243, 274, 320, 321]. In C. elegans, impaired locomo-
tion occurs before insoluble Tau aggregates are detected, 
suggesting that neurodegeneration in this model is not 
a general effect of aggregated protein [167]. Increased 
Tau phosphorylation and age-related neurodegenera-
tion were observed in a Drosophila model in the absence 
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of neurofibrillary tangles [320, 321]. Overall, expressing 
AD-related proteins in simple models recapitulates many, 
but not all, features of the disease (Fig.  1) and provides 
insight into the progression of the disease.

Large-scale screens in yeast, worms, and fruit flies have 
identified many genetic modifiers of amyloid-beta and 
Tau toxicity (Table 1) [17, 30, 42, 93, 154, 156, 165, 255, 

274, 275, 285, 297]. Here we summarize these modifiers 
and compare findings across species. Many of these mod-
ifier genes can be linked to cellular pathways and pro-
cesses associated with AD, such as protein trafficking and 
localization, cell cycle, metabolic processes, gene expres-
sion, and stress response (Fig. 2).

Fig. 1 Modeling Alzheimer’s disease in simple model systems. Expressing AD-related proteins Tau and Amyloid beta, in simple model systems, 
including S. cerevisiae, C. elegans, and Drosophila melanogaster recapitulates many disease-associated phenotypes

Table 1 Genetic modifier screens in S. cerevisiae, C. elegans and D. melanogaster models of Alzheimer’s disease

a EP, GS (Gene Search), and P{Mae-UAS.6.11} lines contain gene insertions that allow forced expression of genes using the GAL4-UAS system, they typically result in 
over or mis-expression of the associated gene but can also result in loss of function

Organism Transgene Screen Phenotype Reference

S. cerevisiae secretory GAL-α-prepro- Aβ42-GFP yeast deletion collection of ∼6000 ORFs growth [93]

S. cerevisiae secretory GAL-Kar2- Aβ42 overexpression library of 5532 full-length ORFs growth [297]

S. cerevisiae secretory GPD-Kar2- Aβ42  ~ 4300 deletion and ~ 1200 temperature 
sensitive mutant strains

growth [42]

C. elegans myo-3p::Aβ42 (muscle) RNAi against 7970 C. elegans genes 
with human homologs

paralysis [154]

C. elegans aex3::hTau V337M (pan neuronal) RNAi against 16,757 genes uncoordinated (Unc) locomotion [165]

Drosophila Aβ42 expressed in the eye 1963 EP  insertionsa rough eye phenotype [30]

Drosophila Aβ42 expressed in central nervous system 3000 GS  insertionsa longevity [255]

Drosophila hTauV337M expressed in the eye 2276 EP insertions rough eye phenotype [274]

Drosophila hTauV337M expressed in the eye RNAi sequences for 87 fly homologs of human 
candidate genes

rough eye phenotype [275]

Drosophila hTau expressed in the eye RNAi sequences for 74 fly homologs of human 
candidate genes

quantification of eye size [66]

Drosophila hTau expressed in the eye 144 Drosophila miRNAs quantification of eye size [285]

Drosophila hTauV337M expressed in the eye 1250 P{Mae-UAS.6.11}  insertiona rough eye phenotype [17]

Drosophila hTau expressed in the eye RNAi sequences targeting 2,645 Drosophila 
genes

rough eye phenotype [156]
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While extensive validation of many of these modifiers 
is lacking, modifiers identified in different studies could 
reveal important regulators of neurodegeneration and 
identify processes that are important for maintaining 
neuronal health. We performed functional annotation 
of modifiers from each species using online tools includ-
ing FunSpec, GO Slim Mapper, Wormcat, Flybase, and 
GLAD [20, 120, 130, 135, 257] (Tables S6-S11). We also 
identified human homologs of these genes (Tables S1-
S5). Homologs of AD-associated genes reported from 
genome-wide association studies (GWAS) were identi-
fied by comparing our list to the > 900 loci collected in 
the Alzheimer’s Disease Variant Portal  (ADVP) [168]. 
In Drosophila, 60 genes (6%) identified as modifiers had 
potential human orthologs with some association to AD. 
Of the 176 modifiers identified in C. elegans, 23 genes 
had no predicted human ortholog and seven genes (4%) 
had orthologs listed in the ADVP database (Supplemen-
tary tables).

AD‑associated pathways in simple model systems
The largest collection of modifiers of Aβ toxicity was 
identified in yeast. Three separate Aβ modifier screens 

were carried out, two using loss-of-function approaches 
and one using an overexpression system [42, 93, 297]. 
Although over 1000 genes (~ 17% of the genome) were 
identified as modifiers, only 16 genes had the same effect 
in more than one screen and only two genes (XRN1 and 
SLA1) had the same effect in all three screens (Fig.  3A 
&B). Twelve of these genes had human orthologs, with 
two (PDE2 and SCD6) identified as potential risk genes 
for AD [1]. PDE2 is a phosphodiesterase that enhances 
Aβ toxicity in yeast. It is homologous to several human 
phosphodiesterases, including PDE9A, which regulates 
cGMP and functions in learning and long-term memory. 
Consistent with PDE9A promoting neurodegeneration, 
PDE9A inhibitors have had success in pre-clinical stud-
ies where they improve cognitive function in rats [305]. 
SCD6, an ortholog of the processing body assembly fac-
tor LSM14A, functions in RNA processing.

