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Alzheimer’s genes in microglia: a risk 
worth investigating
Ari Sudwarts1,2* and Gopal Thinakaran1,2*   

Abstract 

Despite expressing many key risk genes, the role of microglia in late-onset Alzheimer’s disease pathophysiology 
is somewhat ambiguous, with various phenotypes reported to be either harmful or protective. Herein, we review 
some key findings from clinical and animal model investigations, discussing the role of microglial genetics in medi-
ating perturbations from homeostasis. We note that impairment to protective phenotypes may include prolonged 
or insufficient microglial activation, resulting in dysregulated metabolomic (notably lipid-related) processes, com-
pounded by age-related inflexibility in dynamic responses. Insufficiencies of mouse genetics and aggressive trans-
genic modelling imply severe limitations in applying current methodologies for aetiological investigations. Despite 
the shortcomings, widely used amyloidosis and tauopathy models of the disease have proven invaluable in dissecting 
microglial functional responses to AD pathophysiology. Some recent advances have brought modelling tools closer 
to human genetics, increasing the validity of both aetiological and translational endeavours.

Background
The first descriptions of microgliosis (termed ‘rod cells’ or 
‘granule cells’) were made in the  19th and early  20th Cen-
turies by Rudolf Virchow, Franz Nissl, and Alois Alzhei-
mer (amongst others; see [1]). In a series of publications 
in 1919, Pío del Río-Hortega identified that these cells are 
a microglial phenotype, which transition during injury, 
describing morphological changes and key functions and 
hypothesising their mesodermal origin (see [1]). Notably, 
in his initial description of the pathology that adopted 
his name, Alois Alzheimer described aberrant glial phe-
notypes [2]. However, research into Alzheimer’s disease 

(AD) pathogenesis focussed primarily on neurons for 
over 100 years after this observation.

Within the past two decades, genome-wide association 
study (GWAS) findings have identified key genetic risk 
variants for late-onset AD (LOAD) that are expressed 
exclusively or highly in microglia [3–7]. Initial stud-
ies of microglial biology using mouse models of amy-
loid pathology reported reductions in amyloid burden 
and preservation of synapse-associated extracellular 
matrix (perineuronal net) following microglial deple-
tion. However, the amelioration of amyloid pathology 
was associated with reduced compaction of AD-asso-
ciated amyloid-β (Aβ) deposits, resulting in increased 
diffuse plaques and dystrophic neurites [8]. Similarly, 
genetic methods of targeted microglial depletion have 
been reported to increase the size of Aβ deposits [9], 
strengthening the suggestion of a protective microglial 
function in limiting or compacting Aβ aggregates. Thus, 
interpreting microglial modulation of AD pathophysiol-
ogy requires a holistic assessment of pathological conse-
quences at multiple levels rather than isolated readouts. 

Recent advances in single-cell RNA sequencing (scR-
NAseq) have allowed extensive transcript phenotyping 
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of brain cells, uncovering key gene signatures of micro-
glia in AD pathology. Notably, disease-associated micro-
glia (DAM) was described as a responsive phenotype to 
amyloid pathology in the 5XFAD mouse model, with key 
features validated in human AD brains [10, 11]. These 
plaque-localised cells are characterised by a two-stage 
activation programme, culminating in TREM2-depend-
ent phenotypic expression of CD11c and LPL (amongst 
others). Interestingly, the first stage of DAM transition is 
negatively regulated by BACE1 [12], demonstrating the 
unique glial cell-type specific functions of this enzyme, 
despite a clearly established mechanistic role in Alzhei-
mer’s amyloid pathology as the major secretase respon-
sible for amyloidogenic processing of amyloid precursor 
protein in neurons. 

Other scRNAseq and single-nucleus RNAseq (snR-
NAseq) analyses have uncovered extensive char-
acterisation of unique cellular states in microglial 
subpopulations, which transition in response to pathol-
ogy. Amyloid-responsive microglia (ARM) was char-
acterised by the expression of CD163 [13]. Reactive 
microglia in CK-p25 mice (which overexpress the cyclin-
dependent kinase 5 cleavage product p25 in the postnatal 
forebrain, triggering AD-like neurodegeneration, atro-
phy, gliosis, and phosphorylation of endogenous tau [14]) 
have been grouped into type I and type II interferon-
responsive phenotypes [15]. Microglial NF-κB signalling 
was identified as a central mediator of tau pathology in 
PS19 mice [16] (however, the failure to use appropriate 
Cx3cr1CreERT2 mice as Cx3cr1 haploinsufficiency con-
trols [see below] in this study raises scepticism about its 
conclusions). A white-matter-specific signature has been 
reported in microglia from aged mouse brains, which 
again is dependent on TREM2 [17]. However, the com-
monalities of these various transcriptomic datasets have 
led to speculation that they, in fact, describe the same 
phenotype, with subtle differences emerging from incon-
sistent clustering algorithms [18]. Indeed, the homoge-
neity of activation signatures in these heterogenous cells 
does not appear to reflect the huge differences in patho-
logical insults implemented in identifying them. 

Additionally, there is growing evidence that single-
cell transcriptome datasets identified in mouse mod-
els of AD-related pathogenesis and neurodegeneration 
offer poor insight into microglial responses in human 
AD [19–21]. Whilst post-mortem interval periods may 
confound the dynamic microglial responses reported 
in human samples, the validity of modelling slow, age-
related diseases with aggressive, transgene-induced 
pathology requires unbiased evaluation. Indeed, micro-
glia from human AD brains have been reportedly more 
aligned with the IRF8-reactive phenotype, characterised 
by increased expression of several homeostatic genes, 

notably TMEM119, CX3CR1, and P2RY12 [21]. Further, 
the finding that cell-specific transcriptional responses 
are most dramatic in the early stages of AD may suggest 
age-related differences in cellular flexibility, implying that 
modelling this disease in relatively young rodents has 
certain drawbacks. Thus, shifting towards knock-in mod-
els with later disease onset and slower progression may 
offer more efficacy in both aetiological and translational 
endeavours. It is also worth noting that half of mouse 
microglia survive the animal’s lifespan, and proliferation 
is three times higher during amyloid pathology [22]. In 
contrast, the human brain microglia may last two dec-
ades [23], which is only a fraction of the human lifespan. 
Therefore, whilst mice present a short-lived model of 
human disease, their microglia are old relative to human 
turnover rates. 

Microglial genes in AD ‑ risk versus prevalence
High‑risk and low prevalence
An obvious disparity exists between the significance and 
prevalence of genetic AD risk among the ~75 risk loci 
that have been identified [24, 25]. Most notably, muta-
tions in three genes (APP, PSEN1, PSEN2), which cause 
early-onset AD (EOAD), are extremely rare in popu-
lations. These three genes are ubiquitously expressed 
and play important functions in neurons and other cell 
types. As pathogenic mutations are found in only 5% of 
EOAD patients [26], one may hypothesise the involve-
ment of gene-gene or gene-environment interactions in 
this aggressive manifestation of AD pathology. APOE ε4 
decreases the age of symptom onset in LOAD but inter-
estingly delays symptoms in EOAD [27]. Additionally, the 
APOE ε3 R136S (Christchurch) variant (APOE-Ch) has 
been found to protect against an EOAD PSEN1 muta-
tion, delaying cognitive impairment and reducing tau 
pathology despite high levels of Aβ [28, 29]. Similarly, a 
rare variant in RELN (H3447R) has recently been associ-
ated with delayed onset of EOAD symptoms in an indi-
vidual with reduced tau pathology and high levels of Aβ 
[30]. In mouse models, the loss of Reln accelerates both 
amyloid and tau pathologies [31, 32], suggesting that the 
protective H3447R variant may increase reelin function. 
However, this has yet to be determined experimentally. 
Further, atypical presentations of AD – predominantly 
affecting visual, language, and motor functions, amongst 
others – often have early onset (<65 years) and aggres-
sive progressions [33–35]. Knowledge of the risk fac-
tors for these relatively uncommon conditions is so 
sparse that they are grouped with AD based primarily 
on behavioural symptoms (despite divergent progression 
patterns). Whilst EOAD is not the focus of this review, 
current knowledge of microglial involvement in atypical 
variants will be addressed later.
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Many genes identified in recent years by GWAS under-
score the involvement of microglia-specific functions in 
AD pathophysiology (Fig.  1). Rare variants that confer 
a high risk for LOAD include TREM2 and PLD3. These 
three genes play a role in lipid regulation but have well-
established functions specific to AD proteinopathies 
(Fig. 2). 

