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Abstract
Background “Brain-predicted age” estimates biological age from complex, nonlinear features in neuroimaging scans. 
The brain age gap (BAG) between predicted and chronological age is elevated in sporadic Alzheimer disease (AD), 
but is underexplored in autosomal dominant AD (ADAD), in which AD progression is highly predictable with minimal 
confounding age-related co-pathology.

Methods We modeled BAG in 257 deeply-phenotyped ADAD mutation-carriers and 179 non-carriers from the 
Dominantly Inherited Alzheimer Network using minimally-processed structural MRI scans. We then tested whether 
BAG differed as a function of mutation and cognitive status, or estimated years until symptom onset, and whether 
it was associated with established markers of amyloid (PiB PET, CSF amyloid-β-42/40), phosphorylated tau (CSF and 
plasma pTau-181), neurodegeneration (CSF and plasma neurofilament-light-chain [NfL]), and cognition (global 
neuropsychological composite and CDR-sum of boxes). We compared BAG to other MRI measures, and examined 
heterogeneity in BAG as a function of ADAD mutation variants, APOE ε4 carrier status, sex, and education.

Results Advanced brain aging was observed in mutation-carriers approximately 7 years before expected symptom 
onset, in line with other established structural indicators of atrophy. BAG was moderately associated with amyloid PET 
and strongly associated with pTau-181, NfL, and cognition in mutation-carriers. Mutation variants, sex, and years of 
education contributed to variability in BAG.

Conclusions We extend prior work using BAG from sporadic AD to ADAD, noting consistent results. BAG associates 
well with markers of pTau, neurodegeneration, and cognition, but to a lesser extent, amyloid, in ADAD. BAG may 
capture similar signal to established MRI measures. However, BAG offers unique benefits in simplicity of data 
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Human biological aging is marked by complex, nonlinear 
changes in brain structure that can be observed in vivo 
using magnetic resonance imaging (MRI) [1–3]. Recent 
efforts to model biological aging have applied machine 
learning techniques to large MRI datasets of cognitively 
normal participants in order to capture normative trajec-
tories of structural brain features across the lifespan [4, 
5]. Critically, this approach estimates brain-predicted bio-
logical age in individual participants relative to the nor-
mative training sample. Typical brain aging is expected to 
produce a small brain age gap (BAG) between model-pre-
dicted brain age and true chronological age [4, 5]. When 
the brain-predicted age is older (BAG > 0) or younger 
(BAG < 0) than chronological age, these deviations are 
interpreted as signals of advanced or resilient biological 
aging, respectively.

A growing body of literature provides converging evi-
dence that BAG is influenced by a wide range of neuro-
logical, psychiatric, and general health conditions, as well 
as potential resilience factors [6, 7]. Consistent eleva-
tions in brain age are reported in the symptomatic stages 
of Alzheimer disease (AD) [6–8]. Although AD-related 
atrophy can be detected using other established biomark-
ers from structural MRI [9], at least one study suggests 
that a brain age estimate offers improved detection of 
symptomatic AD progression even beyond established 
AD biomarkers, such as hippocampal volume [10]. Thus, 
by capturing complex, multivariate, nonlinear patterns of 
brain aging, this approach might reflect a more compre-
hensive and sensitive view of disease-related pathology 
and risk, above and beyond individual features derived 
from the same MRI scans.

Although advanced structural brain aging has been 
clearly established in symptomatic AD [6, 7], it is not 
clear whether these estimates are sensitive to the preclin-
ical stage, i.e., the presence of amyloid-β pathology in the 
absence of cognitive decline [11]. While studies have con-
sistently demonstrated associations between structural 
brain age estimates and AD biomarkers in symptomatic 
Alzheimer dementia samples [12, 13], two recent studies 
of BAG in cognitively unimpaired participants did not 
observe associations with AD biomarkers [14–16].

Thus far, most studies of brain aging in AD have 
focused on sporadic late onset AD (sLOAD). Another 
critical population for evaluating the preclinical phase is 
autosomal dominant AD (ADAD) [17, 18]. ADAD muta-
tion-carriers have a highly predictable age of symptom 
onset, which can be used to model the timecourse of early 
pathological progression as a function of estimated years 

until symptom onset (EYO). Additionally, since ADAD 
samples are younger than sLOAD, observed deviations 
in brain age are less likely to be attributed to other age-
related etiologies (e.g., cerebrovascular disease). Indeed, 
one recent study demonstrated that an estimate of brain 
age using resting-state functional connectivity MRI is ele-
vated in ADAD mutation-carriers and in association with 
amyloid PET [19]. However, this study did not examine 
structural brain aging, which is more accessible in clinical 
and research settings and might capture complementary 
pathological signal to functional connectivity.

In the present study, we applied a recently developed, 
publicly available convolutional neural network, Deep-
BrainNet (DBN) [20], to model brain age in a sample of 
ADAD mutation-carriers (MCs) and non-carriers (NCs) 
from the Dominantly Inherited Alzheimer Network 
(DIAN) [17, 18]. Importantly, DBN has been trained 
on independent datasets spanning the human lifespan 
to predict age using minimally-processed, whole-brain 
structural MRI scans as inputs [20] (see Fig.  1). Thus, 
brain age estimates from DBN may be derived quickly 
and automatically, with less intensive preprocessing 
and quality assessments than required for other brain 
age models or established MRI biomarkers. With this 
method, we modeled the emergence of advanced struc-
tural brain aging over the course of ADAD progression 
as defined by EYO. To further evaluate the sensitivity of 
brain aging to AD pathology, we tested associations with 
other established PET and biofluid AD biomarkers, as 
well as measures of cognition. To test the additional util-
ity of brain age estimates in capturing AD-related atro-
phy, we compared brain age to other established MRI 
biomarkers in their ability to detect divergence between 
MCs and NCs. Given prior demonstrations of heteroge-
neity in pathological burden and age of onset between 
ADAD mutation variants [21–24], we tested whether 
brain age estimates captured similar differences in path-
ological severity. Finally, as prior studies have demon-
strated differences in brain aging as a function of sex [14, 
25–29], education [30, 31], and APOE genotype [32], we 
tested those relationships in this ADAD sample.

