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Molecular Neurodegeneration

Mitochondrial dysfunction in Parkinson’s 
disease – a key disease hallmark 
with therapeutic potential
Martin T. Henrich1,2,3, Wolfgang H. Oertel2, D. James Surmeier3 and Fanni F. Geibl1,2,3*   

Abstract 

Mitochondrial dysfunction is strongly implicated in the etiology of idiopathic and genetic Parkinson’s disease (PD). 
However, strategies aimed at ameliorating mitochondrial dysfunction, including antioxidants, antidiabetic drugs, 
and iron chelators, have failed in disease-modification clinical trials. In this review, we summarize the cellular determi-
nants of mitochondrial dysfunction, including impairment of electron transport chain complex 1, increased oxida-
tive stress, disturbed mitochondrial quality control mechanisms, and cellular bioenergetic deficiency. In addition, 
we outline mitochondrial pathways to neurodegeneration in the current context of PD pathogenesis, and review 
past and current treatment strategies in an attempt to better understand why translational efforts thus far have been 
unsuccessful.

Keywords Parkinson’s disease, Synuclein, Mitochondria, Mitochondrial dysfunction, MPTP, Electron transport chain, 
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Background
Parkinson’s disease (PD) is the most prevalent neu-
rodegenerative movement disorder affecting up to 2 
% of those aged 60 years and older [1]. Clinically, PD is 
defined by presence of the levodopa-responsive motor 
symptoms bradykinesia with resting tremor or rigidity 
[2]. These motor symptoms are frequently accompanied 
by non-motor symptoms, including but not limited to 
sleep disturbances, depression, autonomic dysfunction, 
and hyposmia [3, 4]. Today, there are still no proven 
strategies for slowing the progression of PD. This unmet 

medical need reflects our incomplete grasp of disease 
mechanisms.

Neuropathologically, PD is characterized by two imper-
fectly aligned features: selective neuronal degeneration of 
vulnerable cell-types within particular brain regions (e.g., 
midbrain dopaminergic (DA) substantia nigra pars com-
pacta (SNc) neurons [5, 6]), and the presence of eosino-
philic alpha-synuclein (aSYN) positive inclusion bodies, 
termed Lewy pathology (LP). Systematic cross-sectional 
characterization of human postmortem PD brains 
revealed that even in late-stage disease LP is not globally 
distributed in the brain of PD patients, but is restricted 
to certain vulnerable nuclei, thereby showing a patch-
like distribution [7, 8]. While there is clear evidence that 
some regions (SNc, olfactory bulb, dorsal motor nucleus 
of vagus, locus coeruleus, pedunculopontine nucleus, 
amygdala) are more susceptible to LP than others, it has 
been difficult to establish the sequence and extent in 
which they develop LP. In addition to brain pathology, 
LP also affects many structures of the peripheral nervous 
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system (nerve fibers within e.g., skin, heart, esophagus) 
[7, 9]. The observation that misfolded, fibrillar forms 
of aSYN can propagate from one cell to another in PD 
animal models [10], has fueled the thought that also in 
humans toxic aSYN species might spread between synap-
tically coupled brain regions, thereby driving the devel-
opment of brain-wide LP formation [11].

In contrast to the relatively well-mapped distribution of 
LP, the spatio-temporal development of cell-loss within 
affected regions remains largely elusive. While loss of 
dopaminergic SNc neurons has been well-documented 
and clearly linked to the onset of PD motor symptoma-
tology, there is no brain-wide assessment of neurodegen-
eration, and the available studies investigating cell loss 
show notable heterogeneity [12]. Given the absence of a 
clear correlation between LP formation and neuronal cell 
loss, it is crucial to disentangle the cell-intrinsic factors 
which render neurons susceptible to LP formation and 
those who drive neurodegeneration. So far, several core 
pathogenetic factors have been identified. Among those 
are impaired cellular protein homeostasis, dysfunctional 
proteasomal and lysosomal clearance systems, impaired 
protein and membrane trafficking, synaptic dysfunction 
including disturbed neurotransmission, neuroinflamma-
tion, and mitochondrial dysfunction [3, 13–16].

Mitochondrial dysfunction has long been implicated 
as a key pathological hallmark in PD. Since mitochondria 
are highly multifunctional organelles, their integrity is 
essential for neuronal function and survival. This review 
summarizes the evidence for mitochondrial dysfunction 
in genetic and idiopathic PD, discusses the bidirectional 
interaction between mitochondrial stress and aSYN 
aggregation, and points out potential mitochondrial 
pathways to neurodegeneration in the current context 
of PD pathogenesis. Further, we review current and past 
therapeutic strategies targeting mitochondrial dysfunc-
tion in an attempt to modify disease progression, and 
outline current gaps in our understanding.