The lack of overlap in yeast screens could reflect a 
limitation of the phenotype used to score toxicity in 
yeast. Because the yeast screens use growth as a read-
out, there is potential for false positives to arise when 
deletions affect growth. While mutants with growth 
defects are generally either removed from consideration 

Fig. 2 Pathways enriched amoung genetic modifiers of AD models. Human homologs of genetic modifiers were analyzed using ShinyGO v0.77 
(Ge et al. 2020). Nodes represent the top 30 enriched GO terms. Node size is scaled to the number of genes. Darker nodes are more significantly 
enriched. Edge thickness is proportional to the number of overlapping genes in each category
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or normalized in some way, there is the potential for Aβ 
to act as a sensitized background, producing synthetic 
interactions that are not specific to Aβ biology. Further 
analysis would be required to confirm the role of these 
homologs in AD-related processes.

Similar to what was observed in yeast, a comparison 
of the C. elegans and Drosophila screens showed lit-
tle overlap. No overlap was found in Drosophila and C. 
elegans Aβ screens, and only one gene (fat-7/CG8630), 
a homolog of human SCD/SCD5, had the same effect 
in Tau screens across species. This may be attributed to 
differences in cell type expression or phenotypic out-
put. In the two largest C. elegans Aβ screens, Aβ was 

expressed in different compartments (one neuronal and 
one muscular) and different phenotypic readouts were 
used. While these screens have little overlap between 
species on a gene-by-gene basis, they do overlap in the 
types of genes and processes that are recovered. Primar-
ily, these genes can be categorized into some common 
functional groups already associated with neurodegen-
eration, including proteostasis, trafficking, cellular stress-
related pathways including ER stress and oxidative stress, 
immune response, metabolism, cytoskeleton, and signal-
ing (Fig. 2). We also found that physical interactions had 
been reported between some of the modifiers (Figs.  4 
and 5). Additionally, we examined the reported protein 
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interactions for the human orthologs of C. elegans and 
Drosophila modifiers and found that they could be con-
nected in a larger network (Fig. 3C).

Dysregulation of protein folding machinery promotes AD
The misfolding and aggregating of proteins are countered 
by the action of molecular chaperones that support pro-
teostasis by promoting proper folding or by promoting 
the destruction of aberrant proteins by the ubiquitin-
proteosome or autophagy systems [261]. Although chap-
erones would generally be expected to play a positive role 
in protecting against neurodegeneration by promoting 
proteostasis, chaperones may also have negative effects 

by inadvertently stabilizing more toxic protein forms at 
the expence of less toxic ones [258].

Chaperones and co-chaperones were identified as mod-
ifiers of toxicity in large scale screens in yeast, Drosophila 
and C. elegans. Chaperones have been implicated in the 
response to protein aggregation associated with neu-
rodegenerative diseases [258]. Increased expression of 
Heat shock proteins (HSPs) is observed in patients with 
AD and other neurodegenerative diseases [173]. Further, 
plasma Hsp70 levels are negatively correlated with cogni-
tive performance in the elderly [278].

Many HSPs are protective in mammalian models of 
AD, with Hsp27, Hsp60, Hsp70, and Hsp90 decreas-
ing protein aggregation and toxicity, or promoting 
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neuroprotection [13, 16, 29, 133, 193, 195, 264]. Con-
sistent with this, expression of the human Hsp70, either 
cytoplasmically or extracellularly, rescues memory 
decline in flies expressing Aβ42 [198] and Tau toxic-
ity in C. elegans [209]. In a Drosophila Aβ model, a 

gain-of-function mutation in the Hsp70 co-chaper-
one Hsp110 extends lifespan [255]. High-throughput 
screens have identified a number of chaperones and 
co-chaperones that play protective roles in Aβ, Tau and 
other models of neurodegenerative disease [40].
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The cochaperone CHIP that marks Hsp70 and Hsp90 
substrates for degradation, ubiquitinates Tau for deg-
radation [242]. As previously observed, CHIP interacts 
physically or mechanistically with a number of other 
modifiers of neurodegeneration [40]. In Drosophila, the 
deubiquitinase USP7 reduces Tau ubiquitination and 
promotes neurodegeneration, countering the activity 
of CHIP [156]. Knockdown of two E3 ubiquitin ligases 
that destabilize CHIP, RNF130 and RNF149, decreased 
neurodegeneration in Drosophila [156]. Knockdown of 
these genes in mice also reduced pathological Tau spe-
cies and improved learning and memory in a tauopathy 
model [156]. Together, these studies suggest a con-
served role for CHIP in preventing neurodegeneration.