Methods
Participants
The sample included 436 participants from the DIAN 
Observational Study (data release 16) [17, 18]. 257 par-
ticipants were identified as mutation-carriers (MCs) of 
pathologic variants in presenilin-1 (PSEN1), presenilin-2 
(PSEN2), or amyloid precursor protein (APP). PSEN1 

processing and interpretation. Thus, results in this unique ADAD cohort with few age-related confounds suggest that 
brain aging attributable to AD neuropathology can be accurately quantified from minimally-processed MRI.
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mutation-carriers were further grouped based on the 
location of the underlying variant (i.e., before or after 
codon 200) [21]. The remaining 179 participants were 
non-carrier controls (NCs), recruited from the same fam-
ilies as the MCs. In order to characterize and correct for 
differences in brain age estimates between different sites 
and scanners, we included data only from DIAN sites 
with at least 5 eligible participants with a usable T1 MRI 
scan. For details on each site-specific sample, see Supple-
mentary Table 1.

Estimated years until symptom onset (EYO) was com-
puted for each participant as the difference between 
the participant’s chronological age and the mean age of 
symptom onset for their specific mutation, as determined 
by a database of known mutation onsets, or the familial 
age of symptom onset, as determined by semistructured 
interview [17, 18]. Thus, negative EYO values reflect 
years until expected onset, whereas positive values reflect 
years after onset.

Cognitive status was determined using the Clinical 
Dementia Rating® (CDR®) scale [34]. A CDR of 0 defines 
cognitive normality, while scores above 0 define increas-
ing stages of dementia severity. MCs with CDR = 0 were 
identified as “asymptomatic”, while MCs with CDR > 0 
were identified as “symptomatic”. APOE ε4 status was 
dichotomized in all participants between ε4 carriers (ε4+, 
including heterozygotes and homozygotes) and ε4 non-
carriers (ε4-).

DIAN participants provided informed consent in 
accordance with the local institutional review boards 
of each participating site. DIAN study procedures have 
received ethics approval by the Human Research Protec-
tion Office at Washington University in St. Louis (MO, 
USA) and all of the participating sites.

PET & biofluid biomarkers
Amyloid β plaque deposition was assessed using a [11C] 
Pittsburgh Compound B (PiB) PET tracer. PET data were 

analyzed from a 30-minute acquisition window begin-
ning 40  min after a bolus injection of approximately 15 
mCi of PiB. All PiB PET scans were processed with the 
PET Unified Pipeline (PUP) [35], including conventional 
processing steps and partial volume correction with a 
regional spread function (RSF). Standardized uptake 
value ratios (SUVR) summarized PiB tracer binding in 
previously-defined summary regions, including bilateral 
precuneus, prefrontal cortex, gyrus rectus, and lateral 
temporal regions, using the cerebellum as a reference 
region [35].

Cerebrospinal fluid (CSF) samples were collected via 
lumbar puncture under fasting conditions [17]. CSF amy-
loid β42 (Aβ42), amyloid β40 (Aβ40), and phosphory-
lated tau-181 (pTau) were measured with Lumipulse 
immunoassays (Fujirebio). Aβ42 and pTau estimates were 
normalized for individual differences in CSF production 
rates by forming a ratio with Aβ40 as the denominator 
[36, 37]. Neurofilament-light-chain (NfL) was measured 
with a Simoa HD-X platform (Quanterix).

Blood samples were collected via venipuncture under 
fasting conditions [38]. Plasma pTau and NfL were mea-
sured on a Simoa HD-X platform (Quanterix).

Cognitive battery
Participants completed a comprehensive neuropsycho-
logical test battery [39]. We formed a global cognitive 
composite by standardizing and combining the Logical 
Memory delayed recall score [40], Digit Symbol Substitu-
tion total score [41], Animal Naming fluency score [42], 
and time to complete Trail Making part B [43].

We also used the CDR-Sum of Boxes as an additional 
measure of global dementia severity [44].

MRI acquisition & processing
Structural MRI scans were acquired on a 3T scan-
ner using a T1-weighted magnetization-prepared 
rapid gradient echo sequence (MPRAGE; echo time 

Fig. 1 Overview of study design. (A) Whole-brain T1 structural MR images from DIAN were processed with brain extraction and linear registration to 
an atlas template, and were then used as input data for brain age analyses. (B) DeepBrainNet (DBN) is a publicly available convolutional neural network 
that has previously been trained to predict age in 11,729 MRI scans from independent control samples [20]. (C) Model prediction accuracy of age was 
evaluated by calculating Pearson’s correlation coefficient (r), coefficient of determination (R2), mean absolute error (MAE), and root mean square error 
(RMSE) in non-carrier participants. (D) Brain Age Gap (BAG) for each DIAN participant was calculated as the difference between DBN-predicted and true 
chronological age. Figure created in part with BioRender.com and modified from [33]
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[TE] = 2.95 ms, repetition time [TR] = 2300 ms, inver-
sion time [TI] = 900 ms, field of view [FOV] = 270  mm, 
flip angle = 9°, 225 slices, 1.1 × 1.1 × 1.2 mm3 voxels) [45]. 
Scanner manufacturer and model varied between DIAN 
sites. T1-weighted images were processed using a com-
mon minimal pipeline including brain extraction and lin-
ear registration to the MNI 152 atlas template.