Main text
Importance of mitochondrial health in PD at‑risk neurons
Neurons possess a complex network of mitochondria 
stretching from dendrites that receive synaptic contacts 
to the synaptic terminals that communicate with neigh-
boring neurons. Mitochondria perform a variety of tasks, 
including generation of adenosine triphosphate (ATP), 
 Ca2+ buffering and epigenetic signaling [17–19]. Two 
central tenets of the mitochondrial theory of pathogen-
esis are that neurons have a high bioenergetic demand 
and that neurons rely heavily on mitochondria for ATP 
production. Indeed, all cells rely upon ATP to drive basic 
cellular processes. Neurons differ from many other cell 
types in ways that increase their bioenergetic needs. In 

particular, they need ATP to maintain ionic homeostasis 
which is being constantly challenged by 1) their reliance 
upon electrical signals generated by transmembrane ion 
fluxes, 2) their sequestration of transmitter into vesi-
cles, fusion of these vesicles during synaptic activity and 
reuptake of membrane during vesicular recycling, and 3) 
the need to maintain and repair an often massive trans-
mitter release machinery [20]. The ATP necessary for 
these processes can be derived both from glycolysis and 
mitochondrial oxidative phosphorylation (OXPHOS). 
While glycolytic mechanisms are fast, they are rela-
tively inefficient and generate roughly one tenth the ATP 
from glucose that mitochondria can extract. It has been 
hypothesized that neurons rely exclusively upon mito-
chondrial OXPHOS for ATP generation (using lactate 
shuttled from astrocytes), but more recent direct meas-
urements have shown that neurons use both glycolysis 
and OXPHOS to generate ATP [21].

Despite the clear importance of mitochondria to neu-
ronal bioenergetics, they also play a variety of other roles. 
One of these is  Ca2+ buffering. This may be particu-
larly important in axons of some neurons [22]. Another 
important function is metabolic signaling [19]. For exam-
ple, mitochondria are critical sources of citrate, which is 
important to the production of acetyl-coenzyme A and 
acetylation of proteins and DNA.

Compromised mitochondrial function may have a dis-
proportionate impact on those neurons that are at-risk 
in PD. The best studied example of this phenotype is the 
SNc dopaminergic neuron. These neurons are constantly 
active and have extensive axonal arbors with as many as 
1–2 million transmitter release sites per axon in humans 
[23]. Many (if not all) of the other neurons at greatest risk 
in PD have a similar phenotype: locus coeruleus noradr-
energic neurons, dorsal motor nucleus of the vagus 
cholinergic neurons, and pedunculopontine nucleus cho-
linergic neurons [20, 24–26]. These neurons play a key 
role in organismal survival, particularly during times of 
crisis when sustained, efficient function is critical.

To meet this bioenergetic demand, many at-risk neu-
rons engage a feed-forward control mechanism that uti-
lizes plasma membrane L-type  Ca2+ channels to drive 
mitochondrial OXPHOS [27–32]. While this feed-for-
ward control helps to ensure that ATP levels do not fall 
during times of high demand, it also increases the pro-
duction of damaging reactive oxygen species (ROS) and 
basal mitochondrial oxidant stress. ROS and mitochon-
drial oxidant stress damages lipids, proteins and DNA 
[33]. This can not only compromise cellular function but 
leads to an increased demand on catabolic processes in 
neurons, most importantly lysosomal degradation. This 
increased demand should in principle decrease spare 
capacity, providing a linkage between mitochondrial 
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stress and genetic mutations linked to familial cases of 
PD involving mitochondrial quality control (DJ1, PINK1, 
parkin) and lysosomal function (GBA1, LRRK2, VPS35, 
others).

Evidence for mitochondrial impairment in PD patients
A key piece of evidence that mitochondrial dysfunc-
tion is implicated in PD pathogenesis stems from the 
observation in 1983 that several recreational drug users 
which intravenously administered the new synthetic 
heroin drug MPPP (1-methyl-4-phenyl-4-propion-
oxy-piperidine) developed acute-onset but levodopa 
(L-DOPA) responsive parkinsonian motor symptoms 
shortly after drug administration [34]. Subsequently, 
the mitochondrial ETC inhibitor MPTP (1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine) was identified as a 
byproduct of poor MPPP synthesis. Following absorp-
tion, MPTP crosses the blood-brain barrier and is con-
verted to  MPP+ within astroglia by monoaminoxidase B 
(Fig.  1). Extracellularly released  MPP+ is then actively 
taken up via the DA transporter and accumulates 
within mitochondria of DA neurons where it inhib-
its mitochondrial complex I (CI) of the ETC [35–37]. 
Since its first discovery, MPTP induced toxicity has 
been established and validated many times as a reliable 
approach to model neurodegeneration and develop-
ment of motor symptoms in rodents and primates [38, 
39]. From a translational standpoint, the MPTP studies 
have taught us that mitochondrial CI inhibition in DA 
SNc neurons can cause a disease phenotype that resem-
bles many features of idiopathic PD, e.g. all cardinal 

motor symptoms (bradykinesia, rigidity, tremor), some 
non-motor symptoms (dribbling of saliva, urinary dis-
turbances), and L-DOPA responsiveness.

The observation that CI blockade can induce PD-like 
symptoms is further substantiated by the finding that the 
chemically related substance paraquat, as well as the CI 
inhibitor rotenone (Fig. 1), are not only shown by epide-
miology to be risk factors for the development of PD, but 
also induce PD-like symptomatology in animal experi-
ments [40–42]. More recently, genetic approaches have 
shown that disruption of CI function specifically in dopa-
minergic neurons is sufficient to produce a progressive, 
L-DOPA-responsive parkinsonism [43].