Although it is likely that chaperones have wide-rang-
ing effects on proteostasis, there is evidence to suggest 
that some chaperones act directly on Aβ or Tau. Analy-
sis of C. elegans Aβ deposits identified six chaperones 
that co-immunoprecipitated with Aβ, including three 
alpha B-crystallin-related small heat shock protein 
HSP-16 s (HSP-16.1, HSP-16.2, HSP-16.48), two mem-
bers of the Hsp70 family (C15H9.6 and F26D10.3), and 
a putative ortholog of a small glutamine-rich tetratri-
copeptide repeat-containing protein (SGT) (R05F9.10) 
[87]. Like Hsp70, overexpression of HSP-16.2 sup-
presses Aβ toxicity in C. elegans [88, 324]. Hsp90 physi-
cally interacts with Tau to aid in at least two functions 
(1) the interaction of Tau with microtubules and (2) the 
targeting of Tau for proteosomal degradation [150]. 
However, the unfolding of Tau mediated by Hsp90 also 
permits the formation of oligomers, which could pro-
mote toxicity [317].

In yeast (Ydj1), Drosophila (Droj2) and C. elegans (dnj-
7), DNAJ proteins were identified in screens as enhanc-
ers of Aβ toxicity [42, 154, 254]. The yeast HSP40 family 
chaperone Ydj1, and its human ortholog DnaJA1, physi-
cally interact with Aβ and increase its accumulation in 
the mitochondria [254, 288]. This effect may be mediated 
through the ability of Ydj1 to delay Aβ fibrillization in 
favour of more toxic oligomers that are more easily trans-
ported into the mitochondria [254]. In contrast to its 
effects in the Aβ model, Droj2 downregulation enhanced 
Tau phenotype, suggesting different roles in regulating 
Aβ and Tau toxicity [156]. Although this requires further 
validation, it may reflect the fact that the effects in the Aβ 
model are independent of HSP70.

HSPA8/Hsc70 works in complex with a DNAJ protein 
DNAJB1, and Hsp110 as a disaggregase, which can aid in 
the clearance of amyloids [15, 72, 338]. Hsc70 and DNAJ 
proteins can also control the extracellular release of Tau 
[86]. In Drosophila, Hsc70Cb/Hsp110 and a co-chaper-
one Csp, were identified in two independent Tau-based 
screens, one using mutant and one using overexpression 

of wild-type Tau. In both cases, the expression of these 
proteins was detrimental [17, 156]. However, because 
Hsc70 proteins interact with a large number of proteins, 
it is difficult to identify the targets that are relevant to 
degeneration.

The role of ribosomal proteins in AD
Ribosome dysfunction is an early event in the develop-
ment of AD [62]. Both pathological (mutant or wild-type 
but hyperphosphorylated) and non-pathological Tau can 
associate with ribosomal proteins (RPs), with a different 
complement of proteins interacting with each [114, 160, 
206]. In  vitro studies suggest that, for pathological Tau, 
this interaction is inhibitory for translation [206].

Translation may also be inhibited through the regula-
tion of ribosomal subunits and translation initiation fac-
tors, including eIF2α, eIF3η, and eIF5 whose expression 
is altered in AD, in some cases early in the disease [126, 
159]. Decreased synthesis of ribosomal proteins RPL23, 
RPLP0, RPL19, and RPS16 is also observed in mouse 
models of tauopathy [78].

Ribosomal subunits were identified as modifiers of Aβ 
toxicity in C. elegans and S. cerevisiae. Deletion or knock-
down of the orthologs of human RPL8, RPS13, RPS16, 
and RPS19 suppressed Aβ toxicity in both yeast and 
worm models. However, decreased toxicity in response 
to a reduction of ribosomal protein expression is difficult 
to interpret. While these interactions may be relevant, it 
is also possible that they act by reducing the expression 
of the transgenes used to induce toxicity. Deciphering the 
role of ribosomal proteins therefore presents a challenge 
with these models.

While there is the potential for a reduced rate of trans-
lation to be protective in neurodegeneration, several 
ribosomal proteins have extra-ribosomal functions that 
may be relevant to neurodegeneration. Some ribosomal 
proteins interact with MDM2 preventing its interaction 
with, and degradation of p53. No MDM2 ortholog has 
been identified in yeast or C. elegans, suggesting this may 
not be a function of ribosomal proteins in these organ-
isms. RPL9 knockdown is associated with Id-1/NF-κB 
signaling inactivation [10]. Enhanced NF-κB activation is 
observed in AD patients and is believed to contribute to 
disease pathology [147, 286], suggesting RPL9 reduction 
may be protective by reducing NF-kB signaling. Similarly, 
RPL11 inhibits PPARα activity, whose activation is neu-
roprotective [109, 322]. RPL26 enhances p53 translation 
[40, 289], whose expression is increased and plays a criti-
cal role in AD [37, 143, 207]. Defining how specific ribo-
somal protein genes regulate AD will prove challenging 
but may identify new therapeutic targets.
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Protein homeostasis is required to prevent 
neurodegeneration
Impaired protein homeostasis is a characteristic of many 
neurodegenerative disorders, including AD [45, 329]. The 
excessive burden of protein misfolding triggers ER stress 
and activates the unfolded protein response (UPR), a con-
served signaling pathway that increases ER folding capac-
ity and inhibits new protein synthesis [128]. In the short 
term, activating the UPR increases the expression of ER 
chaperones and helps maintain protein homeostasis. 
However, prolonged UPR activation can provoke apopto-
sis [92]. Genome-wide expression analysis revealed that, 
as in mammalian models, Aβ induces ER stress and acti-
vates the UPR in yeast and C. elegans [41, 122].