The microglial surface receptor TREM2 is critical for 
microglial signal transduction. It regulates a protective 
microglial response to amyloid deposition in 5XFAD [37] 
and APP/PS2 [38] mice. Whilst TREM2 binds directly to 
oligomeric Aβ and facilitates degradation [39], the effi-
ciency of Aβ internalisation by microglia is augmented 
when Aβ is complexed to lipoproteins [40]. In addition to 
its requirement for the phenotypic transition from Stage 
I to Stage II DAM [10], TREM2 is also necessary for 
the local proliferation of microglia near amyloid depos-
its [41]. Therefore, the whole activation programme of 
microglia appears to be dependent on the TREM2 check-
point, with dysfunction in this surface receptor leaving 

microglia insensitive to adverse conditions in the amyloid 
microenvironment. 

The role of TREM2 in tauopathy is less clear, with evi-
dence that it both ameliorates [42, 43] and facilitates 
[44] tau pathology in different models (hTau & AAV-
P301L versus PS19 transgenic, respectively). These seem-
ingly contradictory findings may demonstrate a biphasic 
function at different stages of the disease, with TREM2 
protective in the early stages of tau pathogenesis but 
degenerative in more advanced stages. Indeed, a similar 
early/late pathology biphasic effect for TREM2 has been 
reported in amyloid pathogenesis [45], which may reflect 
age-related alterations to microglial functionality. 

A recent study used a combined model of AD-iso-
lated tau seeds injected into 5XFAD mouse brains [46]. 
Chronic administration of a TREM2-activating antibody 
increased activation of microglia proximal to plaques. 
Astoundingly, whilst amyloid burden was unaffected, 
aspects of tau pathology increased. These data suggest 
a role for microglial TREM2 in mediating cross-talk 

Fig. 1 Microglial protein functions in Alzheimer’s disease pathology. Circular representation of microglial genes stratified based on their Alzheimer’s 
risk and prevalence. The sequence identities between the human and mouse proteins are indicated. The key cellular and pathology-related 
functions associated with each protein in Alzheimer’s pathology are annotated. Created with BioRender.com
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between neuronal amyloid and tau pathologies. It also 
supports our aforementioned hypothesis of a protec-
tive role for TREM2 in the early stages of disease (early 
tau pathology mentioned above), with detrimental con-
sequences in later stages, and suggests a dominance in 
TREM2 responding to tau over amyloid. In light of age as 
the strongest risk factor for LOAD, it is worth mention-
ing that TREM2 deficiency reduced neuronal loss in nor-
mal older mice and downregulated microglial activation 
and immune transcripts [47]. TREM2 loss has also been 
reported to increase the density of dendritic spines and 
cognition [48]. Together, these data suggest that whilst 
TREM2 function may be specifically beneficial during the 
early stages of AD pathology, it has detrimental conse-
quences outside these early responses. 

TREM2 interacts with lipidated APOE, regulat-
ing Aβ internalisation by microglia [40]. Deletion of 
Apoe and Trem2 inhibited microglial transition into 
an amyloid-responsive phenotype, characterised by 
expression of CD163 [13]. CD163 has an anti-inflam-
matory function in peripheral macrophages, scavenging 

pro-inflammatory ligands (notably haemoglobin) [49]. 
In a mouse model of atherosclerosis, deficiency of both 
CD163 and APOE increased macrophage expression 
of proinflammatory and lipid content and increased 
plaque size [50]. In human AD brains, CD163-express-
ing microglia were largely CD68-positive [51], sup-
porting the notion that CD68-expressing microglia are 
anti-inflammatory. 

PLD3 encodes phospholipase D3 (PLD3), an endolyso-
somal ssDNA exonuclease involved in nucleic acid-driven 
inflammatory signalling. A rare variant in PLD3 (V232M) 
reportedly doubles the risk of developing LOAD [52]. 
PLD3 transcripts are increased in microglia from human 
AD and mouse models of amyloid and tau pathologies 
 (APPNL-G-F/NL-G-F and rTg4510, respectively) [53]. Whilst 
PLD3 function in microglia is yet to be determined, its 
neuronal expression appears to play a protective role by 
regulating ER stress, nucleotide signalling, and lysosomal 
function, which are impaired in the V232M variant [54, 
55]. Although the loss of PLD3 or the expression of the 
V232M variant was found to elevate Aβ production in 

Fig. 2 Detailed schematic of microglial protein functions in Alzheimer’s disease pathology. The relationships between key microglial gene products 
with pathology-related pathways affected in Alzheimer’s disease are indicated. The colour shading of protein names indicates the abundance 
of the corresponding transcripts in human myeloid cells relative to all brain cells (quantified by single-cell RNAseq [36]). Numbers indicate cited 
references that support the functional associations depicted in the schematics. Created with BioRender.com
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cultured cells [52, 55], there was no change in Aβ produc-
tion or deposition in young Pld3 KO mice [56]. 

APOE is perhaps in its own category of high-risk 
and high prevalence, with the frequency of the ε4 allele 
between 19.2-36.7% in AD patients and 8.9-19% in con-
trol populations [57]. APOE codes for a core component 
of plasma lipoproteins, which function to transport and 
deliver lipids from one tissue or cell type to another. 
APOE is highly expressed in astrocytes in the healthy 
human brain, but its expression is dysregulated in human 
AD brains in a cell-specific manner – it is upregulated 
in microglia and downregulated in astrocytes [20]. This 
finding highlights the dangers of inferring cell-specific 
expression changes from bulk tissue analyses. Micro-
glial APOE facilitates migration towards Aβ deposits 
and phagocytosis, which is impaired in APOE risk vari-
ant ε4 [58]. In APP/PS1 mice, the loss of Apoe expression 
(whole-body knock-out) impaired compaction of amyloid 
deposits, reduced microglia activation, and increased 
amyloid deposit-associated neuritic dystrophy [59], pro-
ducing a similar effect to that of microglial depletion 
mentioned above [8, 60]. Whilst microglial-specific dele-
tion of Apoe in 5XFAD mice increased the size of Aβ 
deposits, there was no change in total Aβ load [61], again 
suggesting that plaque compaction may be a vital func-
tion of microglia. APOE regulates microglial activation in 
the PS19 mouse model of tauopathy, which is reported to 
mechanistically drive degeneration in this model [62]. 

High prevalence and low‑risk
Common gene variants (e.g., BIN1, PICALM, CLU, 
CD33, ABCA7, SPI1) typically confer a lower risk for 
developing LOAD (Fig. 1) [63–66]. The BIN1 locus har-
bours the second-most significant risk for LOAD [67]. 
The BIN1 gene encodes multiple isoforms (at least 9 in 
the brain) of an adaptor protein expressed in neurons, 
oligodendrocytes, and microglia [68]. It is clear that in 
the AD brain, there is a decrease in the abundance of 
neuronal isoforms and an increase in ubiquitous and 
glial isoforms, which correspond well with the cellular 
changes in AD [68]. Correcting for neuronal cell numbers 
suggests that BIN1 expression is protective against AD 
[69]. Notably, BIN1-related SNPs associated with LOAD 
did not alter BIN1 expression levels in the human brain 
[69]. Neuronal BIN1 expression has been shown to facili-
tate region-specific tau pathophysiology in PS19 mice 
[70]. Apparently, it has the opposite effect in cultured 
neurons (in the absence of extrinsic cues from other CNS 
cell types; see below), where the loss of BIN1 expression 
was found to promote cell-to-cell pathology propaga-
tion [71]. These findings suggest that isolated cell-auton-
omous signalling alone does not account for the full 
repertoire of LOAD genetic risk from BIN1. Microglial 

BIN1 expression is necessary for proinflammatory phe-
notypic transition and appears to form a reciprocal regu-
latory relationship with transcription factors PU.1 (SPI1) 
and IRF1 [72]. A microglia-specific enhancer upstream 
of BIN1 was identified in human induced pluripotent 
stem cell (iPSC)-derived microglia through transposase-
accessible chromatin sequencing and chromatin immu-
noprecipitation sequencing, and its functionality was 
confirmed by introducing a large deletion [73]. How-
ever, whether LOAD GWAS SNPs alter microglial BIN1 
expression has yet to be ascertained. Thus, whether BIN1 
SNPs influence AD pathophysiology through microglial 
function remains to be established. Moreover, the precise 
role of microglial BIN1 in AD-specific pathologies is yet 
to be determined. 