T1-weighted images were also processed with Free-
Surfer 5.3 [46]. For comparison with BAG, additional 
analyses examined structural estimates in a priori 
regions of interest, including hippocampus volume [18], 

precuneus thickness [47], and cortical thickness in AD-
specific signature regions [48].

Brain age modeling
DeepBrainNet (DBN) is a publicly available 2D convo-
lutional neural network using the inception-resnet-v2 
framework, which has previously been trained to predict 
age on 11,729 MRI scans from independent samples [20]. 
Briefly, minimally-processed whole-brain T1-weighted 
images were each represented as a collection of 80 evenly 
spaced axial slices, which matched the slice positioning 
of the original DBN training set. For each participant, 

Table 1 Demographic information for the sample
N ADAD Mutation Groups NCs vs. All MCs

NCs 
(179)

Asymptomatic 
MCs 
(183)

Symptomatic 
MCs 
(74)

η² p-value1

Age 436 0.000 0.79
Mean (SD) 37.5 (10.6) 34.3 (9.1) 46.3 (8.7)
Sex 436 0.75
Female 101 (56%) 104 (57%) 37 (50%)
Male 78 (44%) 79 (43%) 37 (50%)
Education 436 0.007 0.030
Mean (SD) 15.0 (2.8) 14.8 (2.7) 13.7 (3.1)
Self-Selected Race 436 0.69
Aboriginal Australian or Torres Strait Islander* < 5 < 5 < 5
American Indian or Alaska Native* < 5 < 5 < 5
Asian* 5 (2.8%) < 5 < 5
Black or African American* < 5 < 5 < 5
Hispanic or Latinx* < 5 < 5 < 5
Middle Eastern or North African* < 5 < 5 < 5
Native Hawaiian or Other Pacific Islander* < 5 < 5 < 5
White 152 (85%) 155 (85%) 64 (86%)
More than one race 14 (7.8%) 11 (6.0%) 4 (5.4%)
Unknown 5 (2.8%) 10 (5.5%) 2 (2.7%)
CDR 436 < 0.001
0 179 (100%) 183 (100%) 0 (0%)
0.5 0 (0%) 0 (0%) 44 (59%)
1 0 (0%) 0 (0%) 26 (35%)
2 0 (0%) 0 (0%) 4 (5.4%)
EYO 436 0.003 0.16
Mean (SD) -11.0 (11.4) -14.3 (9.0) 1.4 (5.7)
APOE 436 0.86
ε4- 124 (69%) 124 (68%) 52 (70%)
ε4+ 55 (31%) 59 (32%) 22 (30%)
Variant 436 0.45
APP 38 (21%) 38 (21%) 13 (18%)
PSEN1 Codon < 200 55 (31%) 48 (26%) 23 (31%)
PSEN1 Codon 200+ 65 (36%) 75 (41%) 37 (50%)
PSEN2 21 (12%) 22 (12%) 1 (1.4%)
* Fewer than 5 participants per group selected this race. Specific numbers and percentages for these groups are not reported to prevent unblinding of participant 
mutation-carrier status

ADAD, Autosomal Dominant Alzheimer Disease; NC, Non-carrier; MC, Mutation-carrier; CDR, Clinical Dementia Rating; EYO, Estimated years until symptom onset; 
APOE, Apolipoprotein E; APP, Amyloid Precursor Protein; PSEN, Presenilin
1Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test



Page 5 of 17Millar et al. Molecular Neurodegeneration           (2023) 18:98 

each of the 80 slices were provided to DBN as indepen-
dent inputs. A predicted age was generated for each slice 
with the median output serving as the participant’s final 
age prediction [20].

To correct for regression dilution in the age prediction 
model (see Supplementary Fig. 1) [49], we applied a lin-
ear transformation to predicted age values, adjusting for 
the slope and intercept from a regression model of pre-
dicted age as a function of chronological age in NCs [25, 
50]. BAG was then calculated as the difference between 
corrected brain age and chronological age and this cor-
rected value was used for statistical tests of group dif-
ferences and associations with other variables. However, 
to avoid inflating estimates of prediction accuracy, only 
uncorrected age prediction values were used to evaluate 
model performance [51, 52].

Statistical harmonization
Since MRI scans were collected across several DIAN 
sites, using a variety of scanner models, these differ-
ences might contribute non-biological variance to the 
brain age signal. Indeed, a Kruskall-Wallis test revealed 
that BAG values differed between NCs tested at differ-
ent DIAN sites, χ2 (14) = 27.72, p = 0.015, and on different 
scanner models, χ2 (8) = 15.88, p = 0.044 (see Supplemen-
tary Figs. 2 and 3). Although these differences were rel-
atively small and limited to only a few specific sites and 
scanners, they violated our assumption that BAG values 
should be centered near 0 in NCs, regardless of the site or 
scanner of acquisition, and had the potential to introduce 
unwanted noise or confound into the brain age signal.

Hence, we harmonized brain-predicted age values 
between sites using ComBat [53]. We included age, sex, 
education, ADAD group, EYO, APOE ε4 status, and 
mutation variant as covariates during harmonization 
to preserve variance in BAG related to these variables 
of interest. Critically, after harmonization with Com-
Bat, there were no significant differences in BAG values 
between sites, χ2 (14) = 11.70, p = 0.63, or scanners, χ2 
(8) = 5.11, p = 0.75 (see Supplementary Figs. 2 and 3).