But is mitochondrial dysfunction also a constant and 
reliable feature of idiopathic PD, meaning in the absence 
of mitochondrial toxins or genetic disease drivers? 
Important aspects can be derived from the analyses of 
brain tissue from deceased idiopathic PD patients. In sev-
eral studies, tissue samples of the SNc but also of other 
brain regions, as well as lymphocytes and platelets were 
analyzed for the presence of ETC alterations by immu-
noblotting, immunohistochemistry, or enzyme activity 
analysis. The most pronounced and consistently reported 
finding is a decreased activity of CI of the ETC in SNc 
tissue homogenates [44–47]. Some studies even observed 
a decreased activity of CI in tissue samples from the 
frontal as well as prefrontal cortices and striatum, but 
not peripheral tissues [48–50]. In contrast, deficiency of 
ETC CII, CIII or CIV was only sporadically observed, 
and when ETC function was either assessed by immu-
nohistochemistry or other peripheral specimens (e.g. 

Fig. 1 Mechanism of action of neurotoxins inducing PD. MPTP readily crosses the blood-brain barrier and is taken up by nearby astroglia which 
subsequently convert it to  MPP+ via MAO-B. Extracellularly released  MPP+ is then actively taken up via DAT and accumulates within mitochondria 
of DA neurons where it inhibits mitochondrial CI of the ETC resulting in ROS production and energetic deficiency. Similarly, the pesticide rotenone 
(Rot), due to its high lipophilicity, readily crosses biological membranes and reaches the inner mitochondrial membrane where it inhibits CI. In 
contrast, paraquat  (PQ2+) relies on the LAT1 to cross the blood-brain barrier. Hereafter, it is taken up by DAT or OCT3 into DA neurons and generates 
ROS by redox cycling at CI and CIII of the ETC. Abbreviations: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP); 1-methyl-4-phenylpyridinium 
 (MPP+); coenzyme Q (CoQ); dopamine (DA); dopamine transporter (DAT); L-amino acid transporter (LAT1); mitochondrial Complex I (CI); 
mitochondrial Complex II (CII); mitochondrial Complex III (CIII); mitochondrial Complex IV (CIV); mitochondrial Complex V (CV); monoamino oxidase 
B (MAO-B); organic cation transporter 3 (OCT3); paraquat  (PQ2+); reactive oxygen species (ROS); rotenone (Rot); vesicular monoamino transporter 
(VMAT). Created with BioRender.com
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lymphocytes, platelets, or muscle) were analyzed, CI dys-
function was only inconsistently reported [47].

Regarding the lack of concordance in some studies it 
is important to consider that most experiments either 
used mixed tissue homogenates (neuronal and non-
neuronal cells), or investigated peripheral tissue, which 
from our current point of view is likely not the main 
manifestation place of PD pathology. Future studies 
investigating ETC dysfunction in human postmortem 
tissue using now available cell-type specific approaches 
might therefore possess great potential to further 
enhance our understanding of mitochondrial dysfunc-
tion in idiopathic PD [43].

Another line of evidence pointing to mitochon-
drial dysfunction in PD is based on the observation of 
increased mitochondrial DNA (mtDNA) aberrations in 
tissue samples of deceased patients with idiopathic PD. 
While initial approaches investigating mtDNA deletions 
produced conflicting results [51–53], more recent stud-
ies confirmed an increased amount of mtDNA deletions 
specifically in postmortem SNc tissue of PD patients 
[54–56]. In addition, patients carrying a mutation of the 
polymerase gamma gene, the only polymerase present in 
human mitochondria, develop rare genetic syndromes 
including parkinsonian symptoms and loss of SNc neu-
rons [57]. Taken together, there is mounting clear evi-
dence implicating mitochondrial dysfunction as a key 
disease hallmark in idiopathic PD.

Mitochondrial dysfunction is tightly linked to genetic PD
Although only roughly 10% of PD cases are associated 
with defined genetic alterations, the study of these famil-
ial PD (PARK) genes has led to major advances in our 
understanding of PD etiopathogenesis. While numerous 
PARK genes have been identified, several of these are 
directly linked to impaired mitochondrial function and 
integrity (Table 1).

