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To the editor
The APOE gene is a known genetic risk factor for neu-

rodegeneration and cardiovascular disease (CVD) [1, 2]. 
Beyond the known effects of APOE ε2 and APOE ε4, sev-
eral rare and protective APOE variants (R154S Christch-
urch (APOECh), V236E Jacksonville, and R251G) 
have been identified recently [3, 4]. The ultra-rare 
APOECh mutation (NM_000041.4(APOE):c.460C > A 
(p.Arg154Ser)), also known as p.Arg136Ser or R136S in 
previous publications [5, 6], has been hypothesized to 
protect from PSEN1-based autosomal dominant Alzhei-
mer’s disease (AD) [5]. The protective effect of APOECh 
was observed for a single homozygous individual [5] but 
has been debated for heterozygous individuals [7].

In addition to unraveling the molecular mechanisms 
by which APOE genetic variants affect lipid biology and 
neuropathological features including amyloid plaques 
and tau tangles, immune response, vascular integrity 
and function, and other AD-related pathways [3, 4], it is 

important to understand what other phenotypic manifes-
tations they can cause. To date, few studies have reported 
on the effect of APOECh due to limited number of carri-
ers in the population [5, 6, 8].

Using UK Biobank whole exome (WES; N = 454,756) 
and whole genome (WGS; N = 141,948) sequences, we 
identified 37 heterozygous individuals (27 females and 
10 males; 36 Europeans, 1 admixed American), result-
ing in APOECh allele frequency of 0.004% (Supplemen-
tary Methods, Supplementary Table  1, Additional File 
1) and evaluated 19 binary traits on neurological disor-
ders, cardiovascular disorders, and medication use, and 
80 quantitative traits, including blood and urine-based 
biomarkers (Supplementary Fig.  1 and Supplementary 
Tables 2–4, Additional File 1).

It is important to consider the effect of APOECh in the 
context of other AD risk or protective variants. We find 
that APOECh carriers are enriched (p = 0.001) for the 
ε3/ε3 genotype; five carriers (13.9%) are heterozygous 
for APOE ε4, 30 (83.3%) are homozygous for APOE ε3, 
and one (2.8%) has an ε2/ε3 genotype (Supplementary 
Table 5, Additional File 1). Several APOECh carriers also 
carry single nucleotide risk alleles in the GRN, SORT1, 
and APBB2 genes, but none had risk mutations in the 
highly penetrant genes (i.e., APP, PSEN1, PSEN2) associ-
ated with early-onset AD (Supplementary Table 6, Addi-
tional File 1). While only one carrier had one copy of the 
protective APOE ε2 allele, none of them had the protec-
tive V236E Jacksonville and R251G variants (Supplemen-
tary Table 6, Additional File 1).
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We did not detect any significant difference between 
carriers and noncarriers for the binary traits assessed 
(Supplementary Table  7, Additional File 1). Among the 
heterozygous carriers (age: 56.62–82.06, median: 68.63), 
none have developed AD or mild cognitive impairment 
by March 2022 (data freeze used), including 4 individu-
als with parental history of AD (Supplementary Table 1, 
Additional File 1). While this may suggest that the 
APOECh carriers are protected, continued follow-up as 
the cohort ages is necessary. Interestingly, the carriers 
showed a decreased genetic risk measured by polygenic 
risk score (PRS) for Alzheimer’s disease (p = 0.02), which 
cannot be attributed to APOECh, as this rare variant is 
not included in AD genome-wide association studies and 
PRS calculations (Supplementary Methods and Supple-
mentary Table 8, Additional File 1).

Among non-lipid blood biomarkers and hematologi-
cal traits, a few traits showed differences at a nominal 
level (p < 0.05) but were not significant after accounting 
for multiple testing of 22 non-lipid blood biomarkers or 
31 hematological traits (Supplementary Table 8 and Sup-
plementary Figs.  2–5, Additional File 1). Importantly, 
among blood-based lipid biomarkers measured at base-
line (Table 1 and Supplementary Fig. 6, Additional File 1), 
both unadjusted and adjusted for self-reported statin use 
at the time of recruitment, apolipoprotein B (apoB) levels 
were significantly lower in carriers compared to noncar-
riers (p = 0.004 and p = 0.036, respectively). While statin 
adjustment slightly attenuated the difference in apoB lev-
els, the significant difference persisted, suggesting that 
lower apoB may be a characteristic of APOECh carriers 
and having lower apoB may be protective against AD. We 
also found APOECh carriers to have lower median apoB/

apoA1 ratio vs. noncarriers (p = 0.047), which together 
with lower apoB suggests protection from major adverse 
cardiovascular event (MACE) despite small sample size 
to directly detect this for ICD-coded events. Given the 
role of apoB in major vascular diseases, we also assessed 
for differences in cerebral amyloid angiopathy or vascular 
dementia diagnoses among carriers and noncarriers, but 
found no difference (Supplementary Table 7, Additional 
File 1), most likely due to small sample size.