PICALM encodes phosphatidylinositol binding clathrin 
assembly protein involved in clathrin-mediated endo-
cytosis. As with BIN1, PICALM is expressed in diverse 
cell types in the central nervous system (CNS), includ-
ing endothelial cells, neurons, and microglia [74]. The 
protein products of both of these genes interact with 
clathrin (although the microglial BIN1 isoforms lack 
the clathrin-interacting domain [72, 75]), and interest-
ingly, both were found only to pose a significant risk in 
the absence of the APOE ε4 allele [76]. Conversely, the 
risk for PICALM (and one for CLU) on episodic mem-
ory was also augmented by APOE genotype in LOAD 
patients [77]. Additionally, a review of APOE-associated 
polygenic risk highlights consistent findings of asso-
ciations with several LOAD genes [78]. Therefore, a full 
meta-analysis is required to validate these polygenic 
risks. Functionally, PICALM has been shown to regulate 
endocytosis of γ-secretase and Aβ42 production [79]. A 
protective variant of PICALM (rs3851179A) increases its 
gene expression [80], suggesting that PICALM function 
is generally protective. Concordantly, Picalm expression 
in microglia is induced by anti-inflammatory IL4 treat-
ment [81]. Whilst the loss of PICALM reduced Aβ42 pro-
duction in mouse brains [79] and H4 neuroglioma cells 
[82], PICALM haploinsufficiency has been reported to 
increase tau pathology in Tg30 mice [83]. Therefore, 
PICALM function in AD may be biphasic, conferring risk 
in early stages (Aβ deposition) but protection in more 
advanced pathology (tau hyperphosphorylation). 

CLU codes for the secreted lipid carrier protein clus-
terin (ApoJ) predominantly expressed in astrocytes. 
Clusterin has been proposed to contribute to chronic 
inflammation and neurotoxicity through microglial acti-
vation [84]. Genetic ablation studies in the PDAPP model 
suggest that clusterin promotes fibrillar Aβ deposition 
[85, 86]. Clusterin directly binds Aβ, and this interac-
tion is not affected by clusterin lipidation [87]. However, 
lipidation of clusterin allows it to be bound by TREM2, 
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facilitating microglial internalisation of Aβ [40]. Loss of 
clusterin expression was found to exacerbate tau pathol-
ogy in an AAV-TauP301L expression-based in vivo 
model, and direct interaction of clusterin with tau (0N4R 
isoform) was observed to reduce tau filament forma-
tion in a cell-free system [88]. However, another study 
reported that clusterin facilitates tau seeding (2N4R iso-
form) by stabilising oligomeric tau seeds in a cell-based 
seeding assay [89]. An intracellular form of clusterin was 
found to more readily interact with both tau and BIN1 in 
AD brains [90]. Additional investigations on extracellular 
tau interaction with clusterin (which is mostly extracel-
lular) and cell-type specific functional characterisations 
of intracellular interactions between clusterin and tau are 
needed to understand how rare AD-associated CLU vari-
ants may modulate later stages of disease progression. 

CD33 is a transmembrane protein that inhibits 
microglial clearance of Aβ [91]. Its transcript and pro-
tein expression levels are higher in the brains of indi-
viduals with AD [91], and increased expression was 
related to greater cognitive decline [69]. The CD33 
minor rs3865444T allele has been reported to protect 
against AD (compared to the major G allele) [91, 92]. 
The risk allele rs3865444C increases surface levels of 
CD33 in peripheral monocytes and increases the inclu-
sion of exon 2 (encoding its extracellular immunoglobu-
lin V-set domain). The protective (minor) rs3865444A 
allele reduces the inclusion of exon 2 [93]. Interestingly, 
deletion of the CD33 gene exon 2 or ablation of CD33 
expression led to increased inflammatory response and 
phagocytosis of Aβ peptides [94]. 

ABCA7 codes for a ubiquitously expressed ATP-bind-
ing cassette transporter, which transports a range of 
molecules and compounds (including amino acids, pep-
tides, hormones, and lipids) across the plasma membrane 
(see [95]). The loss of ABCA7 function has been asso-
ciated with increased AD risk [96–98]. Targeted dele-
tion of Abca7 alleles affects brain lipid homeostasis and 
significantly increases cerebral amyloid burden in APP/
PS1 amyloidosis model [99]. However, it is unclear if 
the increase in amyloid deposition pertains to impaired 
microglial function. Furthermore, ABCA7 expression in 
mice is required for adequate microglial inflammatory 
activation in response to LPS challenge [100]. 

SPI1 codes for the transcription factor PU.1 – a 
master regulator of the microglial phenotype [101]. 
Reduced PU.1 expression has been associated with 
delayed AD onset [102]. Proinflammatory [lipopoly-
saccharide (LPS)-stimulated] upregulation of SPI1 is 
BIN1-dependent [72], highlighting a regulatory rela-
tionship between these two risk genes. In vitro, Spi1 
knockdown ameliorates inflammatory responses and 

oxidative stress and increases lipid metabolism [103]. 
These data suggest that PU.1-mediated inflammatory 
response is detrimental in the context of AD pathology. 

INPP5D (also known as SHIP-1) is an inositol 
polyphosphate-5-phosphatase whose expression in 
microglia increases with the progression of amyloid 
pathology in LOAD selectively in microglia near Aβ 
deposits [104]. SHIP-1 expression or function nega-
tively regulates phagocytosis in microglia and periph-
eral macrophages [105, 106]. In one study, Inpp5d 
haploinsufficiency was found to reduce amyloid pathol-
ogy in the 5XFAD model [107]. However, additional 
studies using the 5XFAD or the APP/PS1 model found 
the inverse effect on amyloid burden when Inpp5d 
expression was ablated in microglia using the Cx3cr-
1CreER driver [108, 109]. Microglial Inpp5d deficiency 
increased the density of microglia near Aβ deposits, 
altered plaque-associated microglial gene expression 
signature, promoted amyloid encapsulation and engulf-
ment by microglia, and protected against Aβ-induced 
neuronal dystrophy [108, 109]. One caveat to note in 
the report by Samuels et al. [109] is that this study com-
pared 5XFAD/Inpp5dΔMG mice with 5XFAD/Inpp5dfl/

fl controls but failed to consider that these two groups 
also differ by Cx3cr1 expression. The Cx3cr1CreER driver 
line used as the driver to generate Inpp5dΔMG mice 
expresses the Cre-ER fusion protein from endogenous 
Cx3cr1 promoter/enhancer elements such that the Cre 
insertion knocks out endogenous CX3CR1 expression 
from the knock-in allele. As discussed below, the loss 
of CX3CR1 expression affects microglial responses 
to the amyloid pathology [110, 111]. Thus, additional 
studies comparing 5XFAD/Inpp5dΔMG mice with 
5XFAD/Cx3cr1CreER controls or using an alternate 
microglial driver, such as the TMEM119-CreERT, are 
needed to clarify the full extent to which Inpp5d func-
tion relates to microglial reactivity towards Aβ deposits 
and cerebral amyloid burden. Collectively, these studies 
show that whilst INPP5D confers some level of LOAD 
risk, several key functions of this gene have yet to be 
identified. 

