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Abstract 

Parkinson’s Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD 
is loss of dopaminergic neurons and the presence of aggregated α‑synuclein, primarily in the substantia nigra pars 
compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell 
types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post‑mortem 
SNpc obtained from 15 sporadic Parkinson’s Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, 
representing all major cell types of the brain, allowing us to obtain a transcriptome‑level characterization of these cell 
types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide 
insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells 
in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant 
depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, 
as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopula‑
tions identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 
& SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved 
in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations 
and cell type‑specific gene sets.
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Introduction
Parkinson’s disease (PD) is a progressive neurodegenera-
tive disorder, predominantly affecting the elderly. Clini-
cally, PD is characterized by resting tremors, slowness of 
movement, rigidity, and postural instability [1]. Degen-
eration of dopaminergic (DA) neurons and the subse-
quent loss of the neurotransmitter dopamine within the 
substantia nigra pars compacta (SNpc) underlies the 
pathophysiology of the motor dysfunction characteristic 
of the disease. In the surviving neurons, accumulation of 
so-called Lewy bodies (protein aggregates composed pri-
marily of alpha-synuclein) is observed and is recognized 
as a primary (anatomical) hallmark of PD [1, 2].

However, our understanding of the molecular mecha-
nisms underlying PD pathology remains poor. In this 
respect, with the application of high-throughput single 
cell/nucleus RNA sequencing (RNA-seq) technologies, 
we are beginning to tease apart the cell type-specific 
responses underlying PD [3]. In recent years, RNA-seq 
has been applied to various human models of PD, using 
both in  vitro systems and ex  vivo post-mortem human 
brain tissues [4–6]. While the latter approach has advan-
tages in fully capturing the complexity of human tissue 
and its response to disease, obtaining a high-quality post-
mortem dataset has proved problematic, due to the scar-
city of human brain tissue, and RNA-degradation leading 
to poor RNA quality. This is especially true for tyrosine 
hydroxylase (TH) positive dopaminergic neurons in PD 
samples, which are more vulnerable to degeneration. Pre-
vious studies by Agarwal et al., 2020 [7] and Smajić et al., 
2022 [6], using substantia nigra (SN) samples or mid-
brain samples respectively, captured less than 200 dopa-
minergic (DA) neurons. In contrast, Kamath et al., 2022 
[8] specifically enriched for dopaminergic neurons by 
employing a NR4A2 antibody-based enrichment strategy, 
capturing ~ 22,000 DA neurons from human substantia 
nigra. While Kamath and colleagues took this approach 
to focus on the vulnerability of DA neurons in PD, other 

cell types were also captured (although at much lower 
levels) and were not included in further analyses.

In this study, we present a unique large-scale single 
nucleus RNA-seq dataset of 29 post-mortem human 
brains (14 Controls and 15 PD), specifically targeting 
SNpc, as it is the region most vulnerable to PD pathol-
ogy. The dataset includes the transcriptomes of ∼84K 
high-quality nuclei at > 40% sequencing saturation rate 
and ∼40K average read depth. Our analyses were able 
to detect all the major cell types, including a large pop-
ulation of DA neurons (more than 2,000 nuclei) derived 
from SNpc. In addition to neurons, we also captured 
large populations of TH enriched glial cells. To our 
knowledge, this aspect of glial heterogeneity in the SNpc 
has not been discussed in previous studies. We observed 
a significant depletion of both TH enriched neuron and 
glial populations in PD, and link this to the upregulation 
of genes associated with the unfolded protein response 
(UPR) and oxidative stress. Our results point to possible 
shared molecular mechanisms of neuronal and glial cells 
that are impacted by PD pathology.

Results
Single nucleus RNA‑seq reveals cell type heterogeneity 
in human SNpc
We sampled SNpc from post-mortem human brains 
of 15 sporadic Parkinson’s disease (PD) patients and 
14 Control individuals (see Supplementary Table  1 for 
full pathology reports). Using a 10X Genomics Chro-
mium platform, we performed single nucleus RNA-seq 
(snRNA-seq) on more than 80,000 high-quality nuclei 
from these 29 samples (Fig. 1A; Supplementary Table 2). 
UMAP dimensionality reduction on the merged PD and 
Control datasets showed that clustering was driven by 
inter-sample variability, as well as cell type identity. To 
control for inter-sample variability, we used an anchor-
based integration approach to allow representative 
clustering and cell type identification. Louvain-based 