Higher levels of plasma apoB are associated with 
AD or cognitive decline [9, 10] and a recent study has 
demonstrated that cerebrospinal fluid apoB levels are 
correlated with tau pathology in pre-symptomatic indi-
viduals and elevated in AD patients [11]. Our study 
complements the findings from Wingo et al. [12], which 
observed that elevated apoB was significantly associ-
ated with increased risk of early onset AD (EOAD) 
and EOAD cases were enriched for apoB rare func-
tional variants (Supplementary Note, Additional File 
1). However, mendelian randomization (MR) analysis 
assessing the causal effect of statin-adjusted apoB [13] 
on AD risk [14] were inconclusive due to confounding 
by the APOE region, and significant evidence of het-
erogeneity and horizontal pleiotropy (with and without 
the APOE region: Supplementary Table  9, Additional  
File 1), which violated the assumptions underlying 
this methodology. MR analysis of apoB cis protein 
quantitative trait loci [15] and AD risk [14] were not 
significant. Colocalization analysis does not suggest 
evidence of a shared causal variant for apoB and AD. 
Follow-up mechanistic studies are critical to establish 
the relationship between APOECh, apoB levels, and 
AD risk.

Table 1 Blood‑based lipid biomarkers of APOECh carriers and noncarriers

Summary statistics of lipid biomarkers among European APOECh carriers and matched noncarriers. A two-sided Kolmogorov-Smirnov (KS) test was used to determine 
whether the measurements for a given lipid biomarker follow the same distribution among carriers and noncarriers

EUR Carriers (N=36) EUR Noncarriers 
(N=129,240)

KS test

Min, Max Median Min, Max Median

Apolipoprotein A 1.03‑2.12 1.64 0.52‑2.50 1.55 D=0.19 P‑value=0.239

Apolipoprotein B 0.65‑1.37 0.88 0.40‑1.99 1.02 D=0.31 P‑value=0.004

Apolipoprotein B (statin adjusted) 0.65‑1.37 0.94 0.40‑2.76 1.06 D=0.25 P‑value=0.036

C reactive protein 0.09‑16.48 1.12 0.08‑78.26 1.32 D=0.12 P‑value=0.662

Cholesterol 3.82‑7.83 5.32 1.71‑12.50 5.73 D=0.18 P‑value=0.263

Cholesterol (statin adjusted) 3.82‑7.83 5.80 1.88‑15.56 5.91 D=0.15 P‑value=0.427

High‑density lipoprotein 0.80‑2.05 1.56 0.23‑4.19 1.47 D=0.2 P‑value=0.225

Low‑density lipoprotein 2.19‑5.06 3.25 0.75‑8.86 3.55 D=0.23 P‑value=0.072

Low‑density lipoprotein (statin adjusted) 2.23‑5.06 3.36 0.80‑12.96 3.70 D=0.21 P‑value=0.119

Lipoprotein A 4.10‑178.95 22.00 3.80‑189.00 20.50 D=0.11 P‑value=0.838

Triglycerides 0.79‑6.31 1.71 0.23‑11.15 1.42 D=0.16 P‑value=0.329
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This study includes several limitations. We did not 
identify any homozygotes for APOECh and are unable  
to validate the findings reported by Arboleda-
Velasquez et al. [5]. Due to the rarity of the APOECh 
variant, the sample size of carriers is insufficient for 
leveraging UKB brain imaging, metabolomics, and 
proteomics data, which are currently only available 
on partially overlapping subsets of UKB participants; 
the overlap with carriers was too small to perform 
statistical analyses (Supplementary Table  10, Addi-
tional File 1). For the quantitative traits assessed, only 
baseline measurements were considered given that 
repeated biomarker measurements are available only 
for a subset of UKB participants. Statin adjustment 
for lipid biomarkers were only applied using self-
reported statin at baseline. Primary care prescrip-
tion data were not considered for statin adjustment 
because only 48.8% of the UKB cohort has prescrip-
tion data (Supplementary Table 11, Additional File 1).  
Statin adjustment may be incomplete because not 
all individuals report medication use; confounders 
assessed by self-report may be sub-optimally con-
trolled depending on the outcome of interest [16]. 
Larger population-based cohorts such as All of US 
(N ~ 1 million) or Our Future Health (N ~ 5 million) will 
enable replication studies to confirm whether APOECh 
carriers have lower apoB levels. Assessment of linkage 
 disequilibrium and/or an interaction effect of the 
APOECh variant with other AD-protective variants 
to establish the mechanism by which heterozygous 
carriers may have a protective effect is an important 
next step.

To our knowledge, this work is the first examina-
tion of the clinical phenotypes in the largest cohort 
of APOECh carriers among UKB participants. While 
the APOECh variant is very rare and larger cohorts 
are needed to assess its contribution to demen-
tia, dyslipidemia, and CVD, the UKB provides an 
unprecedented opportunity to follow these carriers 
and elucidate the underlying role of APOECh in disease 
etiology.
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