Statistical analysis
All statistical analyses were conducted in R 4.2.2 (R 
Core Team). Assumptions of normality and homogene-
ity of variance were tested, respectively, by evaluating 
quantile-quantile plots and with Levene’s test. Muta-
tion group differences in demographic and descriptive 
variables between NCs and all MCs were tested with 
Wilcoxon rank sum tests for continuous variables and 
Pearson’s χ2 (for cell counts ≥ 5) or Fisher’s exact test (for 
cell counts < 5) for categorical variables. DBN prediction 
accuracy was evaluated by calculating Pearson’s corre-
lation coefficient (r), coefficient of determination (R2), 
mean absolute error (MAE), and root mean square error 

(RMSE) between predicted age and true chronological 
age in NCs only. Test-retest reliability of MRI measures 
was assessed in a subset of 182 participants who had lon-
gitudinal MRI data available. See Supplementary Table 2 
for a summary of these participants at the baseline visit. 
There was an average of 2.11 years (SD = 1.21) between 
longitudinal scans. Specifically, we used the ‘irr’ package 
to calculate the intraclass correlation coefficient (ICC) 
using a 2-way mixed-effects model based on a single 
measurement and absolute agreement [54].

Mutation group differences in BAG between NCs, 
asymptomatic MCs, and symptomatic MCs were tested 
with an omnibus Kruskal-Wallis rank sum test, and were 
followed up with post hoc Wilcoxon tests using a false dis-
covery rate (FDR) correction for multiple comparisons.

As non-linear trajectories in AD biomarkers have 
been well established in ADAD [18, 47, 55], we modeled 
age-corrected BAG and other MRI measures as a func-
tion of EYO using generalized additive mixed models 
(GAMMs), similar to an approach previously applied in 
both ADAD and Down syndrome [56]. Specifically, we 
used the ‘mgcv’ package to fit GAMMs with a restricted 
maximum likelihood method. GAMMs included spline 
terms for EYO with 4 cubic basis functions to account for 
non-linearity and an interaction term for mutation sta-
tus. GAMMs also included categorical and linear terms 
for covariates, including sex, education, and APOE ε4 
positivity. All GAMMs included a random effect term to 
account for familial relationships between MCs and NCs. 
Simultaneous 83.4% confidence intervals for comparison 
of two groups [57, 58] were derived for GAMM fits using 
a simulation-based method [59] and were used to iden-
tify the earliest points (EYO) of significant differences 
between MCs and NCs. We tested for differences in the 
point of ADAD divergence between different MRI mea-
sures using a bootstrapping analysis in 10,000 randomly 
resampled simulations of the full dataset.

Continuous relationships between BAG and estimates 
of amyloid, pTau, neurodegeneration, and cognition were 
tested using linear mixed effects models (LMEs). LMEs 
included a fixed term for each biomarker of interest and 
a group by biomarker interaction term, as well as covari-
ates, including sex, education, and APOE ε4 positivity, 
and a random effect term for familial relationships. Sig-
nificant group by biomarker interactions were followed-
up with Pearson correlation analyses within specific 
subgroups. As an additional sensitivity analysis to correct 
for skewed distributions in the biomarker values, we also 
repeated the biomarker association analyses after apply-
ing a log transformation. To further characterize the 
complex relationships between cognition and AD pro-
gression, we tested whether BAG mediated associations 
between AD biomarkers and the global cognitive com-
posite, using a non-parametric bootstrap method [60].
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Data & code availability
This study utilized datasets obtained from the DIAN 
Observational Study (Data Freeze 16). The data are 
available to all qualified researchers after appropri-
ate review. Requests for data access may be placed to 
the DIAN Steering Committee (https://dian.wustl.edu/
our-research/for-investigators/dian-observational-
study-investigator-resources/data-request-terms-and-
instructions/). Code used in this study is available at 
https://github.com/peterrmillar/DIANBrainAge.

Results
Sample description & model performance
The final sample included 257 ADAD MCs (74 symptom-
atic, 183 asymptomatic) and 179 NCs from the DIAN 
cohort (see Table  1). Overall, MCs and NCs were well 
matched in age, sex, self-selected race, EYO, APOE gen-
otype, and ADAD mutation variants, but NCs reported 
a greater number of years of education than MCs, 
W = 25,774, p = 0.03 (see Table 1).

The DBN model accurately predicted chronological 
age in the independent DIAN testing set, as evaluated 
in the NC participants (r = 0.82, R2 = 0.50, MAE = 5.98, 
RMSE = 7.49; see Fig.  1C). Although these performance 
metrics are low compared to those observed in the origi-
nal DBN training set (r = 0.98, MAE = 3.70 [20]), we note 
that direct comparison of these metrics is complicated by 
differences in the mean and range of age values between 
the samples (DIAN NC MAge = 37.3, RangeAge = 18–69; 
DBN train MAge = 47.3, RangeAge = 3–95 [20]). Indeed, dif-
ferences in age distributions have been shown to moder-
ate metrics of age prediction performance [52].

In a subset of 182 participants with longitudinal MRI 
data available, both DBN-predicted brain age (ICC = 0.94) 
and BAG (ICC = 0.90) achieved excellent test-retest reli-
ability. BAG values were not normally distributed in 
asymptomatic MCs (see Supplementary Fig. 4) and vari-
ance in BAG differed between groups, Levene’s statistic 
(2, 433) = 10.67, p < 0.001. Hence, non-parametric tests 
were used to test group differences in BAG.

BAG differences in ADAD mutation groups
An omnibus Kruskal-Wallis test identified significant dif-
ferences in BAG between NCs, asymptomatic MCs, and 
symptomatic MCs, χ2 (2) = 86.49, p < 0.001. Follow-up 
Wilcoxon tests indicated that BAG was greater in symp-
tomatic MCs than in NCs (pFDR < 0.001) or asymptomatic 
MCs (pFDR < 0.001), see Fig. 2A & B. BAG did not signifi-
cantly differ between asymptomatic MCs and NCs (pFDR 
= 0.27).

A GAMM identified no evidence of a relationship 
between age-corrected BAG and EYO in NCs, control-
ling for sex, education, and APOE, EDF = 1.89, p = 0.43. 
Mutation status interacted with the spline EYO term, 

indicating a significant nonlinear association between 
BAG and EYO in MCs, EDF = 2.71, p < 0.001. Examina-
tion of overlapping confidence intervals indicated that 
significant differences in BAG between MCs and NCs 
were apparent about 7 years before expected symptom 
onset (-6.94 EYO; see Fig. 2C).