(See figure on next page.)
Fig. 1 Cell types in human substantia nigra parscompacta and their susceptibility to PD. A Schematic of the experimental design. Nuclei were 
isolated from sections of frozen post‑mortem brain containing substantia nigra pars compacta (SNpc) from Control (14) and PD (15) donors. 
Sequencing libraries were then prepared using the 10X Genomics Chromium platform and sent for standard Illumina sequencing. Spatial 
transcriptomics was performed on slices of fresh frozen SNpc tissue; samples were taken from 3 Control donors and 3 sporadic PD patients, selected 
from the cohort of 29 brains used for sequencing (Supplementary Table 1). B UMAP‑based clustering of 83,484 high quality nuclei obtained 
from 15 PD and 14 Control samples. Clusters representing neurons, oligodendrocytes (Oligo), astrocytes (Astro), microglia (Micro), oligodendrocyte 
progenitor cells (OPC), T cells and vascular cells (VC) were identified, based on the expression of known marker genes (see also Supplementary 
Fig. 1A). C UMAP showing how nuclei from PD and Control samples distribute across the different clusters. D Expression of cell markers used 
to identify higher level cell types in SNpc. E A pie chart showing the percentage of major cell types in our SNpc dataset. F Bar plots showing 
the relative number of nuclei per cluster originating from Control or PD samples against their predicted abundance (based on 47.34% of all nuclei 
originating from PD samples: dashed line). A Binomial test was performed to see if there is any significant divergence of cell proportions from this 
value, * p‑value < 0.05, ** p‑value < 0.0005, *** p‑value < 0.00005. G Independent clustering of the spatial transcriptomics dataset. H Confirmation 
of cell type marker expression using spatial transcriptomics
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clustering identified 25 populations (Fig.  1B). Both PD 
and Control cells were found to be present within all cell 
clusters (Fig. 1C). We utilized a panel of markers to assign 
nuclei to various central nervous system (CNS) cell types, 

including neurons (SYT1 & SNAP25), astrocytes (AQP4 
& SLC1A3), oligodendrocytes (MOBP & MBP), microglia 
(CD74 & ITGAM), vascular cells (VC) (FLT1 & DCN), 
oligodendrocyte progenitor cells (OPCs) (VCAN & 

Fig. 1 (See legend on previous page.)
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PDGFRA) and T cells (THEMIS & CD2) (Fig.  1D; Sup-
plementary Fig.  1A). We found that all the major cell 
types were detectable in multiple Control and PD sam-
ples (Supplementary Fig.  1B, Supplementary Table  2): 
41.96% of all sampled cells were oligodendrocytes, with 
astrocytes and microglia representing 24.81% and 15.57% 
of the sample, respectively. We found that neurons made 
up 7.42% of cells, with OPCs at 7.96% and the remain-
ing cell types representing 2.28% of the total cell popula-
tion (Fig. 1E; Supplementary Table 3). These levels of cell 
recovery are consistent with other studies [6, 7], where 
cells were effectively captured at random from a single 
cell suspension and reinforce our belief that our dataset 
recapitulates the full range of cellular heterogeneity that 
can be captured using nuclei isolation and the 10X Chro-
mium system (Supplementary Fig. 2).

As expected, evaluation of relative cell proportions 
showed that neurons are heavily depleted in PD sam-
ples, whereas the relative proportions of glial and T 
cells appear to increase (Fig.  1F). To confirm the pres-
ence of these cell types, we performed multiplexed spa-
tial transcriptomics (Molecular Cartography by Resolve 
Biosciences), using a panel of cell type-specific markers 
(Supplementary Table 4). Clustering analysis of this data 
confirmed the presence of all the cell types detected by 
snRNA-seq (Fig. 1G, H).

Neuronal subpopulations in aged human SNpc and their 
response in sporadic PD
To investigate PD-affected neuronal cell types, we re-
clustered the neuronal population, revealing 6 distinct 
subpopulations, characterized by unique gene expres-
sion patterns, which we termed Neurons0—Neurons5 
(Fig. 2A). All subpopulations were present in multiple PD 
and Control samples (Fig.  2B, Supplementary Table  2). 
Importantly, however, the numbers of cells in Neurons0 
and Neurons3 were significantly lower in PD samples 
compared to Controls, whereas Neurons2 and Neu-
rons4 were significantly over-represented in PD samples 
(Fig. 2C). To characterize these neuronal populations, we 
performed pathway over-representation analysis on the 
full list of marker genes for the various subpopulations 
(significantly enriched genes with ln-fold change > 0.25 
and adjusted p-value < 0.05; Supplementary Table 5).