ABI3 codes for Abelson interactor family mem-
ber 3, a protein highly expressed in microglia impli-
cated in endocytosis and phagocytosis. The ABI3 
locus contains an AD risk variant (rs616338) associ-
ated with immune responses [112, 113]. Abi3 deletion 
in 5XFAD mice increases amyloid burden, reduces 
microglial localisation to Aβ deposits, and impairs 
microglial migration and phagocytosis [114]. How-
ever, no association was found in human AD patients 
between the ABI3 risk variant and amyloid load (or 
other endophenotypes) [113]. 
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Other microglial genes implicit in Alzheimer’s 
pathology
In addition to AD risk genes, several genes exclusively 
expressed in microglia have been implicated in micro-
glial responses to AD pathophysiology (Fig. 1). We have 
briefly discussed a few of them in this section.

The fractalkine receptor C-X3-C Motif Chemokine 
Receptor 1, encoded by CX3CR1, is specifically expressed 
by microglia within the human and mouse brain [74, 
115]. CX3CR1 is crucial for the clearance of myelin 
debris (and subsequently remyelination) in cuprizone-
treated mice [116]. Independent transcriptomics stud-
ies observed reduced Cx3cr1 expression in homeostatic 
microglia as an early response to Aβ pathology in 5XFAD 
mice [10, 11, 21]. However, an increase in CX3CR1 
protein levels has been observed in this model [117]. 
Moreover, CX3CR1 transcript and protein expression 
are increased in the human brain cortex of patients with 
AD [21, 117]. Additionally, CX3CR1 regulates microglial 
responses to Aβ deposition; however, the direction of 
effect is divergent at different stages of pathogenesis. In 
the absence of synaptic loss and cognitive impairment, 
APP/PS1 (4 months) and R1.40 (24 months) mice display 
reduced Aβ aggregation and microglial localisation at 
deposits with the loss of Cx3cr1 in a gene dose-depend-
ent manner [110]. Interestingly, although Cx3cr1 abla-
tion in the 5XFAD model resulted in fewer Aβ deposits 
at 4 months of age, there was an acceleration of Aβ dep-
osition by 6 months, concomitant with dysregulation 
of microglial activation, impaired phagocytic function, 
and tau phosphorylation [111]. Tau binds to CX3CR1 to 
facilitate its phagocytosis by microglia [118], with Cx3cr1 
deletion increasing tau pathology [118, 119]. Conversely, 
overexpression of CX3CL1 (fractalkine; the CX3CR1 
ligand expressed by neurons) ameliorated tau pathology 
in PS19 mice [120]. Thus, the CX3CL1/CX3CR1 signal-
ling pathway profoundly influences Alzheimer’s Aβ and 
tau pathogenesis. 

ITGAX (integrin subunit alpha X) codes for CD11c 
– a key marker of activated microglia proximal to 
Aβ depositions in AD brains and mouse models 
[10, 121]. Increased expression of CD11c (as well as 
CD11a and CD11b) was first observed in AD brains 
over 30 years ago [121]. CD11c dimerises with CD18 
(encoded by integrin subunit beta 2; ITGB2) to form 
complement receptor 4 (CR4). The related comple-
ment receptor 3 (CD11b/CD18) is the dominant 
receptor for phagocytosis of opsonised apoptotic 
cells [122] and pathogens by myeloid and lymphoid 
cells. In macrophages and dendritic cells, CR4 may 
play a minor role in phagocytosis, dependent on the 
substrate, although it is dispensable for pathogen 
phagocytosis in dendritic cells. There is little known 

of CR4 functions specific to microglia; however, its 
functions in peripheral immune cells predict that 
CR4 may have similar roles in microglia. Given the 
constitutive expression of CD11b in microglia, the 
specific upregulation of CD11c in amyloid deposit-
associated microglia does not necessarily imply an 
increase in their phagocytic capacity. However, CD11c 
is thought to facilitate cell adhesion by directly bind-
ing to cell adhesion molecules. Importantly, CR4 has 
been shown to play a key role in adhesion to fibrino-
gen [123]; elevated fibrinogen in plasma is related to 
AD risk [124]. Fibrinogen deposits have been reported 
in 5XFAD and J20 mouse brains, mediating microglial 
elimination of dendritic spines [125]. Fibrinogen also 
directly binds with Aβ, and this interaction promotes 
the aggregation of fibrinogen and Aβ fibril formation 
[126]. Thus, CD11c (CR4) expression in AD micro-
glia may feasibly increase their anchoring to dendritic 
spines and mediate synapse elimination. Interest-
ingly, a recent study found that  CD11c+ve microglia 
are divided into two subtypes by osteopontin expres-
sion [127]. Osteopontin (coded by SPP1) inhibited the 
compaction of diffuse plaques, Aβ phagocytosis, and 
degradation but facilitated the production of TNFα. 
 CD11c+ve;osteopontin+ve microglia were associated 
with increased neurodegeneration and inflammation, 
whilst  CD11c+ve;osteopontin-ve microglia were desig-
nated anti-inflammatory and neuroprotective [127]. 

It must also be noted that CR1 (CD35) locus contains 
important AD-related SNPs [63, 64, 66] although it is 
unclear whether these relate to microglia, as CR1 expres-
sion is low in all brain cells, with no transcript-level 
change observed in AD [36]. CR1 encodes a type I mem-
brane protein that controls complement activation. There 
is some evidence that activation of primary microglia by 
exposure to LPS or Aβ may increase CR1 protein levels 
and may modulate phagocytic substrate preference [128]. 
Still, since the majority of the AD-associated CR1 SNPs 
do not localise to exons, how CR1 influences AD risk is 
poorly understood. 

IFITM3 codes for restriction factor interferon-induced 
transmembrane protein 3, a key regulator of cytokine 
production during viral infection [129]. IFITM3 in neu-
rons and astrocytes has been shown to modulate the 
APP-cleaving γ-secretase enzyme [130]. IFITM3 expres-
sion is elevated in the cortex of patients with LOAD, 
and the 5XFAD mouse brain [130], and IFITM3 gene 
networks are enriched in hippocampi and entorhi-
nal cortices of AD patients [131]. The loss of IFITM3 
expression significantly reduces amyloid burden in the 
5XFAD model [130]. Interestingly, IFITM3 upregula-
tion in microglia during inflammation is dependent on 
the LOAD risk gene BIN1 [72]. IFITM3 is important for 
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lysosome acidification [132], suggesting the AD risk con-
ferred by these two genes in microglia relates to proteo-
lytic degradation after phagocytosis rather than uptake 
itself. 

CLEC7A (Dectin-1) is a C-type lectin pattern recog-
nition receptor, which initiates immune responses to 
fungal infection mediated through SYK [133]. CLEC7A 
expression is upregulated in microglia associated with 
Aβ deposits in mouse models and human AD [10, 11, 
134]. Additionally, Clec7a is increased in microglia sorted 
from aged mice [135]. In the microglia of 5XFAD mice, 
CLEC7A reportedly activates SYK, increasing compac-
tion and phagocytosis of Aβ [136]. However, as discussed 
above, using Sykfl/fl animals in this study rather than 
Cx3cr1CreER mice (control for Cx3cr1 haploinsufficiency 
and induced Cre expression) makes it difficult to infer 
these findings conclusively as SYK-mediated. 

Common signalling and functions for Alzheimer’s 
risk genes
Whilst the data regarding microglial genes in LOAD 
aetiology is far from clear, there are common indica-
tions that impaired activation responses may facilitate 
or augment pathology in stage-specific manners. Both 
immunity and lipid metabolism have been highlighted as 
functions of common LOAD risk genes [7, 25, 137, 138] 
(Fig.  2). The regulation of communication in these sys-
tems largely depends on surface receptors, which account 
for a noticeable fraction of LOAD risk genes. The follow-
ing section discusses the roles of inflammation and lipids, 
their relationship, and how surface receptors may medi-
ate disease risk during pathogenesis. 