Mutations of the genes coding for PINK1 (PARK6) 
and Parkin (PARK2) are the most frequent causes of 
autosomal recessive early-onset PD. Their clinical mani-
festation is characterized by relatively pure motor symp-
tomatology and L-DOPA responsiveness, which can be 
accompanied by dopamimetica associated dyskinesia, 
hyperreflexia, and sometimes psychiatric symptoms. 
Interestingly, histopathological examination of postmor-
tem tissue indicates loss of SNc dopaminergic neurons 
and neurons in other brain regions normally vulnerable 
in idiopathic PD (e.g., locus coeruleus, nucleus basa-
lis meynert). However, presence of aSYN inclusions, a 
hallmark of idiopathic PD, is not a consistent feature of 
these PD cases [111–116]. At the cellular level, PINK1 
and Parkin play key roles in mitochondrial quality con-
trol mechanisms and signaling cascades in response to 

mitochondrial damage [67]. PINK1/Parkin can not only 
initiate mitophagy, but also control fission and fusion 
of mitochondria, promote the generation of mitochon-
dria derived vesicles and induce mitochondrial biogen-
esis [70, 117–121]. In fibroblasts from PINK1 and Parkin 
familial PD cases, loss of protein function leads to ETC 
impairment with reduced ATP production and high lev-
els of ROS [122–124]. While experimental studies using 
Parkin-KO mice revealed lower levels of mitochondrial 
respiratory capacity [125–127], PINK1-KO mice addi-
tionally exhibited defects in CI function, reduced  Ca2+ 
buffering capacity, and impairments in mitochondrial 
membrane potential [128–131]. Comparable findings 
have also been reported in Drosophila Parkin and PINK1 
models [71–73, 132–134]. As the underlying patho-
physiological event, increased mitochondrial fission has 
been identified in Parkin and PINK1 mutant mice and 
Drosophila models [117, 135]. This is supported by the 
fact that inhibition of mitochondrial fission via mdivi-1 
treatment, was able to rescue mitochondrial function by 
normalizing the balance between mitochondrial fission 
and fusion [136]. Apart from increased fission, defects in 
mitochondrial biogenesis have been shown to contribute 
to mitochondrial dysfunction in Parkin deficient human 
dopaminergic neurons [121].

Interestingly, there is additional evidence for accumu-
lation of insoluble Parkin within idiopathic PD patients. 
While previous studies observed that accumulating Par-
kin is S-nitrosylated [137–140], a more recent study dis-
covered that Parkin itself functions as a redox molecule 
by providing antioxidant capacity for human midbrain 
neurons. Subsequent oxidizing posttranslational modifi-
cations then contribute to the decrease in Parkin solubil-
ity [141].

Another example indicating mitochondrial driven 
parkinsonism, are mutations in the gene coding for DJ1 
(PARK7). Resulting loss of function leads to an autoso-
mal recessive form of PD which is less common than 
PINK1 or Parkin familial PD. The clinical presentation of 
individuals with DJ1 mutations is characterized by early 
onset slow progressing parkinsonism, which is frequently 
accompanied by non-motor symptomatology (e.g., anxi-
ety, cognitive decline, and psychotic symptoms), and 
good L-DOPA responsiveness [142]. Notably, postmor-
tem histopathological analysis revealed widespread corti-
cal and subcortical LP and neurodegeneration [77]. DJ1 
is involved in counteracting oxidative stress and subse-
quent mitochondrial dysfunction under physiological 
conditions. In the experimental setting, DJ1 depletion 
leads to impaired mitochondrial respiration, high levels 
of intracellular ROS, compromised mitochondrial mem-
brane potential, and altered mitochondrial morphology 
[78, 143–145]. Furthermore, mutated DJ1 is translocated 
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from the cytosol into the mitochondrial matrix where 
it gets degraded [146]. Despite the increasing interest 
in DJ1’s function, the molecular mechanisms remain 
incompletely understood. Several lines of evidence sug-
gest that DJ1 is a redox-sensitive protein which relies 
on cysteine oxidation to sense oxidative stress and then 
counteract this stress through activation of different sign-
aling pathways [147–149]. Other reports suggest that DJ1 
may additionally possess chaperone activity [150, 151], 
supported by data showing that DJ1 is able to attenu-
ate aSYN aggregation [152], and the observation that 
human induced pluripotent stem cells (IPSCs) derived 
from fibroblasts of DJ1 PD patients exhibit increased 
aSYN pathology [153]. However, further evidence high-
lights DJ1’s enzymatic functions, including glyoxalase 
and deglycase activities, showing that DJ1 can decrease 
reactive carbonyl products and repair glycated nucleic 
acids [154, 155]. Albeit the exact biological interplay of 
these processes is still debated, DJ1 clearly links antioxi-
dant pathways, mitochondrial dysfunction, and aSYN 
aggregation.

More recently mutations affecting vacuolar protein 
sorting 35 (VPS35 = PARK17) have been linked to late-
onset autosomal dominant PD, and VPS13C (PARK23) 
to early onset rapid progressing autosomal recessive PD 
[100, 156, 157]. Although the exact pathophysiological 
mechanisms are still intensively debated, experimental 
studies on VPS35 mutant fibroblasts, mice, or cell culture 
systems reported increased mitochondrial fragmentation, 
disturbed mitochondrial fission and fusion dynamics, 
and abnormal configuration of ETC CI [101–103, 158]. 
Mechanistically, VPS35 is a part of the retromer complex 
and thereby plays an important role in endosomal sorting 
and trafficking of proteins. VPS35 mutations have been 
shown to lead to an enhanced interaction of VPS35 with 
DLP1, which subsequently causes increased turnover of 
mitochondrial DLP1 complex, thereby fueling excessive 
mitochondrial fission, finally culminating in mitochon-
drial dysfunction and fragmentation [101, 158]. Further, 
VPS13C mutations have been shown to decrease mito-
chondrial membrane potential, promote mitochondrial 
fragmentation, and elevate mitophagy [100]. In addition, 
mutations in FBXO7 (PARK15), causing a rare syndrome 
of juvenile parkinsonism with pyramidal signs, have been 
linked to impaired mitophagy and decreased CI function 
[94].