In yeast, UPR response is mediated by the IRE1α 
branch of the  UPRER that activates the transcription fac-
tor XBP1s; it is the only conserved branch in yeast. In a 
yeast model expressing Aβ42, compounds that inhibit 
UPR prevent apoptosis and confer a protective effect [58]. 
In C. elegans, knockdown of xbp-1 reduces Aβ aggrega-
tion and delays paralysis in the Aβ42 model [260], sug-
gesting a negative impact of UPR activation in this model. 
However, in a C. elegans Tau model, loss of xbp-1 func-
tion exacerbated Tau toxicity and constitutive activation 
of XBP-1 promoted the clearance of misfolded Tau and 
attenuated Tau-related phenotypes [311]. These seem-
ingly disparate findings may be distinguished by their 
effects on the long-term and short-term consequences 
of UPR activation or may reflect differences in the model 
used or the cell type expression of the transgenes.

Overall, UPR activation may either promote or pre-
vent neurodegeneration, depending on the stages of the 
disease and specific branches of the pathway affected 
[127]. The UPR effectors PERK and downstream eIF2α 
are activated in human AD patients, where they co-
localize with abnormal Tau protein [304]. Interestingly, 
two drugs that inhibit eIF2α activation, trazodone and 
dibenzoylmethane, are neuroprotective in mouse mod-
els of dementia [116].

Protein degradation pathways prevent the accumulation 
of misfolded protein
Proteostasis is maintained by the regulation of protein 
synthesis and degradation pathways. Misfolded or toxic 
proteins are prevented from accumulating by the two 
protein degradation systems, the ubiquitin-proteosome 
system (UPS) and autophagy [106, 210, 226]. In addition 
to its role in protein degradation, autophagy is involved 
in the extracellular release of Aβ and plaque formation 
[221, 222]. Dysregulation of the ubiquitin–proteasome 
system is observed in patient samples [226]. In neuro-
degenerative disorders, dysfunctions of protein degra-
dation pathways have been identified as contributors to 

neurodegeneration [301, 302]. This has also been dem-
onstrated in C. elegans, Drosophila, and yeast models of 
AD (Tables S11-S14). The C. elegans AIRAP/AIRAPL 
homolog AIP-1, a component of the proteasome 19S 
regulatory cap, plays an essential role in preventing AD 
phenotypes in worms [123]. Drosophila mir-9a enhances 
Tau-related phenotypes by repressing the UBE4B ubiq-
uitin ligase that targets Tau for degradation [285]. Over-
expression of Atg, the Drosophila ortholog of ULK1, a 
mediator of autophagy, suppressed Aβ toxicity [30]. It is 
likely that the C. elegans ortholog of this gene, unc-51, 
was not identified in RNAi screens designed to identify 
enhancers of neurodegeneration because RNAi clones 
that produce an uncoordinated phenotype on their own 
are generally excluded from consideration.

In many models of neurodegeneration, increasing the 
activity of protein degradation pathways can reduce 
neurodegeneration [236, 251]. For example, in Drosoph-
ila deficiency of S5b/PSMD5, the 26S proteasome regu-
latory subunit increases proteasome activity and reduces 
Tau rough eye phenotype [271]. Another AD-relevant 
protein, CD2AP, is vital for the UPS in a Drosophila AD 
model [229]. CD2AP mutation inhibits proteasome activ-
ity and synaptic vesicle recycling, which enhances Tau 
neurotoxicity in flies.

Mitochondrial dysfunction in AD
The central nervous system has high energy demands; 
although it represents 2% of the body’s weight, it con-
sumes 20% of the total oxygen [149, 276]. This energy is 
provided by mitochondria, which are essential for ATP 
and amino acid production and maintaining calcium 
homeostasis [233, 256]. Mitochondrial dysfunction is a 
hallmark of AD. Defects in mitochondrial morphology, 
dynamics, trafficking, and mitophagy occur in AD [250, 
283, 314]. Such dysfunction leads to increased ROS, 
decreased ATP production and altered ion homeostasis 
[36, 59, 212, 213, 279, 287]. These phenotypes are also 
observed in AD models, suggesting that the involvement 
of mitochondrial dysfunction is conserved across species.