Relationships with amyloid markers
In MCs, greater BAG was associated with greater amy-
loid PET uptake (PIB PET; β = 5.08, p < 0.001, ηp

2 = 0.25). 
As shown in Fig. 3A, amyloid PET was positively corre-
lated with BAG in symptomatic (r = 0.34, p = 0.007) and 
asymptomatic MCs (r = 0.24, p = 0.002).

Greater BAG was also associated with lower CSF amy-
loid β 42/40 (Aβ42/40; β = -97.75, p < 0.001, ηp

2 = 0.09). 
However, this main effect was driven by group differ-
ences in both measures, as there were no associations 
between CSF Aβ42/40 and BAG within either the symp-
tomatic (r = -0.14, p = 0.25) or the asymptomatic MCs (r = 
-0.10, p = 0.19; see Fig. 3B).

Relationships with pTau markers
Greater BAG was associated with higher levels of phos-
phorylated tau-181 (pTau) in CSF (pTau/Aβ40 ratio; 
β = 803.71, p < 0.001, ηp

2 = 0.37) and plasma (β = 2.59, 
p < 0.001, ηp

2 = 0.37). As shown in Fig.  3C and D, mea-
sures of pTau were positively correlated with BAG in 
symptomatic (CSF r = 0.45, p < 0.001; plasma r = 0.53, 
p < 0.001) and asymptomatic MCs (CSF r = 0.30, p < 0.001; 
plasma r = 0.32, p < 0.001).

Relationships with neurodegeneration markers
Greater BAG was associated with higher levels of neu-
rofilament-light-chain (NfL) in CSF (β = 0.01, p < 0.001, 
ηp

2 = 0.30) and plasma (β = 0.97, p < 0.001, ηp
2 = 0.36). As 

shown in Fig. 3E and F, measures of NfL were positively 
correlated with BAG in symptomatic MCs (CSF r = 0.46, 
p < 0.001; plasma r = 0.55, p < 0.001). In asymptomatic 
MCs, BAG was positively correlated with plasma NfL 
(r = 0.17, p = 0.03), but showed a positive trend in relation 
to CSF NfL (CSF r = 0.14, p = 0.09).

There was clear evidence of skewed distributions in the 
amyloid, pTau, and neurodegeneration biomarker values. 
Thus, as a sensitivity analysis, we repeated the associa-
tion analyses after log-transforming each biomarker. As 
shown in Supplementary Fig.  5, interpretations of the 
biomarker association analyses were consistent after 
applying the log-transformation.

Relationships with cognition
In the full sample of MCs and NCs, greater BAG was 
associated with lower scores on a global cognitive com-
posite (β = -6.56, p < 0.001, ηp

2 = 0.19). This main effect 
was further characterized by a group by cognition 

https://dian.wustl.edu/our-research/for-investigators/dian-observational-study-investigator-resources/data-request-terms-and-instructions/
https://dian.wustl.edu/our-research/for-investigators/dian-observational-study-investigator-resources/data-request-terms-and-instructions/
https://dian.wustl.edu/our-research/for-investigators/dian-observational-study-investigator-resources/data-request-terms-and-instructions/
https://dian.wustl.edu/our-research/for-investigators/dian-observational-study-investigator-resources/data-request-terms-and-instructions/
https://github.com/peterrmillar/DIANBrainAge
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interaction (β = -6.16, p = 0.002, ηp
2 = 0.03). As shown in 

Fig. 3G, global cognition was most negatively correlated 
with BAG in symptomatic MCs (r = -0.61, p < 0.001); 
weaker negative correlations were also observed in 
asymptomatic MCs (r = -0.25, p < 0.001) and NCs (r = 
-0.21, p = 0.004). BAG partially mediated associations 

between cognition and all AD biomarkers, except a trend 
for plasma pTau-181 and no mediation for plasma NfL, 
see Supplementary Table 3 and Supplementary Fig. 6.

In MCs, greater BAG was also associated with greater 
cognitive impairment, as measured with the Clinical 
Dementia Rating® Sum-of-Boxes (CDR®-SB; β = 2.92, 

Fig. 2 Brain age estimates as a function of ADAD mutation status and progression. (A) Scatterplot of DBN-predicted brain age (after harmonizing across 
scanner and site differences) as a function of true chronological age. Lines and shaded regions reflect regression fits and confidence intervals derived from 
a linear regression model. Dashed line reflects perfect age prediction. (B) Violin plot of brain age gap (BAG) after correcting for chronological age. Dashed 
line reflects perfect age prediction. P values are derived from Wilcoxon tests using a false discovery rate (FDR) correction. (C) Scatterplot of age-corrected 
BAG as a function of EYO. Curves and shaded regions reflect regression fits derived from a generalized additive mixed model (GAMM) and simulation-
based [59] simultaneous 83.4% confidence intervals for comparison of two groups [57, 58]. Horizontal dashed line reflects perfect age prediction. Vertical 
dashed line reflects EYO of 0. Vertical solid line reflects the earliest EYO at which MCs significantly differed from NCs, based on the simultaneous confi-
dence intervals. Axis labels and outlier points have been censored to prevent unblinding of participant mutation-carrier status
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Fig. 3 Brain age associations with amyloid biomarkers (A & B), pTau biomarkers (C & D), neurodegeneration biomarkers (E & F), and cognition (G & H). 
Solid colored lines and shaded regions reflect regression fits and confidence intervals derived from a linear regression model for specific groups. Dashed 
black lines and grey regions reflect linear regression fits in the full sample. Dotted horizontal lines reflect perfect age prediction. Dotted vertical lines 
reflect positivity thresholds for PIB PET and CSF Aβ42/40. Pearson’s correlation coefficient is reported for each specific group
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p < 0.001, ηp
2 = 0.38). As shown in Fig.  3H, CDR-SB was 

positively correlated with BAG in symptomatic MCs 
(r = 0.61, p < 0.001). Asymptomatic MCs are included for 
visualization of the full range, but were not analyzed sep-
arately, due to low variance in score.