Taken together, the familial PD cases not only show us 
that there is a clear link between genetic PD and mito-
chondrial dysfunction, they also highlight that multiple 
mitochondrial pathways may be impaired, including CI 
function, mitophagy, fission and fusion, and mitochon-
drial biogenesis.

Causal link between α‑synuclein pathology 
and mitochondrial dysfunction
While for a portion of PD patients, the occurrence of 
mitochondrial dysfunction can be explained by PARK 
genes, the etiology of idiopathic PD is still a matter of 
intensive debate. However, broad experimental evidence 
stemming from observations in isolated mitochon-
dria [59–61, 159], and rodents [62, 63], suggests aSYN 
pathology as a major source of mitochondrial dysfunc-
tion (Fig. 2). Under physiological conditions, monomeric 
aSYN was shown to modulate the function of the mito-
chondrial ATP synthase subunit alpha, as aSYN knock-
out mice showed reduced ATP synthase efficiency 
and reduced ATP levels [64]. Similarly, another study 
employing aSYN deficient mice observed an altered neu-
ronal mitochondrial membrane structure and CI defi-
ciency [65].

In the presence of aSYN pathology, meaning exces-
sive amounts of overexpressed monomeric aSYN or 
existence of oligomeric and fibrillar aSYN, several stud-
ies reported decreased mitochondrial CI activity, altera-
tions of mitochondrial membrane potential, and elevated 
oxidative stress levels [59, 63, 66, 160–162]. The effect 
on CI is further substantiated by another study which 
reported a dose-dependent effect of aSYN pathology on 
CI inhibition [163]. Based on the observation that aSYN 
knock-out mice were resistant to MPTP induced toxic-
ity, it has been hypothesized that aSYN directly influ-
ences CI function [35, 164]. This view is supported by 
studies which reported that overexpression of human 
aSYN in wildtype mice or use of SNCA A30P mutated 
transgenic mice worsened MPTP induced toxicity [165, 
166]. Similar findings have also been observed for the 
CI inhibitor rotenone [167, 168]. However, CI does not 
seem to be the only engagement point for aSYN pathol-
ogy. More recently, interaction of pathological aSYN 
oligomers with the ATP synthase subunit alpha in com-
bination with mitochondrial permeability transition 
pore opening has been suggested as a mediator of aSYN 
induced mitochondrial dysfunction [169]. Further, it has 
been shown that aSYN oligomers interact with the outer 
mitochondrial membrane protein TOM20 [170, 171]. As 
a consequence of aSYN binding to TOM20, mitochon-
drial protein import is impaired causing ETC malfunc-
tion, accumulation of ROS and loss of mitochondrial 
membrane potential [170]. aSYN induced loosening of 
contacts between mitochondria and the endoplasmic 
reticulum (ER), which are considered essential for proper 
 Ca2+ exchange between those two organelles, has been 
reported as another possible cause of reduced mitochon-
drial respiration, primarily by dysregulated intracellular 
 Ca2+ levels [172, 173].
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Taken together, these studies not only show that aSYN 
pathology can trigger mitochondrial dysfunction, they 
reveal that there are several independent pathways how 
aSYN pathology affects mitochondrial function (Fig.  2). 
Notably, many of those pathways converge to a shared 
pathological phenotype exhibiting increased cellular and 
mitochondrial ROS, impairment of mitochondrial mem-
brane potential, and reduced mitochondrial respiration.

Pathways linking mitochondrial dysfunction 
to neurodegeneration
Does mitochondrial dysfunction cause neurodegenera-
tion in PD, or is it simply a disease tombstone?

While this question is difficult to answer for idiopathic 
PD, important information can be gleaned again from 
familial PD cases by looking at those few histopatho-
logical postmortem reports which are available. Nota-
bly, PINK1 as well as Parkin, and DJ1 mutation carriers, 
all familial PD cases where PD is thought to be majorly 
driven by mitochondrial dysfunction, exhibit marked 
neuronal cell loss within the SNc and other susceptible 
brain regions [77, 111, 112]. This clearly indicates that 
at least genetically driven mitochondrial dysfunction is 
causative of neuronal cell loss in these individuals. This 
is supported by the finding that targeted disruption of 
mitochondrial CI in mice leads to dopaminergic degener-
ation culminating in a human-like type of parkinsonism 
[43]. However, what is less clear is whether mitochon-
drial dysfunction is necessary for PD.