Immune responses
As the primary immune cells of the brain, it is perhaps 
unsurprising that microglial dysfunction is linked to 
immune processes. However, the direction of immune 
dysfunction is uncertain. Initial studies speculated that 
microglia facilitate Aβ production and aggregation and 
that plaque-localised inflammatory microglia may attack 
an otherwise homeostatic CNS, initiating degeneration 
of neurons [139]. However, more recent findings indi-
cate that microglial immune responses are dependent on 
several LOAD risk genes [10, 37, 45, 72, 84, 100], imply-
ing that loss-of-function variants leave microglia unable 
to respond to the proinflammatory demands of adverse 
conditions sufficiently. Whether these challenges result 
from homeostatic processes (i.e., metabolic waste, cellu-
lar debris, ‘normal’ apoptosis), acute challenges to home-
ostasis (e.g., traumatic brain injury, infection, hypoxia), 
or chronic dyshomeostasis (e.g., metabolic disorders, 
peripheral inflammation, pollution, diet) remains to be 
determined and may be indecipherable using inherently 

variable population-based samples. In this vein, it is 
worth noting that antenatal hypoxia causes increased 
expression of microglial activation genes at 2 months, 
and this effect is augmented in 5XFAD mice [140]. Thus, 
the interaction between genetic predisposition and CNS 
challenges (at least during development) may have a 
long-term impact on microglial phenotypes. 

The receptor for advanced glycation end products 
(RAGE) can directly bind Aβ [141, 142]. Microglial 
overexpression of RAGE has been shown to increase 
the inflammatory response and Aβ aggregation in 
transgenic mouse models of amyloid pathology [143], 
whilst microglia cultured from AD patients’ brains 
show an exaggerated response to Aβ exposure [144]. 
Apparently, RAGE mediates the transportation of 
Aβ from the cell surface to mitochondria, promoting 
inflammasome formation [145]. 

Peripheral administration of endotoxin (LPS) in wild-
type mice replicates much of the microglial proteomic 
changes seen in 5XFAD mice [146]; however, there is evi-
dence that both proinflammatory and anti-inflammatory 
cytokines are increased in human AD brains [147]. This 
implies that modelling amyloid pathology in mice with an 
aggressive younger onset of pathology may only replicate 
the proinflammatory responses of microglia in human 
LOAD and not the reparative programmes. Whether this 
results from the manner of transgene expression (i.e., 
overexpression of human cDNAs bearing multiple FAD-
linked mutations) or the insufficiencies of endogenous 
mouse genetics remains to be determined. Genetic vari-
ants affecting cytokine expression have been reviewed 
elsewhere [148]. 

Whilst it is well documented that TLR4 mediates pro-
inflammatory signalling following LPS challenge [149], 
the role of TLR4 in AD pathophysiology is unclear. It 
has been observed that the loss of TLR4 function results 
in blunted microglial activation and increased amyloid 
pathology in 9-month APP/PS1 mice [150, 151], whilst 
younger (5-month) mice showed impaired microglial 
activation but no change in Aβ deposition [151]. How-
ever, others have found the TLR4 minor allele (result-
ing in the D299G mutation), which reduces monocyte 
inflammatory responses to LPS, is more common in 
control subjects than patients with LOAD [152]. It is 
plausible that this discrepancy relates to tau pathology 
in humans with LOAD but is absent in APP/PS1 mice. 
Indeed, aggregates of hyperphosphorylated tau activate 
inflammatory responses via TLR4 [153]. However, a com-
plete elucidation of the role of TLR4 in tau pathology is 
necessary to understand the role of this receptor at differ-
ent stages of pathology. 

As discussed above, pathological microglial activation 
depends on TREM2 function. Interestingly, despite its 
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role in mediating Stage II DAM phenotypic transition, 
TREM2 is an important mediator of anti-inflammatory 
signalling in microglia in vitro [81]. Moreover, it is worth 
noting that the direction of differential expression change 
for several DAM genes can be opposite in vitro (cultured 
primary microglia) compared to microglia in vivo [72], 
highlighting the differences between these experimental 
systems. 

Whilst functional studies into how microglia modulate 
pathology are only starting to emerge, there are consist-
ent data that surface receptor expression or localisation 
is integral. As discussed above, several risk genes code 
for transmembrane proteins, including TREM2, ABCA7, 
and CD33. Many surface proteins (CD11c, CLEC7A, 
TREM2, AXL, B2M, CD9) were identified as ‘markers’ 
of the DAM phenotype [10]. BIN1 facilitates the surface 
localisation of CD11c without impacting transcript lev-
els [72]. TREM2 glycosylation, affected by AD-associated 
variant R47H, facilitates its localisation at the cell surface 
[154, 155]. Interestingly, in addition to these findings, 
there is evidence that other microglial surface receptors 
are involved in pathology, either in harmful or protec-
tive mechanisms. As a possible important dysregulation 
in AD pathology, the mis-localisation of surface recep-
tors warrants in-depth investigation. Indeed, microglial 
receptors present an exciting area for future research 
(particularly as drug targets in pharmaceutical lead iden-
tification); however, a more comprehensive understand-
ing of the extent of surface mis-localisation is necessary 
to comprehend disease risk at a protein level. 

The complement system has already been alluded to, 
with CR4 (CD11c/CD18) and CD3 (CD11b/CD18) regu-
lating key cell-specific functions in microglia (adhesion 
and phagocytosis, respectively) and  CD11c+ve microglia 
emerging in response to amyloid pathology. Addition-
ally, CD88, the complement component 5a receptor 1, 
is upregulated by microglia associated with Aβ deposits 
[156] and dystrophic p-tau-laden neurites [157]. Its func-
tion facilitates pathology in the Tg2576 mouse model of 
amyloid pathology [158]. In the mouse brain white mat-
ter, CD11c-expressing microglia with reduced levels of 
CD11b have been observed in response to demyelination 
[159], suggesting a shift from phagocytosis in this pheno-
type. Indeed, these microglia are antigen-presenting cells 
that recruit T cells [159]. Activation of  CD8+ve T cells has 
been observed in patients with AD [160], and T cell infil-
tration has been reported in transgenic mouse models of 
aggressive amyloid pathology [161]. A protective allele 
of PLCG2 induces antigen presentation gene expres-
sion in microglia, promoting CNS infiltration of  CD8+ve 
T cells [162]. Functional studies reported that  CD8+ve 
T-cells infiltrating the brain inhibit the proinflammatory 
activity of microglia and limit amyloid pathology in the 

5XFAD model [163], but in the context of tauopathy in 
the PS19 model,  CD8+ve T-cells drive neurodegeneration 
[164]. Thus, the involvement of peripheral cell infiltration 
in AD pathology (including the possible involvement of 
mast cells, as discussed below) is poorly understood and 
represents an exciting area for future research. 

Lipid metabolism and signalling
Microglia are ‘metabolically flexible’, readily switching 
to glutaminolysis and fatty acid oxidation to facilitate 
surveillance (process motility) in the absence of glucose 
[165]. However, inflammatory activation shifts metabolic 
programming in microglia, suppressing efficient oxida-
tive phosphorylation [166, 167] in favour of inefficient 
glycolysis [166] (known as the Warburg effect). In acti-
vated macrophages, glycolysis feeds the biosynthesis of 
triacylglycerol, which accumulates in lipid droplets (LD) 
[168]. Hypoxia induces LD formation in macrophages 
[169], suggesting that this phenotype may emerge as a 
stress response, although the induction mechanisms 
need elucidation. 

Alois Alzheimer observed that “many glial cells show 
adipose saccules” [2]. Recently, LD formation was 
reported in microglia proximal to amyloid plaques [170]; 
however,  CD11c+ve microglia associated with Aβ plaques 
upregulate key genes involved in lipid metabolism [10, 
171]. Thus, the balance of lipid accumulation and metab-
olism in pathological contexts requires mechanistic clari-
fication, with microglial responses likely heterogeneous 
and phenotype-specific. 

The differences in LD composition further highlight the 
heterogeneous phenomenon of LD formation. Impaired 
degradation of cholesterol from phagocytosed myelin 
(in TREM2-deficient microglia) results in the accumula-
tion of cholesteryl esters in LD [172], which are absent 
from the triacylglycerol-laden LD in ageing microglia 
[173]. Triacylglycerol containing LD possibly form an 
energy reserve in ageing cells. Myelin-induced choles-
terol storage may serve for activation-induced altera-
tions in dynamic local membrane composition (e.g., lipid 
raft formation). However, the need for studies to iden-
tify the functional roles of cholesterol in inflammatory 
responses makes it difficult to interpret these findings 
mechanistically. 