Both Aβ and Tau models produce mitochondrial 
pathologies. Firstly, Aβ accumulates in the mitochon-
dria of AD patients and in Aβ transgenic mouse, yeast, 
and Drosophila models (Anandatheerthavarada et  al. 
2003, [34, 43, 134, 194, 234, 288]). As previously dis-
cussed, DNAJ proteins have been implicated in the 
transport of Aβ into the mitochondria. In addition, 
a recent study in yeast showed that Aβ is specifically 
recognized by the mitochondrial translocase of outer 
mitochondrial membrane subunit 22 (TOMM22) and 
that Aβ transport into the mitochondria depends on 
the TOM complex [134]. Another component of the 
TOM complex, TOMM40 is a susceptibility gene for 
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late-onset AD [112]. Overexpression of TOMM22 or 
TOMM40 increased mitochondrial Aβ in a human cell 
line and was accompanied by changes in mitochondrial 
morphology, mitochondrial damage and an increase in 
autophagosomes and autolysosomes [65].

Mitochondrial dysfunction may also occur when cells 
are unable to eliminate damaged mitochondria. In C. 
elegans, expression of disease-associated Tau (P301L) 
inhibits mitophagy [54]. For neuronal cells, the location 
of mitochondria is an added consideration. In Drosoph-
ila, axonal loss of mitochondria enhances neurodegen-
eration in a Tau-based model [140]. Moreover, expression 
of disease-associated mutant forms of Tau enhanced 
mitochondrial elongation in both Drosophila and mouse 
models. Increasing mitochondrial fission reduced mito-
chondrial length and neurotoxicity in Drosophila, sug-
gesting that abnormal mitochondrial dynamics promote 
neurodegeneration [70].

In high throughput studies, many mitochondria-related 
genes were identified as modifiers of AD phenotypes. 
Notably, in C. elegans, RNAi-mediated knockdown of 
electron transport chain components, including the ATP 
synthase subunits atp-2 and atp-5 (complex V) and the 
complex I NADH ubiquinone oxidoreductase nuo-2/
NDUFS3, and NADH dehydrogenase nuo-3/NDUFA6, 
suppressed paralysis in Aβ42 models, although the mech-
anisms were unclear [154]. One possibility is that partial 
knockdown generates a mild mitochondrial stress that 
induces a protective response. In both C. elegans and 
Drosophila, a slight decrease in the activity of the mito-
chondrial respiratory chain increases lifespan [49, 83, 
117, 176]. A severe reduction of ETC function is lethal in 
C. elegans [300].

Regulation of oxidative stress in AD
Oxidative damage is an early event in AD development, 
contributing to toxic oligomer formation and disease 
development [125, 196, 205, 224, 235, 309]. Oxidative 
stress causes DNA damage [266], protein oxidation [14], 
lipid peroxidation [220], contributes to neuronal cell 
damage, and promotes apoptosis [187, 249].

As in AD, oxidative stress contributes to toxicity and 
neurodegeneration in model systems [67, 312]. High 
throughput screens conducted in yeast identified 25 Aβ 
modifiers involved in oxidative stress response (Tables 
S9, S10). Similarly, a high throughput genetic modifier 
screen in a Drosophila model of AD identified targets sig-
nificantly enriched in oxidative stress-related genes [255]. 
This study also showed that overexpressing antioxidative 
genes, specifically genes encoding the iron-binding pro-
tein ferritin and  H2O2 scavenger catalases suppressed 
Aβ toxicity. Furthermore, knocking down mitoferrin-1, 
a mitochondrial iron transporter, reduced ROS and 

extended lifespan in C. elegans AD models, indicating 
its critical role in regulating mitochondrial iron metab-
olism in AD [136]. Interestingly, a mild increase in ROS 
can be neuroprotective by the formation of glial lipid 
droplets that transfer peroxidized lipids from neurons to 
glia, where homologs of AD-risk genes ABCA1, ABCA7, 
VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP are 
required in Drosophila [214].

The association between oxidative stress and Tau phos-
phorylation is controversial. Treatment of  H2O2 leads to 
decreased Tau phosphorylation in rat hippocampal and 
SH-SY5Y human neuroblastoma cells [331], but chronic 
oxidative stress through inhibition of glutathione syn-
thesis increased Tau phosphorylation in M17 neuro-
blastoma cells [284]. This increased phosphorylation is 
proposed to occur as a result of increased activity of JNK 
and p38 MAPK and decreased activity of PP2A [284]. 
Vanhelmont and colleagues reported that oxidative stress 
induces Tau aggregation in yeast but decreases Tau phos-
phorylation [308]. Similarly, in Drosophila, increased 
oxidative stress increases neurodegeneration, but not by 
increasing Tau phosphorylation [60]. Thus, Tau phospho-
rylation and oxidative stress may work in parallel to pro-
mote aggregation.