As mentioned above, mitochondrial dysfunction and 
damage can contribute to several pathological cas-
cades implicated in PD [67, 174, 175]. As shown by 
using direct ratiometric probes, many at-risk neurons 
have been found to manifest elevated levels of mito-
chondrial oxidant stress [30, 31, 176]. Sustained oxidant 
stress damages membranes, proteins, and DNA. This 
damage elevates mitophagy in SNc dopaminergic neu-
rons [176], thereby diminishing the overall autophagic 
capacity. Cytosolic ROS can further damage proteins of 
the mitophagy pathway [138] and increase mitochon-
drial dysfunction. Mitochondrially-generated ROS also 
compromises lysosomal and proteasomal function and 
increases the accumulation of misfolded forms of aSYN 
[153, 177]. Further, intracellular ROS triggers induction 
of parthanatos, an apoptosis independent pathway of 
neurodegeneration [178]. In parallel, damaged mitochon-
dria or excessive mitochondrial stress can induce mtDNA 
release into the cytosol and subsequent increases in the 
production of proinflammatory cytokines [179, 180], as 
shown in Parkin-KO mice which also exhibited a POLG 
mutation [181]. Mitochondrial dysfunction is further 

connected to neuroinflammation by the observation that 
loss of PINK1 and Parkin function results in increased 
mitochondrial antigen presentation and subsequent acti-
vation of cytotoxic T-cells [182]. Intestinal infection with 
Gram-negative bacteria in PINK1 mice enhanced mito-
chondrial antigen presentation which was followed by 
elevated levels of  CD8+ T-cells in the brain and periphery 
[183].

As indicated above, failure of mitochondrial quality 
control mechanisms defines another pathway to neu-
rodegeneration in PD. Substantial evidence shows that 
the concerted interplay of PINK1 and Parkin is essen-
tial for maintaining mitochondrial health. Loss of func-
tion mutations result in disruption of cellular mitophagy, 
as well as impaired fusion and fission of mitochondria, 
and reduced generation of mitochondrial derived vesi-
cles [67]. As a consequence, damaged mitochondria 
accumulate, cytochrome c and other proapoptotic pro-
teins are released into the cytosol, and apoptosis might 
be induced. Damaged mitochondria due to loss of mito-
chondrial quality control mechanisms also contribute to 
the generation of oxidative stress and mtDNA mutations. 
Importantly, in idiopathic PD, LP also directly inactivates 
Parkin and thereby contributes to failure of mitochon-
drial quality control even in the absence of genetic muta-
tions [138, 139].

Intracellular  Ca2+ signaling also may contribute to 
pathogenesis [5]. At-risk neurons have low intrinsic  Ca2+ 
buffering capacity and strong engagement of both plasma 
membrane and ER-dependent  Ca2+ signaling, leading to 
large cytosolic oscillations in intracellular  Ca2+ concen-
tration [176]. Elevated intracellular  Ca2+ can promote 
aSYN misfolding and aggregation [184, 185] thereby link-
ing aSYN and  Ca2+ in a vicious cycle.

Another key hallmark of PD is impaired cellular pro-
teasomal and lysosomal mechanisms [153, 186, 187]. 
Proteasomal degradation as well as lysosomal function 
are energy consuming processes. It is easy to infer that 
compromised ATP production by mitochondria will 
reduce their functional capacity. Thus, elevated mito-
chondrial ROS production – and the resulting cellular 
damage – not only increases the burden on these sys-
tems, but with declining mitochondrial capacity it will 
likely diminish their capacity. As a consequence, not only 
aSYN aggregation is promoted but clearance of oxidized 
proteins is reduced, leading to further generation of ROS 
and oxidative damage in terms of a feedforward mecha-
nism. Moreover, there is evidence for dynamic mito-
chondria-lysosome contacts which allow inter-organelle 
crosstalk. Interestingly, patient derived neurons harbor-
ing a heterozygous mutation within the gene coding for 
β-glucocerebrosidase (GBA1) show disturbed loosening 
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of these contact sites which resulted in prolonged tether-
ing and disruption of intracellular mitochondrial distri-
bution [188].

Taken together, current evidence indicates that there 
are several mitochondrial pathways which are tightly 
linked to other pathogenic mechanisms of PD. While 
some of these pathways are highly interdependent, oth-
ers act in parallel to each other. From a translational 
standpoint, this suggests that, as in cancer, new therapeu-
tic approaches will either need to target several of these 
pathways at once or be tailored to pathological endpoints 
shared by these pathways.

Therapeutic approaches targeting mitochondrial 
dysfunction in PD
One of the greatest challenges facing the biomedical 
community is the development of a disease-modifying 
therapy for PD. Several clinical trials have been attempted 
to address this challenge, but none have succeeded. Sev-
eral have targeted mitochondrial function either directly 
or indirectly.

Given the recognition that mitochondrial oxidant stress 
is a potential driver of pathogenesis, some of the earli-
est trials aimed at reducing it (Table 2). For example, the 
antioxidant coenzyme Q10 (CoQ10) was tested in sev-
eral trials, as was minocycline; they all failed [252, 253]. 
Mitochondrially-targeted antioxidants, like MitoQ, Mito-
VitE, MitoApocynin and MitoTEMPOL were developed 
to achieve better target engagement and showed promise 

in pre-clinical experiments, but this general strategy has 
not shown a clear benefit in PD patients [207]. One of the 
key issues with these trials is that it is difficult to demon-
strate adequate target engagement and biological efficacy 
of these compounds in humans. So, it is unclear whether 
they are testing the core hypothesis or not.