Comparison to other MRI measures
We examined the points of divergence between MCs and 
NCs in other measures derived from the same structural 
MRI scans as the BAG prediction. An estimate of cortical 
thickness in AD-specific signature regions (ICC = 0.90), 
precuneus thickness (ICC = 0.91), and hippocampus vol-
ume (ICC = 0.92), all achieved excellent test-retest reli-
ability, similar to DBN-predicted brain age (ICC = 0.94) 
and BAG (ICC = 0.90).

MCs diverged from NCs before expected symptom 
onset for the cortical signature (-6.82 EYO, Fig.  4A), 
precuneus thickness (-6.65 EYO, Fig.  4B), and hippo-
campus volume (-5.04 EYO, Fig. 4C). We compared the 
EYO of ADAD divergence between these four MRI mea-
sures with a bootstrapping analysis in 10,000 randomly 

resampled simulations of the full dataset. Divergence 
between MCs and NCs occurred significantly before 
EYO 0 in all MRI measures (Fig.  4D). In most simula-
tions, the earliest EYO of divergence tended to appear in 
BAG (median [95% CI] = -6.64 [-9.61, -3.22]). However, 
this difference was not significantly different from the 
EYOs of divergence observed for the cortical signature 
(-5.67 [-8.83, -2.63], p = 0.36), precuneus thickness (-5.36 
[-8.83, -1.83], p = 0.27), or hippocampus volume (-4.29 
[-7.79, -1.00], p = 0.16).

ADAD pathogenic variants
Given the low number of participants with mutations in 
PSEN2, we limited our analyses of mutation variants to 
carriers of mutations in APP or PSEN1, which was fur-
ther split between PSEN1 mutations before versus after 
codon 200. A GAMM in MCs identified a nonlinear rela-
tionship between age-corrected BAG and EYO in APP 
mutation carriers, controlling for sex, education, and 
APOE, EDF = 2.68, p < 0.001. There was a nonlinear trend, 
such that BAG tended to be greater in carriers of PSEN1 

Fig. 4 ADAD mutation differences in MRI measures over the course of disease progression. Scatterplots of cortical signature thickness (A), precuneus 
thickness (B), and hippocampus volume (C), as a function of EYO. Curves and shaded regions reflect regression fits derived from generalized additive 
mixed models (GAMMs) and simulation-based simultaneous 83.4% confidence intervals for comparison of two groups. Vertical dashed lines reflect EYO 
of 0. Vertical solid lines reflect the earliest EYOs at which MCs significantly differed from NCs. Axis labels and outlier points have been censored to prevent 
unblinding of participant mutation-carrier status. D. Violin plot of the earliest EYOs at which MCs significantly differed from NCs in the four MRI measures 
in 10,000 bootstrapped simulations
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mutations before codon 200 after EYO 0, EDF = 2.59, 
p = 0.06, but not in carriers of PSEN1 mutations after 
codon 200, EDF = 1.00, p = 0.17 (see Fig. 5A).

APOE
GAMM analyses also identified an interaction between 
mutation status and APOE ε4 positivity, β = 3.18, 
p = 0.008. As shown in Fig.  5B, there was a trend, such 
that BAG tended to be greater in ε4 + than ε4- MCs, 
p = 0.06, but did not differ between ε4 + and ε4- NCs, 
p = 0.62. APOE ε4 positivity did not interact with EYO in 
MCs, EDF = 1.00, p = 0.43, indicating that this trend was 
relatively consistent over the course of ADAD progres-
sion (see Supplementary Fig. 7).

Sex differences
BAG was about 3 years greater in male than female par-
ticipants, β = -3.15, p < 0.001. As shown in Fig.  5C, this 
sex difference was consistent in both NCs, p = 0.012, and 

MCs, p = 0.002. Sex did not interact with EYO in MCs, 
EDF = 1.06, p = 0.56, indicating that this main effect was 
relatively consistent over the course of ADAD progres-
sion (see Supplementary Fig. 7).

Education
Finally, years of education were inversely associated with 
BAG, β = -0.38, p = 0.008. As shown in Fig. 5D, this main 
effect was consistent in both NCs, r = -0.18, p = 0.02, and 
MCs, r = -0.19, p = 0.002.

Discussion
We applied a convolutional neural network that was 
previously trained to predict age from minimally-pro-
cessed, whole-brain structural MRI scans to the unique 
DIAN cohort in order to evaluate brain age in the con-
text of ADAD. This model accurately predicted age in the 
independent NCs and detected advanced brain aging in 
ADAD MCs, beginning almost 7 years before expected 

Fig. 5 Heterogeneity in brain age gap in relation to mutation variants in MCs only (A), as well as APOE genotype (B), sex (C), and education (D) in the full 
sample
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symptom onset. Brain age estimates associated with 
fluid-based AD biomarkers, particularly pTau and NfL, 
as well as cognition, and followed a similar trajectory to 
other MRI-based markers that require more involved 
manual preprocessing. Finally, brain age estimates 
identified heterogeneity between carriers of different 
ADAD mutation variants, and in relation to sex, educa-
tion, and global cognition in both mutation carriers and 
non-carriers.