Cellular trafficking influences Aβ toxicity
Defects in cytoskeletal dynamics, vesicle trafficking 
and sorting systems are observed in AD [180]. Genes 
related to cellular trafficking were recovered in yeast 
and C. elegans screens. In yeast, Aβ expression impairs 
clathrin-mediated endocytosis [297]. Single nucleo-
tide polymorphisms in phosphatidylinositol binding 
clathrin assembly protein (PICALM), an adapter pro-
tein that functions in clathrin-mediated endocytosis 
and autophagy, are associated with AD [119, 172, 327]. 
PICALM has been implicated in the trafficking and pro-
cessing of APP, the turnover of Aβ, and as a modulator of 
glutamatergic signaling [294, 325, 331]. Overexpression 
of PICALM orthologs in C. elegans and Drosophila pro-
tect against neuronally expressed Aβ [238, 297, 330]. Sur-
prisingly, PICALM increased Aβ toxicity in a yeast model 
expressing an ER-targeted Aβ42-GFP fusion protein 
[55] and in C. elegans, the knockdown of the PICALM 
ortholog unc-11 suppressed Aβ toxicity when Aβ42 was 
expressed in the muscle [215]. While these data are taken 
from large-scale screens that require additional valida-
tion, these seemingly contradictory findings may be the 
result of the many roles of PICALM and further investi-
gation is needed to disentangle these effects.

Defects in ER-Golgi trafficking reduce Aβ toxicity in 
yeast, whereas mutations in genes involved in cytoskel-
eton, endocytosis, and the ESCRT machinery which 
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function in vesicular trafficking, increase Aβ toxicity [93]. 
However, in C. elegans, endocytic gene depletion sup-
presses necrotic neurodegeneration [299]. In addition, 
a large-scale RNAi screen in C. elegans identified sev-
eral genes involved in ER to Golgi trafficking, including 
copd-1, sly-1, syx-5, sec-12, sec-23, and rab-1, that when 
knocked down suppress Aβ toxicity [154].

In both C. elegans and Drosophila screens, cytoskeletal 
proteins and regulators modified outcomes in Tau-based 
models (Tables S2, S3). These regulators comprise a range 
of proteins that bind or modify actin or microtubules.

Notably, genes involved in F-actin processing were 
identified in screens in both organisms. F-actin can asso-
ciate with Tau [94], which may mechanistically explain 
how these proteins act as modifiers in Tau-based models. 
In general, F-actin-associated proteins promoted worse 
outcomes. This is consistent with the finding in Dros-
ophila that overexpression of actin (Act5C) exacerbates 
toxicity resulting from overexpression of human Tau [94]. 
Likewise, knockdown of the C. elegans actins, act-1 and 
act-5, suppresses paralysis in an Aβ42 model [154].

Lipid metabolism influences neurodegeneration
Dysregulation of glucose and lipid metabolism have 
been implicated in the development of AD [185, 328]. 
In C. elegans, the knockdown of four genes involved in 
fatty acid biosynthesis, elo-4, acs-1, fat-6, and pod-2, sup-
pressed paralysis in an Aβ model. Increased expression 
of the orthologs of these four genes ELOVL3, ACSF2, 
SCD5, and ACACA  was reported in either mouse mod-
els or AD patients [8, 11, 184, 240], suggesting they may 
have conserved roles in AD. Similarly, decreased expres-
sion of the Δ9 desaturases fat-5 or fat-7 rescues neuro-
degeneration in a C. elegans model of Parkinson’s disease 
[201]. Together these data suggest that specific lipids 
may either promote or protect against neurodegenera-
tion. Consistent with an important role for lipid metabo-
lism in AD, Triggering Receptor Expressed on Myeloid 
Cells 2 (TREM2) and ATP-binding cassette transporter 
A7  (ABCA7), two genes with risk variants associated 
with AD function are required for lipid homeostasis [148, 
282].

Cell signaling in AD
Many conserved cell signaling pathways can influence 
AD development [103, 129] including Wnt, MAPK, and 
TOR pathways [227, 313, 338].

Wnt signaling pathway components were identified 
in both C. elegans and Drosophila screens [165, 275]. 
GSK-3β phosphorylates Tau at several disease-relevant 
sites [118, 189, 191], but also antagonizes the Wnt path-
way,  both functions may be relevant to neurodegen-
eration. In C. elegans, knocking down gsk-3 enhances 

Tau-related neurodegeneration. In Drosophila, down-
stream mediators of the Wnt pathway have also been 
identified as modifiers. Overexpression of the Drosophila 
β-catenin exacerbates neurodegeneration in a Tau model 
[142].

Gain-of-function mutations in the fly TAOK1 homolog 
enhanced disease phenotype in a Drosophila model of 
tauopathy [274]. The thousand-and-one kinases (TAOKs) 
belong to the MAP3K family. TAOKs have many targets, 
including proteins in the p38 and Hippo pathways [81]. 
Furthermore, a TAOK inhibitor reduces Tau phosphoryl-
ation in mice and induced pluripotent stem cell-derived 
neurons from frontotemporal lobar degeneration (FTLD) 
patients [99].