Cholesterol regulates APOE trafficking of Aβ in micro-
glia, with reduced cholesterol promoting trafficking to 
lysosomes and subsequent degradation [174]. However, 
whilst investigations of membrane lipids have shed some 
light on protein processing, it is clear that lipid dysregu-
lation in AD extends beyond the cell-autonomous level. 
Additionally, whilst microglia do not express the enzymes 
necessary for cholesterol conversion into progesterone 
[175], progesterone and derived hormones profoundly 
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affect microglial inflammatory response programmes 
[176]. Indeed, progesterone reduced proinflammatory 
stimulation of TNFα, iNOS, NFκB, and mitogen-acti-
vated protein kinase (MAPK)-38 in cultured BV2 cells 
[177]. Similarly, oestrogen reduced MHC-II+ve microglia 
following stab injury [178], increased microglial phago-
cytosis of apoptotic cells and fluorescent beads [179, 
180], limited inflammatory release of TNFα,  NO2, and 
superoxide [179–181], limited inflammatory expression 
of iNOS and TLR4 [180, 181], and shifted MAPK phos-
phorylation from p38-MAPK to p42/44-MAPK [180, 
181]. The blunting of microglial inflammatory response 
in this instance appears to be protective, with oestrogen 
depletion resulting in decreased microglial clearance of 
Aβ [182]. There is also evidence that oestrogen protects 
against tau pathology [183, 184], although it’s difficult to 
attribute these data specifically to microglia. Testosterone 
also reduced MHC-II+ve microglia following stab injury 
[178]. The testosterone metabolite dihydrotestosterone 
inhibited microglial secretion of several proinflamma-
tory molecules via inhibition of TLR4 signalling [185]. 
However, compared to oestrogen studies, investigations 
into the effect of testosterone on microglial activation are 
remarkably sparse. 

The progressive loss of specific lipids in ageing and AD 
brains has been known for decades (see [186]). The cin-
gulate and temporal cortices are particularly vulnerable 
to age-related changes in lipid composition [187, 188], 
and these regions show decreased glucose metabolism in 
APOE ɛ4 carriers [189, 190], suggesting that alleles of this 
lipoprotein may drive region-specificity of dysfunction 
and pathogenesis. Reciprocally, lipidation of APOE regu-
lates microglial activation, which is impaired in ɛ4 vari-
ant (relative to ɛ3) [58]. Microglial-like cells differentiated 
from APOE ɛ4-expressing iPSCs accumulate lipids [191], 
notably during ageing [173] and in response to neuronal 
signals [192], demonstrating an allele-specific inflamma-
tory response. As Apoe expression is associated with anti-
inflammatory phagocytic microglia in mice [193], these 
data suggest that ɛ4 induces a destructive proinflamma-
tory phenotype. However, the range of specific functions 
and molecular interactions of each APOE variant is yet to 
be fully clarified. 

Low-density lipoprotein receptor (LDLR) is a major 
receptor that binds APOE/lipoproteins to transport 
cholesterol and triglycerides in the brain and periph-
ery. Although both APOE and LDLR levels are high-
est in astrocytes, their signalling in microglia regulates 
LPS-induced inflammatory response [194]. Additionally, 
whereas LDLR facilitates APOE endocytosis, Ldlr dele-
tion increased CSF APOE levels in transgenic human 
APOE ɛ3 (210%) and ɛ4 (380%), but not ɛ2 mice [195]; 
however, cortical APOE levels were only subtly changed 

in ɛ3 mice, suggesting clearance may not holistically 
explain the CSF finding. Lipidation of APOE affects its 
conformation, subsequently affecting binding to recep-
tors and to Aβ (reviewed in [196]). Interestingly, deletion 
of Apoe or the overexpression of LDLR protects against 
tau pathology in PS19 mice by suppressing microglial 
activation of Apoe expression [197]. Thus, inhibiting 
APOE-LDLR interactions may prove an efficacious thera-
peutic strategy against LOAD. 

TREM2 presents another LOAD risk gene with 
important lipid-specific implications. TREM2 regu-
lates lipid metabolism in peripheral macrophages, with 
genetic ablation resulting in increased body fat, insu-
lin, and cholesterol [198]. The transition into Stage II 
DAM phenotype – characterised by the upregulation 
of lipid-metabolising genes – is TREM2-dependent [10, 
11]. However, AD patients with partial loss-of-function 
TREM2-R47H variant express increased levels of genes 
involved in lipid metabolism [21]. Studies in mouse mod-
els have shown that TREM2 binds lipids associated with 
Aβ [37] – as well as lipid-associated risk factors APOE 
and CLU [40] – mediating the microglial response to 
pathology. TREM2 also binds directly to Aβ species; oli-
gomeric Aβ blocks the TREM2-APOE interaction [199], 
suggesting competitive TREM2 binding. 

LPL codes for lipoprotein lipase, which hydrolyses tri-
glycerides [200]. Loss of Lpl in microglia impairs lipid 
uptake, induces a switch to a proinflammatory signature 
[201] and causes LD accumulation [202]. LPL is upreg-
ulated in Aβ plaque-localised microglia, which show 
internalised Aβ [10] (and also facilitates Aβ phagocyto-
sis in astrocytes [203]). Abca7 deletion in mice caused 
dysregulation of ceramides, sphingomyelins, and hexo-
sylceramides in the absence of pathology [204]. ABCA7 
is stabilised by HDL-associated lipoproteins to augment 
phagocytic function [205]. Transcription factor MEF2C, 
which has a role in fat deposition in the periphery, limits 
microglial proinflammatory response [206] and is inhib-
ited in 5XFAD mice [207]. Additionally, a weighted co-
expression network analysis of gene, lipid, and protein 
modules in human AD patient datasets found PLCG2, 
CR1, MEF2C, and ABCA7 (as well as non-microglial 
genes IL34, FERMT2, and ANKRD31) to be associated 
with lipid modules [208]. Cell biology studies are needed 
to understand how these risk genes modulate micro-
glial lipid homeostasis and immune responses. Interest-
ingly, sphingolipids regulate the neuronal secretion of 
Aβ-containing exosomes, which are internalised and 
cleared by microglia [209]. Sphingolipids such as cera-
mide are known to be enriched in exosomes, and cera-
mide levels are increased in AD brain [210], suggesting 
that exosomal release by neurons may present a mecha-
nism for amyloid aggregation. Potential non-pathological 
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functions of Aβ-containing exosomes in extrinsic signal-
ling from neurons to microglia remain to be investigated. 

Leukotrienes are largely synthesised in neurons, but 
microglia regulate their synthesis through an unknown 
non-cell autonomous mechanism [211]. Leukotriene  B4 
is synthesised by microglia in response to intracerebral 
haemorrhage, signalling neutrophil infiltration and auto-
crine microglial activation [212]. In the 5XFAD model, 
treatment with the leukotriene receptor antagonist mon-
telukast reduced neuroinflammation and  CD8+ve T-cell 
infiltration and improved cognitive functions. However, a 
longitudinal study of individuals using leukotriene recep-
tor antagonists found an association with a slower decline 
in clinical AD progression but observed no impact on 
memory performance in patients with AD or MCI and 
cognitively normal individuals [213]. 

Omega-3 polyunsaturated fatty acids reduce the micro-
glial inflammatory response in vitro; however, they also 
increase phagocytosis of Aβ42 peptides [214]. This finding 
implies that Aβ phagocytosis is a function of homeostatic 
microglia (in much the same way as phagocytosis of cell 
debris), suggesting that chronic activation may impair 
amyloid clearance. Interestingly, maternal deficiency 
of omega-3 (during gestation and lactation) in rodents 
increased microglial phagocytosis and the destruction 
of synapses [215]. It is, therefore, possible that the over-
activation of microglia causes a shift from phagocytosis 
of Aβ to the destruction of synapses, and that this change 
in the target may be modulated by dietary lipid intake. 
Similarly, resolvins – derivatives of omega-3 fatty acids 
– reduce the inflammatory upregulation and secretion 
of cytokines in microglia [216, 217], inducing an IL4-
expressing anti-inflammatory phenotype [218]. However, 
further studies are required to dissect the specific molec-
ular mechanisms that govern phagocytosis substrate 
preferences. 