Brain aging in ADAD
Structural brain age estimates were elevated by 13.4 years 
in symptomatic ADAD mutation-carriers, compared to 
non-carriers (Cohen’s d [95% CI] = 1.72 [1.41, 2.03]). The 
ADAD group difference is quite large, compared to prior 
studies of structural brain aging in sLOAD, which typi-
cally report group differences of 5–10 years using differ-
ent brain age models [6, 7]. The original DeepBrainNet 
study also reported comparably smaller effect sizes for 
sLOAD (d = 1.26 [1.04, 1.48]) and MCI (d = 0.62 [0.42, 
0.82]). Additionally, we also find a similar effect size to 
MCI when applying DeepBrainNet to an independent 
sLOAD sample from the Knight ADRC, including 292 
cognitively unimpaired and 183 cognitively impaired 
older adults (d = 0.64 [0.45, 0.83], see Supplementary 
Table 4).

Differences in the magnitude of brain age elevation 
between AD forms may reflect differences in the spatial 
distribution of AD-related atrophy, which tends to be 
more pronounced in cortical and parietal areas in ADAD 
[48]. This pattern may “appear older” to brain age models 
than the medial temporal and limbic patterns of atrophy 
observed in typical sLOAD. However, prior evaluations 
of MRI feature importance suggest that DBN predictions 
of age are most strongly related to ventricular and sub-
cortical, as opposed to cortical, regions [20, 31]. Alter-
natively, the stronger pattern of advanced brain age in 
ADAD compared to sLOAD may be a consequence of 
differences in the magnitude, rather than spatial pat-
tern, of structural differences between the two AD forms. 
Indeed, prior studies have demonstrated that ADAD 
participants exhibit more pronounced cross-sectional 
differences in cortical thickness [48] and faster rates of 
longitudinal hippocampal volume loss [61], compared 
to sLOAD. Finally, it is also possible that differences in 
brain age elevation between the two AD forms might be 
driven by non-linear trajectories of age-related atrophy in 
the normative model. For instance, a comparable magni-
tude of AD-related atrophy might correspond to a larger 
deviation from the normative aging model in the younger 
ADAD cohort (mean age = 46.3, SD = 8.7) than it would 
in older sLOAD cohorts (mean ages around 75 in prior 
brain age studies [6, 7]).

This finding extends recent descriptions of advanced 
functional connectivity-based brain aging in ADAD, 
measured using resting-state fMRI measures of net-
work organization [19]. In contrast to the network-based 
approach, the structural brain age model achieves better 
age prediction accuracy, follows a clearer trajectory over 
ADAD progression, and demonstrates stronger associa-
tions with AD biomarkers. These differences are consis-
tent with observations in sLOAD, in which brain age 
models using structural MRI achieve greater prediction 
accuracy, as well as stronger associations with AD pro-
gression and biomarkers, than models using functional 
connectivity [15].

Most prior studies of structural brain age in sLOAD 
have only reported elevated brain age [6, 7] or associa-
tions between brain age and AD biomarkers [12, 13] in 
the symptomatic stages of AD, MCI, or subjective cog-
nitive decline, but not in the preclinical stage [14–16]. 
Here we note that structural brain age estimates begin 
to diverge in asymptomatic ADAD MCs almost 7 years 
before expected symptom onset. We also note signifi-
cant associations between brain age and AD biomarkers, 
including amyloid PET and pTau, even in asymptomatic 
MCs. Thus, structural brain age may be more sensitive to 
pathological changes in preclinical ADAD than in pre-
clinical sLOAD. This pattern might suggest that ADAD 
is marked by a more severe and/or earlier stage of pre-
clinical neurodegeneration than sLOAD. It is also pos-
sible that this effect reflects a greater level of resilience to 
accumulating AD neuropathology in the younger ADAD 
sample, who may have greater cognitive reserve [62] and 
are less likely to experience concurrent age-related neu-
ropathology [17, 18]. Alternatively, this finding may high-
light the advantage of staging ADAD participants using 
EYO over preclinical staging in sLOAD, which is typically 
determined by a dichotomized indication of amyloid pos-
itivity. Thus, advanced brain aging in preclinical sLOAD 
might be revealed with more precise staging.

BAG was strongly associated with NfL (both CSF and 
plasma) and only moderately associated with amyloid-β 
(PET, but not CSF). These observations suggest that 
MRI estimates of brain age, like NfL, capture a neuro-
degeneration-related signal in ADAD [38, 63]. However, 
the strong associations between BAG and pTau (in CSF 
and plasma) are somewhat surprising. A growing body 
of evidence indicates that pTau (particularly pTau-181 
used here) is primarily associated with earlier-stages of 
amyloid pathology, rather than later tau aggregation or 
neurodegeneration [64, 65]. Our results suggest that the 
relationships between brain aging, amyloid-β, and pTau 
may be more complex than expected, at least in the con-
text of ADAD.
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Comparison of MRI measures
Brain age estimates from DBN achieved excellent test-
retest reliability that was comparable to other established 
MRI biomarkers of AD (i.e., hippocampus volume, pre-
cuneus thickness, and cortical thickness in AD signature 
regions). This finding is consistent with recent observa-
tions that DBN shows high reliability in other samples 
[66, 67], but see [68]. Further, deviations between MCs 
and NCs emerged at a similar stage of ADAD progres-
sion for all MRI markers (i.e., ~ 5–7 years before expected 
symptom onset). Thus, elevated structural brain age is 
likely driven by ADAD-related neurodegeneration in the 
presymptomatic and early symptomatic stages of the dis-
ease, similar to other MRI-based measures.