Tau is heavily phosphorylated in AD, and these modi-
fications are believed to contribute to the disease. Many 
kinases that phosphorylate Tau have been identified, 
and many are conserved in C. elegans and Drosophila. 
Further, when human Tau is expressed in Drosophila 
or C. elegans, it is phosphorylated at disease-relevant 
sites [165, 248]. While there is limited overlap at the 
single gene level, orthologs of kinases that phosphoryl-
ate human hTau were identified as modifiers in both C. 
elegans (TTBK, TAOK, GSK-3) and Drosophila (CaM-
KII, MARK, TAOK, GSK-3) (Fig.  6, Supplementary 
Tables 3, 4). The ability of these proteins to phosphorylate 
Tau may be conserved across organisms. Consistent with 
this idea, many phosphorylation sites, including SKXGS 
sites and several proline-directed serines, are conserved 
in Drosophila and C. elegans Tau proteins. Neverthe-
less, there are likely species-specific ways in which Tau is 
modified and regulated. Intriguingly, in Drosophila, the 
activity of these genes correlates with increased phospho-
rylation having a negative impact. By contrast, In C. ele-
gans, knockdown of the orthologs of GSK-3β, TAOK and 
TTBK enhanced toxicity, contrary to what is expected 
based on their abilities to phosphorylate Tau.

Downregulation of the focal adhesion kinase (Fak), the 
PTK2B homolog, suppressed Tau toxicity in a fly model 
[66]. PTK2B co-localized with hyperphosphorylated 
Tau in AD patient brain samples, suggesting that it may 
directly phosphorylate Tau. PTK2B was also implicated 
in Aβ regulation, but the mechanisms involved remain 
elusive, as two different transgenic mouse models found 
seemingly opposing roles for the protein, with PTK2B 
deletion or overexpression were both shown to be pro-
tective [101, 263].

Challenges and limits to the use of model systems 
in Alzheimer’s research
While simple model organisms provide many advan-
tages in discovery research, differences in the biology of 
humans and model organisms can provide a challenge 
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in modelling certain aspects of the disease. For example, 
neuropsychiatric symptoms in AD cannot be modelled 
in simple organisms. Specific anatomical and biological 
differences between humans and model organisms may 
also limit the study of some aspects of the disease. Dros-
ophila and C. elegans do not accumulate neurofibrillary 
tangles [320, 321]. Further,  microglia play an important 
role in the progression of AD, contributing to phagocyto-
sis and inflammation [208] but C. elegans and Drosophila 
do not have an obvious equivalent cell type. Although it 
is possible that some roles of the microglia are filled by 
other cells, some genes that play important roles in AD 
are highly expressed in microglia. Many proteins believed 
to influence AD through their activity in the microglia, 
including TREM2, CLU and CD33, do not have orthologs 
in Drosophila or C. elegans.

Differences in the biology of humans and model organ-
isms can be an advantage and a disadvantage. In the case 
of neurofibrillary tangles, the observation that neuro-
degeneration occurs in the absence of neurofibrillary 
tangle formation was an important demonstration that 
toxic forms of Tau precede neurofibrillary tangle forma-
tion [320]. Similarly, the absence of an adaptive immune 

system facilitates the examination of processes independ-
ent of inflammation.

The use of overexpression models may be a limitation 
in that expression is generally much higher than what 
would be observed in AD. Also, the ability of transgenes 
to promote rapid degeneration may not model all aspects 
of a disease that progresses more slowly. These effects 
may bias which genes are recovered as modifiers. Differ-
ences in levels of expression of different transgenes could 
explain the limited overlap between screens where the 
same protein is being expressed. The timing and loca-
tion of gene expression could also  explain differences 
between screens. Expression of these transgenes during 
development could induce developmental effects that 
predispose animals to more rapid aging or decreased 
stress response. Moreover, simple overexpression models 
cannot capture subtleties in the production of Aβ or Tau. 
Aβ overexpression models typically use the Aβ42 pep-
tide alone and therefore do not integrate the regulation 
of APP cleavage or the potential influence of other forms 
of Aβ. Similarly, Tau-based models typically overexpress 
one of the six Tau isoforms normally found in the human 
brain. The specific isoform chosen, as well as the absence 

Fig. 6 Tau related kinases recovered in C. elegans and Drosophila AD modifier screens. Fill colour indicates species, line colour indicates effect 
on neurodegeneration. Nodes are connected by phosphorylation or signaling events. Nodes with 2-colour outlines indicate genes where findings 
between studies are incongruent
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of multiple isoforms, may affect which modifiers are iso-
lated in a given screen.