We found Neurons0 to be characterized by key mark-
ers associated with dopaminergic neurons, including 
TH, SLC6A3, SNCA, and ALDH1A1 (Fig. 2D), highlight-
ing that the primary subpopulation lost in PD samples is 
DA neurons. We also observed the expression of other 
dopaminergic markers, such as SLC18A2 and KCNJ6 
(Fig. 2D). Paternally expressed gene 10 (PEG10), a DNA-
binding protein coding gene, was another notable highly 
expressed cell marker [9] (Fig.  2D). We also observed 

high expression of AGTR1 in this population (Supple-
mentary Fig.  3), which has previously been linked to a 
subpopulation of DA neurons highly vulnerable to PD 
[8]. Pathway analysis of subpopulation marker genes 
showed over-representation of key cellular processes 
known to be implicated in PD pathology, such as energy 
production (e.g., ATP1B1, ENO1 and ENO2), choles-
terol metabolism (e.g., DHCR24, CYB5R3 and HDLBP), 
iron transport (e.g., FTL, FTH1 and SLC22A17), oxida-
tive stress (e.g., CHCHD10, CLU and SOD1) and tran-
scripts linked to the UPR (including chaperones, e.g., 
HSPA8 and HSP90AA1) (Fig.  2D, E; Supplementary 
Fig.  3; Supplementary Table  6). Next, we examined dif-
ferentially expressed genes (DEG) between PD and Con-
trol samples for this population of DA neurons and found 
20 significant DEGs (Fig.  2F; Supplementary Table  7). 
Pathway analysis on up- or downregulated genes (PD vs 
Control) within this population suggests perturbations 
in sugar/glucose metabolism, due to the downregulation 
of O-GlcNAcase (OGA) and carbohydrate sulfotrans-
ferase 1 (CHST1), which is reported to be an early event 
in sporadic PD [10] (Fig. 2G, H; Supplementary Table 8). 
KBTBD6, involved in proteosome-mediated ubiquitin-
dependent protein catabolic processes, was also down-
regulated, while dysregulation of the genes encoding 
Ras-related RAB6B, RAB8B and Component of Oligo-
meric Golgi Complex 4 (COG4) is consistent with dys-
function of Golgi to endoplasmic reticulum (ER) vesicle 
trafficking (Fig.  2G, H; Supplementary Table  8). These 
results are in line with recent reports of disrupted vesicle 
trafficking in PD, caused by the accumulation of alpha-
synuclein, and the potential of RAB GTPases to rescue 
neurons from death [11–13].