A related approach is to try and boost brain concen-
trations of glutathione (Table  2). Nigral levels of glu-
tathione are lower in PD patients, possibly because of an 
increased reliance upon glycolysis for ATP production in 
PD patients [210]. Elevating glutathione has been pro-
posed and explored in preclinical and clinical trials [213]. 
However, it is unclear whether this is simply an effect 
of mitochondrial dysfunction and whether adequate 
brain concentrations can be achieved with oral dos-
ing. N-Acetyl cysteine (NAC), an approved drug to treat 
acetaminophen induced liver failure [254], increases cel-
lular glutathione levels in  vivo. Notably, weekly intrave-
nous administration of NAC over 3 months in idiopathic 
PD patients revealed a significant clinical improvement 
which was paralleled by increased dopamine transporter 
binding during ioflupane imaging (DaTSCAN) [217].

Another consequence of mitochondrial dysfunction is 
a lowering of nicotinamide adenine dinucleotide (NAD) 
[255]. Mitochondrial CI metabolizes NADH to NAD+. 
Boosting cellular NAD levels by dietary supplements of 
the precursor nicotinamide (vitamin B3) has neuropro-
tective effects in some preclinical models of PD [220]. 
The recent phase I study NADPARK in which drug naïve 
de novo PD patients received 1000 mg of nicotinamide 

Fig. 2 Synucleinopathy-driven mechanisms of cellular dysfunction and death in PD. Abbreviations: mitochondrial permeability transition pore 
(mPTP); reactive oxygen species (ROS). Created with BioRender.com
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riboside over 30 days achieved some desired metabolic 
outcomes and a mild clinical benefit [223].

A related approach is based upon epidemiological stud-
ies showing reduced risk of developing PD when using 
antidiabetic drugs like exenatide or pioglitazone [256]. 
Both drugs have been studied intensively in preclinical 
animal models and clinical PD trials (Table 3). Exenatide 
appears to exert its neuroprotective effects by dampen-
ing neuroinflammatory pathways, reduction of ROS, 
lowering intracellular  Ca2+ levels, restoring mitophagy, 
and improving overall bioenergetic efficiency [258]. In a 
randomized double-blind placebo-controlled trial on PD 
patients under symptomatic dopamine replacement ther-
apy, 48 weeks of exenatide, slightly although significantly, 
improved motor symptoms [260]. Currently, a phase III 
trial [261] is investigating the effects of a two-year exena-
tide treatment on motor symptoms in PD patients, which 
are again also receiving symptomatic dopamine replace-
ment therapy. In contrast, 52 weeks long treatment with 
liraglutide, also a glucagon-like peptide 1 (GLP-1) ago-
nist, resulted in improvement of non-motor symptoms 
and activities of daily living while motor symptoms were 
unchanged [262]. While preclinical models suggest a 
mitochondria-based mechanism of action, there is no 
robust data from clinical studies regarding GLP-1 ago-
nist’s cellular mechanism of action.

Pioglitazone, a peroxisome proliferator-activated 
receptor gamma (PPARγ) agonist, also has been con-
siderably studied in PD. In animal studies, it reduced 
neuroinflammation, suppressed nitric oxide synthase 
activity, improved proteasomal clearance, and enhanced 
mitochondrial biogenesis [264, 279]. However, a phase II 
clinical trial in early PD patients found no clinical benefit 
of 44 weeks treatment with pioglitazone on disease pro-
gression [265].

As outlined above, mitochondria are highly dynamic 
organelles that form a complex network within the cell 
soma, axon and down to the synaptic buttons. Maintain-
ing this network in a viable state relies on constant spa-
tial redistribution via mitochondrial trafficking, as well as 
balanced mitochondrial fusion and fission, to keep a pool 
of healthy mitochondria at any time. However, many of 
these mitochondrial quality control processes appear to 
be disrupted in PD patients [67]. Based on that, several 
preclinical approaches have been developed to correct 
this putative defect in mitochondrial dynamics (Table 3). 
Inhibition of mitochondrial fission via the mitochon-
drial division inhibitor 1 (mdivi-1) has been reported 
to be neuroprotective in an aSYN overexpression rat 
model. Treatment with mdivi-1, reduced mitochondrial 
fragmentation and was simultaneously associated with 
reduced oxidative stress and improved mitochondrial 
health [267]. Further, accumulation of the mitochondrial 

adaptor protein Miro on the outer mitochondrial mem-
brane has been identified in PD and linked to delayed 
mitophagy in experimental PD models [271]. Pharmaco-
logical reduction of Miro in cellular and PD Drosophila 
fly models was able to restore mitophagy and decrease 
neuronal cell loss [272].