The design of individual models and screens affects 
which genes are recovered and which are not. An advan-
tage of Drosophila and yeast is the ability to easily per-
form both gain-of-function and loss-of-function screens, 
whereas resources for large-scale gain-of-function 
screens in C. elegans are lacking. Modifiers identified by 
overexpression in Drosophila may not be identified in 
C. elegans because their impact is not obvious in knock-
down experiments. For amyloid and Tau-based screens, 
the cell type chosen for expression may also impact 
which genes are identified as modifiers. In C. elegans, 
early screens used a muscle-expressed Aβ, Tau models on 
the other hand, used neuronal expression.

Species-specific gene function may explain why some 
gene modifiers do not translate directly to human biol-
ogy and genes that act as modifiers in humans may not 
function as such in model organisms. There are several 
reasons a human risk gene might not be uncovered as 
a modifier in a model organism. Large-scale screens in 
these organisms often rely on knockdown or knockout 
approaches, while disease-associated alleles may pro-
duce more subtle effects, for example, an amino acid 
substitution that produces a specific functional altera-
tion. Species-specific expansions of gene families may 
create redundancy that masks the function of individual 
genes. Functions specific to either humans or the model 
system may also explain the limited overlap in screens. 
In some cases, an ortholog to a human disease gene may 
not exist, for example, APOE, the strongest risk factor for 
late-onset AD [183], does not have a direct ortholog in 
Drosophila or C. elegans. In other cases, the functional 
ortholog may not have been identified. In human disease-
associated genes identified in GWAS studies and genes 
identified in genetic screens, there is overlap in protein 
families that is not captured when analyzing on a gene by 
gene basis. For example, DNAJ family proteins have been 
identified in GWAS studies and as modifiers in all three 
organisms examined, but they do not overlap on a gene-
by-gene basis using predicted orthologs.

Summary
The study of human AD samples has provided a wealth 
of information; however, it remains a challenge to deci-
pher cause from consequence using only these samples. 
Model organisms allow rapid hypothesis testing and 
unbiased genetic screening that contribute to the discov-
ery of AD-related cellular processes and signaling path-
ways. Integration of data across different models can be 
a powerful approach to understanding the biology of 
neurodegeneration.

AD modifiers identified from high throughput screens 
and targeted studies can be classified into functional cat-
egories relevant to neurodegeneration. Major pathways 
involving Aβ modifiers identified in all three model sys-
tems examined include transcription and translation-
related processes, stress response and chaperones, and 
protein trafficking. When comparing Tau modifiers 
found in C. elegans and Drosophila, transcription and 
translation-related processes, stress response and chap-
erones, cytoskeleton-related pathways, and metabolism 
are shown to play critical roles in regulating abnormal 
Tau expression. These evolutionarily conserved pathways 
reveal fundamental mechanisms of AD and other neuro-
degenerative disorders.

Caution should be taken in interpreting negative find-
ings from large-scale screens. These screens are generally 
designed for ease of screening and can be biased toward 
dramatic effects, while missing more subtle ones. In addi-
tion, whether a gene was effectively interrogated in a 
given screen depends on whether it is present in a dele-
tion set or RNAi library, whether loss of function is lethal 
or produces a phenotype that excludes it from consid-
eration, and whether it is expressed in the cell type and 
at the age examined. For example, in C. elegans, knock-
downs that produce a movement defect, or incoordina-
tion in a wild-type background, are generally excluded 
from analysis when a screen measures the enhancement 
of movement defects. Additionally, the presence of para-
logs or other redundantly functioning genes can hide the 
involvement of some genes in neurodegeneration. Spe-
cies-specific gene duplications could therefore result in 
a gene being recovered in a screen in one organism, but 
not in another.

Caution should also be exercised in interpreting posi-
tive results from large-scale screens without additional 
validation. While we have highlighted some findings 
from these screens, many require additional validation, 
including the analysis of mutants and more direct anal-
ysis of neurons, rather than a phenotypic proxy. Deter-
mining whether effects observed are cell autonomous or 
non-cell autonomous can also clarify the role of a spe-
cific modifier in neurodegeneration. While the ability to 
perform screens in whole animals is an advantage, it is 
important to consider that modifiers recovered may not 
function cell-autonomously.

Some genetic modifiers identified in model organ-
isms do not have obvious human orthologs and their 
functions remain unknown. These genes may repre-
sent species-specific signaling or these genes may have 
human orthologs that cannot be identified on the basis of 
sequence homology. Nevertheless, their activities may be 
related to processes that also influence neurodegenera-
tion in humans.
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The use of simple model systems to study AD and 
related tauopathies has revealed important cellular 
mechanisms of neurodegeneration and provides power-
ful tools for discovering therapeutic targets and strategies 
to combat these diseases. In combination with cell lines, 
animal models, and clinical studies, simple model organ-
isms can provide insights into disease mechanisms and 
aid in the development of effective treatments for AD 
and other neurodegenerative disorders. In fact, studies 
that combine different models can be very powerful (Kim 
et  al., 2019). These studies leverage the conservation of 
processes between animals to identify robust modifiers.
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