Phagocytosis
Functionally, phagocytosis has been proposed as a mech-
anism dysregulated by LOAD risk genes [5]. As several 
LOAD-related risk genes code for phagocytic receptors 
(TREM2, CD33) or mediators (PLCG2, PILRA) [5], this 
function is likely involved in pathogenesis at some stage 
of the disease. Early studies of Aβ phagocytosis by micro-
glia observed poor degradation within phagosomes, 
fuelling hypotheses that different microglia subtypes 
are engaged in amyloid deposition versus removal [219, 
220]. Indeed, early studies considered microglial inter-
actions with amyloid deposits in transgenic mice to be 
extracellular, with in vivo phagocytosis an unlikely phe-
nomenon [221]. However, recent studies have disproved 
this notion [222, 223] and also revealed the unexpected 
finding that microglial phagocytosis regulated by TAM 

receptor tyrosine kinases Axl and Mer facilitated dense-
core plaque formation [224]. Thus, phagocytosis may not 
be a mechanism for Aβ degradation within the microglia. 
Interestingly, one study reported that physiological levels 
of soluble Aβ42 peptides undergo extracellular degrada-
tion by microglia-derived insulin-degrading enzyme and 
are not phagocytosed by mouse brain microglia both in 
vitro and in vivo, [225]. However, these intriguing find-
ings need to be validated to ascertain the significance of 
this mechanism in AD pathophysiology. 

Mouse brain microglia that had phagocytosed Aβ 
in vivo contained lower levels of the synaptic marker 
PSD95; however, they had a higher capacity for synap-
tosome phagocytosis when cultured [223]. Additionally, 
these cells expressed high levels of HIF1A, hypothesised 
to mediate transcription of proinflammatory DAM genes 
(SPP1, CCL3) in response to NFκB signalling [223]. It 
must be noted that phagocytosis of apoptotic neurons 
involves combined specialised efforts by microglia and 
astrocytes [226]. How AD pathology affects this intricate 
intercellular relationship is unclear; however, astrocytes 
have been proposed to compensate for the loss of micro-
glial phagocytosis by undertaking this function [227]. 

Age
Importantly, age cannot be overlooked as the strongest 
risk factor for LOAD. Despite the aforementioned dif-
ferences in microglial lipid homeostasis and LD com-
position during ageing and amyloid pathology, the 
proinflammatory state of aged microglia remains a dys-
functional phenotype [173]. Indeed, several ‘DAM genes’ 
are upregulated in microglia isolated from aged mouse 
brains, including Apoe, Lpl, Spp1, Itgax, and Clec7a [135]. 
Aged microglia display impaired (reparative) response 
to IL-4 after injury [228]. Live imaging of retinal micro-
glia showed slower process motility and reduced ramifi-
cations in aged mice [229]. Additionally, aged microglia 
did not present hyper-ramified morphology in response 
to ATP; instead, they became less dynamic by retract-
ing processes (although not full amoeboid phenotype) 
and displaying a slower morphological transition [229]. 
Microglia cultured from aged mice secrete higher levels 
of proinflammatory cytokines (such as IL6 and TNFα) 
and display impaired phagocytosis of Aβ42 [230]. The 
senescence-associated secretory phenotype of microglia 
has been described as an irrevocable cell cycle arrest, 
resulting in the secretion of inflammatory cytokines 
[231]. This phenotype develops in aged microglia [232], 
microglia that undergo excessive proliferation dur-
ing amyloid pathology [233], and microglia that have 
phagocytosed neurons containing tau aggregates [234]. 
Removal of senescent microglia reduces age-associated 
inflammation and cognitive decline [232], whereas early 
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prevention of proliferation appears to offer some protec-
tion against amyloid pathogenesis [233]. Whilst these 
findings demonstrate age-associated impairments in 
microglial homeostatic and inflammatory functions, 
whether these impairments play an aetiological role in 
AD pathophysiology remains largely undetermined. 

Modelling Alzheimer’s genes in microglia in vivo 
and in vitro
Whilst mice are the most common animals used as dis-
ease models in AD research, it is worth noting that the 
protein homology of mouse and human amino acid 
sequences for LOAD risk factors is largely inadequate. 
This is particularly notable when considering microglia, 
where one finds less than 70% homology for over half of 
microglial-enriched proteins (see Fig.1 and [235]). Addi-
tionally, transcript profiles of LOAD risk genes in mouse 
microglia fail to match the human signatures [236]. 
This implies the insufficiency of murine genetics to fully 
model human disease, highlighting the necessity for com-
bination modelling to include human cell types. 

There has been a recent surge of interest in adopting 
methods of human iPSC differentiation into microglial-
like cells (iMG). The ability to differentiate multiple brain 
cell types from the same pluripotent lines has uncov-
ered cell-type-specific enhancer-promoter interactions, 
including a microglia-specific enhancer for BIN1 expres-
sion [73]. However, inconsistencies in differentiation 
methodology induce variability in outcomes between 
groups, such as the finding of iMG cells expressing 
the neuronal BIN1 isoform 1 [73], which others have 
reported absent in microglia [72, 75]. Microglial culture 
conditions, in general, have been shown to have pheno-
typic effects on these environmentally sensitive cells. For 
instance, the presence of albumin affects microglia mor-
phology in culture [237], whilst TGF-β1, TGFβ-2, CSF-
1, and cholesterol sustain healthy microglia [237, 238]. 
Interestingly, the expression of several LOAD risk genes 
in iMG was affected by TGF-β1 supplementation [238], 
further highlighting the need to standardise differentia-
tion protocols between research groups. 

A few groups have attempted to further replicate 
human microglia in situ by implanting iMG cells into the 
brains of microglia-deficient mice [239–243] as well as 
microglia-depleted slice cultures [244]. The xenografted 
cells (in immunodeficient mice expressing human CSF1 
on a Rag2/Il2rg deficient background) appear to rep-
licate much of the transcriptional signature of human 
brain microglia [239–241]. Whilst presenting an exciting 
alternative to genetically pure mouse models, the full effi-
cacy of this chimeric approach (as well as its cost-effec-
tiveness) has yet to be fully established within basic and 
translational neurodegeneration research. Indeed, whilst 

non-autonomous signalling is maintained with this 
approach, the interspecies nature of this chimeric mod-
elling strategy suggests some limitations in interpreting 
cell-extrinsic mechanisms. Nonetheless, this presents a 
vital tool that may prove invaluable in elucidating LOAD 
genetic risks in translational settings. 

As mentioned earlier, discrepancies between scRNAseq 
findings in transgenic mouse models and human AD [19] 
raise doubt about the validity of modelling the slow pro-
gression of age-related AD with aggressive transgene 
expression in young rodents. Additionally, targeted cell-
specific gene manipulation in mice commonly relies on 
Cre-driven recombination systems. Currently, only a few 
pan-microglial Cre lines are widely used in research. A 
set of Cx3cr1-driven lines was developed by replacing the 
genomic locus with the Cre or CreERT2 coding sequences, 
thereby losing endogenous Cx3cr1 expression from the 
modified allele. The aforementioned effects of reduced 
Cx3cr1 expression on microglial phenotype and AD 
pathology demonstrate the limitation of this system. As 
an alternative, a Tmem119-driven line was developed to 
express Cre without affecting its endogenous expression 
[245]. However, there have been criticisms of the Tmem-
119CreER2 driver line that Tmem119 is not expressed by all 
microglia and is also expressed by some peripheral cells 
[246]. Additionally, with one exception, these microglial 
Cre driver lines are tamoxifen-inducible. In light of the 
aforementioned effects of oestrogen on AD pathology, 
the utility of tamoxifen raises a compounding set of com-
plications. Thus, more suitable systems for microglial 
Cre expression are urgently needed to facilitate reverse-
genetic manipulations in this important cell type. 