Further, gene therapy approaches targeting PINK1 and 
Parkin deficiencies have been explored (Table 3). PINK1 
overexpression not only ameliorated mitochondrial dys-
function resulting from prior induced PINK1 deficiency 
in PINK1 mutant Drosophila models [71, 280], but also 
was protective in an aSYN induced phenotype in aSYN 
transgenic Drosophila PD model [277], and protected 
against neuronal loss and mitochondrial dysfunction in 
in vitro and in vivo MPTP models [274]. Overexpression 
of parkin has similar effects [275, 276]. A protein-based 
therapy using a cell-permeable Parkin was protective 
in 6-hydroxydopamine (6-OHDA) and adeno-associ-
ated viral vector (AAV) mouse models, presumably by 
enhancing mitochondrial quality control via facilitating 
mitochondrial biogenesis, and promoting mitophagy 
[278]. It should be noted however that the predictive 
validity of both the 6-OHDA and MPTP models of PD 
is questionable, as all of the failed drugs have passed this 
test in preclinical work.

Limiting mitochondrial stimulation as a new therapeutic 
approach
As outlined above, most of the mitochondrially-targeted, 
disease-modifying strategies that have moved to clinical 
trials, or are in the planning stages, are aimed at either 
limiting the consequences of mitochondrial damage 
(e.g., CoQ10), enhancing the clearance of damaged mito-
chondria (e.g., Miro targeting) or blunting the inflamma-
tory consequences of mitochondrial dysfunction (e.g., 
exenatide) [252, 253]. An alternative strategy is to first 
diminish mitochondrial damage. The mechanistic stud-
ies focusing on the origins of mitochondrial oxidant 
stress in at-risk neurons (like SNc dopaminergic neu-
rons) point to their feedforward stimulation by plasma 
membrane L-type  Ca2+ channels. Inhibiting L-type chan-
nels with dihydropyridine negative allosteric modulators 
lowered mitochondrial oxidant stress and mitophagy in 
at-risk dopaminergic neurons in animal models [145, 
176]. They also diminished mitochondrial oxidant stress 
in a model of recessive PD [145], and showed neuro-
protective effects in the MPTP and 6-OHDA models of 
PD [281, 282]. More importantly, epidemiological stud-
ies have shown that use of dihydropyridines is associ-
ated with a reduced risk of developing PD [283, 284]. 
These observations motivated two clinical trials with the 
dihydropyridine isradipine. Isradipine was chosen for 
these trials because it has the highest relative affinity for 
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the sub-class of L-type channel thought to be the most 
important in driving mitochondrial stress in SNc dopa-
minergic neurons (channels with a pore-forming Cav1.3 
subunit). While initial reports stated that there was no 
evidence of efficacy in modifying disease progression 
[285], a subsequent re-analysis reopened the discus-
sion on an extended release formulation of isradipine, 
suggesting that there may be a disease modifying effect 
based on the UPDRS assessed progression in patients 
given 10 mg isradipine per day [286].

Current gaps in our understanding
Based on our current knowledge of mitochondrial dys-
function in PD, there are at least four major gaps in our 
understanding.

First, the chain of events arising from mitochondrial 
dysfunction needs to be more rigorously character-
ized. As in modern cancer treatment, this would allow 
combination therapies that maximize biological effi-
cacy and minimize unwanted side-effects of treatment 
(see Tables 2 and 3).

Second, there need to be more objective, and quantita-
tive measures of disease progression. The reliance upon 
highly variable clinical rating scales adds an enormous 
amount of noise to clinical trial outcomes and prevents 
modest disease-modifying effects to be resolved. These 
biomarkers should include ones that assess mitochon-
drial function and dysfunction [253]. Current strategies 
are mainly focused on improving neuroimaging of cellu-
lar bioenergetics (e.g., magnetic resonance spectroscopy). 
However, studies should also implement blood- or CSF-
based biomarkers as recently demonstrated [223].

Third, we need to have a better understanding of the 
mitochondrial pathways leading to neurodegeneration in 
the different PD subtypes [287]. This could allow person-
alized disease-modification therapies and better target 
engagement.

Fourth, we need to know whether the mechanisms 
driving disease progression in PD are time invariant or 
not. It could be that mitochondrial dysfunction is impor-
tant in the early stages of PD pathogenesis, but not in 
later stages. For example, the later stages of cell loss in 
PD could be driven by network dysfunction caused by 
less than complete disruption of at-risk neuron func-
tion. A clear understanding of these mechanisms would 
allow disease-modifying treatments to be tailored to the 
respective disease stage.

Conclusions
Mitochondrial dysfunction is a core hallmark of 
PD. Preclinical, epidemiological, histopathological, 
and clinical trial data point towards mitochondrial 

dysfunction as being a significant disease driving factor 
in idiopathic and familial PD. On the cellular level, core 
features are CI impairment, increased oxidative stress, 
disturbed mitochondrial quality control mechanisms, 
and bioenergetic deficiency. Current experimental evi-
dence indicates that there are several mitochondrial 
pathways that contribute to PD pathogenesis. Targeting 
more than one of these pathways at the same time may 
be a more effective strategy than trying to affect just 
one. Moreover, given that the pathology in PD is largely 
in the brain, drug delivery strategies that optimize brain 
delivery and target engagement need to be pursued. So, 
while no treatment has been unequivocally shown to 
slow disease progression in the early stage of PD, there 
remains optimism that this situation will change soon.
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