Structural brain age estimates (particularly from DBN) 
possess additional unique qualities that convey com-
petitive advantage compared to other MRI measures. 
First, DBN can be estimated quickly and automatically 
using a publicly-available Python script, which requires 
less intensive preprocessing and quality control [20]. In 
contrast, the other MRI biomarkers tested in this study 
require multiple stages of preprocessing and manual 
quality control in FreeSurfer [18, 47, 48], potentially 
limiting practical implementation. Second, BAG esti-
mates offer a unique interpretability in terms of “years” 
or “brain age”, which may be more accessible to patients 
or lay public than typical MRI measurement units of 
regional volume or thickness. Third, brain age predic-
tions were also associated with cognitive performance, 
years of education, and sex differences in non-carriers 
(see below for further discussion). Indeed, other stud-
ies have also demonstrated that brain age estimates are 
sensitive to a wide range of neurological, psychiatric, and 
general health conditions [6, 7]. Thus, structural brain 
age might be useful more broadly as a general screening 
measure of brain health, disease risk, or resilience, com-
pared to other MRI features, which may be more specific 
to AD-related pathology.

Heterogeneity in brain aging
We found that elevated structural brain age was not 
consistently observed in all ADAD mutation variants. 
Elevated brain age was most strongly observed in par-
ticipants carrying a PSEN1 mutation before codon 200, 
followed by PSEN1 mutation after codon 200, then APP 
mutation-carriers. Although this result is limited by 
relatively small sample sizes, it is consistent with prior 
demonstrations of heterogeneity in clinical presentation 
between ADAD pathogenic variants. While carriers of 
PSEN1 mutations after codon 200 exhibit greater cere-
bral amyloid angiopathy [21] and white matter hyper-
intensities [22], carriers of mutations before codon 200 
exhibit a younger age of onset [23] and greater amyloid 
burden [24]. Future studies should examine heterogeneity 

between ADAD mutation variants in larger samples to 
understand how differing pathological presentations 
influence cognitive and functional outcomes.

We also found that structural brain age estimates were 
significantly younger in female than male participants, 
including both ADAD mutation carriers and non-carri-
ers. This finding is consistent with prior observations of 
sex differences in brain age estimates using metabolic 
PET [26, 27], structural MRI [14, 25, 29], and localized 
to prefrontal regions [28]. This result may also be infor-
mative on potential sex differences in resilience to AD 
pathology. Female participants have been shown to out-
perform males in cognitive tests, despite equivalent 
levels of AD pathology in sLOAD [69–71], Down syn-
drome [72], and ADAD [73], including the same DIAN 
cohort [74]. Our finding of younger-appearing brain age 
in an overlapping sample of DIAN participants suggests 
that this measure might capture sex differences in brain 
reserve [62]. These sex differences are likely multifacto-
rial, potentially driven by interactive hormonal, genetic, 
and/or environmental influences [75], and may emerge 
earlier in development and remain through adulthood 
[26]. However, the main effect of sex is also somewhat 
surprising, considering a lack of sex differences in the 
original report on the development of the DBN model 
[20], as well as in a recent application of DBN in samples 
of healthy aging and sLOAD participants [66].

Lower estimates of structural brain age were associated 
with greater educational duration in both NCs and MCs. 
The interpretation of years of education in the DIAN 
cohort is complicated by a lack of international standard-
ization for quantification. Yet this finding is consistent 
with prior observations that reduced brain age is associ-
ated with greater educational duration [30] and achieve-
ment [31] in US samples, granted these effects were 
noted to be small and did not survive correction for mul-
tiple comparisons [31]. If years of education is consid-
ered as a proxy of socioeconomic exposures, this result 
also supports the proposal that brain age is sensitive to 
other lifetime exposures and influences, including child-
hood IQ [76] and birth weight [77]. Notably, the present 
results also suggest that this association is consistent in 
ADAD, as well as control samples. Lower brain age esti-
mates were also associated with better cognitive perfor-
mance in NCs. Some prior studies have also reported 
associations between brain age and cognitive measures in 
healthy adult samples [14, 76, 78–80], but like education, 
these effects are small and not consistently observed [15]. 
Together, these findings suggest that brain age likely cap-
tures aspects of resilience or brain health more broadly, 
albeit with a small effect size, in addition to pathological 
signal.

Prior studies have demonstrated APOE-related differ-
ences in longitudinal, but not cross-sectional, brain age 
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estimates [32]. Nor did APOE moderate brain age esti-
mates in a prior study of Down syndrome [81], another 
genetic form of AD. In the present results, we observed 
an interactive effect, such that ε4 positivity trended 
towards greater brain age in ADAD mutation carriers, 
but not in non-carriers. Taken together, these findings 
suggest that the effects of APOE genotype on brain age 
estimates are relatively small and inconsistently observed.

Limitations & future directions
Structural MRI scans from DIAN were collected over 
multiple international sites including a range of scanner 
models, which may introduce confounding noise into 
MRI features. We attempted to limit the influence of 
non-biological sources of variance by processing all MRI 
data through a common pipeline and quality assessment 
procedures, as well as statistically harmonizing brain age 
predictions across sites and scanners with ComBat [53]. 
Additionally, the sample size for analyses with other AD 
biomarkers differed across each measure, and these anal-
yses did not include more recent measures of tau, includ-
ing tau PET, microtubule-binding regions, or additional 
tau phosphorylation sites. Future analyses should repli-
cate these results in more complete biomarker samples to 
more thoroughly evaluate associations with established 
AD biomarkers. Finally, the DIAN sample is mostly 
non-Hispanic white and highly educated. Future studies 
would benefit from models that are trained and tested on 
more diverse samples to ensure broad generalizability.

Conclusions
These results present clear evidence of advanced struc-
tural brain aging in the late presymptomatic and early 
symptomatic stages of ADAD, likely reflecting neurode-
generative processes. Although atrophy can indeed be 
detected using other MRI indicators, brain age estimates 
offer comparative advantages including ease of process-
ing and simplicity of interpretation, while maintaining 
comparable reliability and sensitivity to ADAD. Brain age 
estimates are likely also sensitive to additional sources 
of disease risk, resilience, and general health, including 
global cognition, education, and sex differences. These 
results build upon prior evidence suggesting that brain 
age models may offer potential utility as a general screen-
ing measure of brain health.
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