It must also be noted that mRNA abundance is often a 
poor predictor of protein levels. For example, a compari-
son of protein and mRNA abundance in 384 individuals 
in the Religious Orders Study and the Rush Memory and 
Aging Project revealed only 37% of the proteins showed 
minimally significant concordance with transcript levels 
[247]. Interestingly, the transcripts most highly upregu-
lated during LPS challenge (notably an NFκB gene net-
work) are repressed translationally by ribosomal binding 
protein SRSF3 [248], which is expressed in all brain cell 
types. Thus, whilst many studies have characterised tran-
scriptomic changes in both mouse and human microglia, 
the potential discrepancy between RNA and protein lev-
els in microglial response to pathological challenges has 
yet to be characterised. 

Microglial non‑autonomous functions
As the ‘sentinels’ of the brain, microglia are extremely 
sensitive to communication from other cell types; argu-
ably, their primary function is to receive extrinsic signals 
and respond appropriately. Over the years, numerous 
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studies that used cultured microglial cells focused on 
identifying cell-intrinsic signalling mechanisms. The 
recent popularity of scRNAseq has augmented this trend 
by revealing microglial subtype transcript signatures and 
phenotypes associated with autonomous cell-specific sig-
nalling mechanisms. However, this approach does not 
elucidate the complexity of the CNS, which is function-
ally reliant on extrinsic communication between different 
CNS cell types. There is a growing interest in studying 
extrinsic communication between CNS cell types by uti-
lising co-culture systems that enable non-autonomous 
signalling to be investigated whilst maintaining cell-spe-
cific resolution at a functional level. 

The most obvious form of extrinsic signalling from 
microglia is the release of cytokines during inflammatory 
responses [149, 249] and in response to AD-like patholo-
gies [16, 249, 250]. Microglial TNFα triggers apoptosis 
of neurons [251]. IL-1β signals leukocyte and monocyte 
infiltration via endothelial and ventricular cells, respec-
tively, with neurogenesis also mediated by signalling 
through endothelial cells [252]. Astoundingly, increases 
in both IL-1β and IL-10 have been reported to precede 
Aβ deposition in 5XFAD mice [253], suggesting that this 
may function as an early preventative mechanism, which 
becomes chronically dysregulated in AD. Additionally, 
microglia may respond to neurotoxic signals by releas-
ing fragmented mitochondria, causing proinflammatory 
activation of astrocytes [254]. As mentioned above, there 
is also evidence that T cell infiltration in amyloid and 
tau pathology is regulated by microglia, and this extrin-
sic signalling to peripheral cells modulates the extent of 
pathology and neurodegeneration [163, 164]. In addition 
to destructive non-autonomous mechanisms, microglia 
exert trophic effects on the CNS. Short-term exposure of 
microglia to low dose Aβ42 increases BDNF [255], which 
facilitates synapse formation [256], although long-term 
exposure abrogated the effect and induced a proinflam-
matory response [255]. Additionally, IL-1β activation 
of astrocytes has been associated with neuroprotection 
against NMDA-induced excitotoxicity [257]. 

The non-autonomous signalling from other CNS cell 
types to microglia must also be discussed. For instance, 
the aforementioned effects of steroid hormones require 
their synthesis in astrocytes and neurons [175, 258] or 
by peripheral cells. Glutamate release by stressed neu-
rons activates microglia, reciprocally triggering neuronal 
apoptosis [251]. Additionally, the entire phenomena of 
Aβ- and tau-initiated microglial activation essentially 
comprise neuron-to-microglia extrinsic signals. 

The CX3CR1 receptor (expressed specifically by 
microglia in the CNS) has only one ligand – fractalkine 
(CX3CL1) – which is predominantly expressed by neu-
rons, either surface-bound or secreted [259]. Fractalkine 

is cleaved by metalloproteinases, including ADAM10 
[260]. In response to excitotoxic signalling, cleavage 
occurs hours before the neuron dies [261], indicating 
that neurons alert microglia to ongoing damage and 
impending catastrophe. Interestingly, fractalkine can 
be cleaved from the neuronal membrane by microglial-
produced cathepsin S in response to neuronal injury 
[262], demonstrating the complexity of microglia-neuron 
intercommunication. CX3CR1 signalling limits inflam-
matory responses to LPS [263], suggesting the neuronal 
release of fractalkine initiates a reparative microglial 
programme. This aligns with the aforementioned finding 
that CX3CR1 is downregulated during the response to 
Aβ deposition [10, 11, 21], characterised by exacerbated 
inflammation [264, 265]. 

IL33 production by astrocytes stimulates microglial 
phagocytosis of synapses during development [266]. Both 
IL33 and its receptor (IL1RL1) are expressed in mast cells 
[267], which have been observed to increase in numbers 
in AD patients’ brains [268] and readily infiltrate adult 
rodent brains. Secretion of tryptase by mast cells induces 
a proinflammatory phenotype in cultured microglia 
[269]. Intriguingly, TNF increases mast cell production 
of IL4 [270], implying a feed-forward mechanism of per-
petuated proinflammatory signalling between mast cells 
and microglia. It must also be mentioned that PLX3397 
– used to deplete microglia via inhibition of CSF1R– also 
depletes mast cells by inhibiting c-Kit. Thus, the find-
ings from microglial depletion studies which utilise this 
molecule must be regarded in the context of non-cell 
specificity. 

Atypical manifestations of Alzheimer’s disease 
pathology
Atypical manifestations of AD include visual, linguistic, 
and motor impairments [35] and may account for 38% of 
young-onset AD [271]. Despite the earlier onset, patients 
presenting with atypical symptoms do not commonly 
carry the ε4 allele of APOE [272]. Indeed, the APOE ε3/ε3 
genotype has been reported to account for 59% of young-
onset AD patients [271]. Posterior cortical atrophy is the 
most common atypical variant of AD, with a young age 
of onset [273]. Variants within several microglial-related 
LOAD genetic loci have been associated with poste-
rior cortical atrophy, including APOE/TOMM40, CR1, 
ABCA7, and BIN1 [34]. Investigation of how these genes 
may influence atypical AD pathophysiology would eluci-
date the region-specific vulnerability of AD pathologies 
and how microglia impact these regional variations. 

The fact that such little has been elucidated about 
atypical young-onset AD cases highlights the multi-
aetiological nature of AD pathology as a whole. Whilst 
dramatic effort has been made to identify cell-specific 
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mechanisms in more common AD manifestations, 
increased clinical assessment and banking of patient 
samples for genomics research is necessary to make 
significant progress in understanding the mechanistic 
role microglia play in atypical AD. 

Conclusions
Whilst much recent attention has been given to the 
heterogeneity of microglial phenotypes, the problems 
posed by this phenomenon are compounded by the 
non-uniformity of AD progression. In this light, care-
ful consideration must be given to the stage of the dis-
ease being modelled, and interpretations limited to the 
relative temporal progression in human disease. This is 
especially true of translational endeavours, in which an 
efficacious therapeutic intervention in early stages may 
prove destructive at later stages, and vice versa. 

The common themes emerging from current knowl-
edge are that (1) several LOAD risk gene variants 
dysregulate microglial proinflammatory and anti-
inflammatory responses, and (2) ‘normal’ lipid metab-
olism and signalling mechanisms are impaired. The 
insufficient inflammatory response of LOAD-risk 
microglia suggests that, whilst inflammation is com-
monly observed in AD patients, this has perpetuated 
from an inability to meet ‘homeostatic’ requirements 
(i.e., clearance of apoptotic cells and metabolic prod-
ucts) or an inability to appropriately respond to an ini-
tiating insult (e.g., traumatic injury, transient ischaemic 
attack, hypoxia). Whilst trends in research have led 
to variations in findings (sometimes conflictingly so), 
advances in research tools continue to provide new 
methodologies for answering the complex questions 
posed by a heterogeneous cell type in a non-uniform 
disease.
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