Neurons3 represents a second neuronal population, 
which was found to be significantly depleted in PD sam-
ples. We found that cells in this population were char-
acterized by the expression of key GABAergic markers, 
such as GAD1, GAD2, GABRA1 and GABRB2, indicat-
ing a putative inhibitory identity (Fig.  2D, Supplemen-
tary Table  5). This population also expressed members 
of the heat shock protein family (HSPA and HSP90), 
as well as genes associated with dopamine secretion/
metabolic processes/transport (e.g., SYT11, KCNA2 
and ABAT) (Supplementary Table  6). In addition, Neu-
rons3 and Neurons0 both express markers associated 
with the UPR, oxidative stress, energy production and 
iron transport (Fig. 2E; Supplementary Table 6), suggest-
ing underlying mechanisms for the shared vulnerability 
to cell death in PD. Differential gene expression analysis 
between PD and Control samples for Neurons3 showed 
upregulation of NEAT1 and CA2 (Fig. 2F; Supplementary 
Table 7). NEAT1 encodes a long non-coding RNA previ-
ously shown to be upregulated in PD [14]. Elevated CA2 
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Fig. 2 Neuronal subpopulations found in human substantia nigra pars compacta and their response to PD. A Re‑clustering of neurons identified 
in Fig. 1B. B Proportion of nuclei coming from Control (blue) or PD (red) donors per neuronal type reported in Fig. 2A. Different shades of blue 
and red represent different donors. C A comparison of nuclei number (expressed as a percentage) deriving from PD or Control brains against their 
predicted abundance (based on 27.96% of all nuclei originating from PD samples: dashed line). A Binomial test was performed to see if there 
is any significant divergence of cell proportions from this value, * p‑value < 0.05, ** p‑value < 0.0005, *** p‑value < 0.00005. D Selected marker 
genes for neuronal populations reported in Fig. 2A. The full list of marker genes is reported in Supplementary Table 5. E A summary of pathway 
over‑representation analysis using the marker genes defining neuronal populations 0–5. Two Sankey diagrams are shown which illustrate 
the relationships between the various neuronal subpopulations and relevant cellular pathways identified (listed in Supplementary Table 6 
in the column labeled "Group"). The thickness of the grey interconnecting lines is proportional to the number of individual pathways falling 
within a particular functional group that is significantly over‑represented among the markers of a given cellular subpopulation, normalized 
to the number of pathways displayed per Sankey plot. F A stripe chart reporting the number of significantly up‑ or downregulated genes in nuclei 
originating from PD donors (compared to Controls) per neuronal subpopulation, found by fitting a linear mixed model. Red dots correspond 
to genes that are up‑ (coefficient > 0) or downregulated (coefficient < 0), with an adjusted p‑value < 0.1 (ANOVA test with Benjamini–Hochberg 
correction). The full list of the up‑ and downregulated genes is reported in Supplementary Table 7. G A volcano plot reporting genes up‑ (cyan) 
or downregulated (orange) in nuclei originating from PD donors (compared to Controls) and assigned to subpopulation Neurons0. H Pathways 
over‑represented by up‑ or downregulated genes in nuclei originating from PD donors (compared to Controls) and assigned to subpopulation 
Neurons0, as reported in Supplementary Table 8
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levels in mitochondria have been associated with aging 
and neurodegeneration [15, 16].

We also explored the gene expression profiles of Neu-
rons2 and Neurons4, which were both over-represented 
in PD samples (Fig.  2C). We observed the strongest 
expression of SLC44A1, the gene encoding the choline 
transporter-like protein 1, in Neurons4, whereas Neu-
rons2 had the highest expression of serotonin 5-HT-2C 
receptor (HTR2C) (Fig. 2D). In contrast to PD-depleted 
dopaminergic Neurons0 and GABAergic Neurons3, 
the markers of the remaining neuronal populations do 
not show over-representation of processes related to 
the UPR, but do show enrichment in GTPase activ-
ity (Fig.  2E). Calmodulin-dependent protein kinase II 
gamma (CAMK2G) was differentially upregulated in 
PD Neurons2, while we found ANAPC16, HP1BP3 and 
SEPT8 differentially upregulated in PD Neurons4, com-
pared to Controls (Fig. 2F; Supplementary Table 7).

Astrocyte subpopulations in aged human SNpc and their 
responses in sporadic PD
Extracting and re-clustering the astrocytes revealed 6 
subpopulations, which we termed Astrocytes0—Astro-
cytes5 (Fig. 3A). All subpopulations were represented in 
multiple PD and Control samples (Fig.  3B, Supplemen-
tary Table  2). However, the numbers of cells in Astro-
cytes1, Astrocytes3, Astrocytes4 and Astrocytes5 were 
significantly over-represented in PD samples, while the 
number of cells in Astrocytes2 was significantly lower in 
PD samples compared to Controls (Fig. 3C).

Marker gene analysis revealed that Astrocytes2 showed 
enrichment for key genes linked to dopamine metabo-
lism, including SLC6A3, SNCA, and importantly TH, 
suggesting that the vulnerability of TH enriched neurons 

in PD may be extended to other cell types (Fig.  3D, E). 
We also observed that the Astrocytes2 subpopula-
tion expressed transcripts involved in ubiquitination 
(e.g., UBB and UBC), as well as transcripts associated 
with endocytic vesicle trafficking, protein folding (e.g., 
HSP90AA1, HSP90AB1 and HSPA8), and JUN & FOS 
signaling, suggesting activation of apoptosis (Fig.  3D, E; 
Supplementary Fig. 4; Supplementary Tables 5, 6).

We observed that the Astrocytes3 subpopulation was 
mostly found in patients diagnosed with PD, suggesting 
that this astrocyte state may be PD-specific (Fig. 3C). Path-
way over-representation analysis, using the specific marker 
genes identified for this subpopulation, identified pathways 
predominantly associated with the metabolism of fatty 
acids (e.g., PTGES3, ABHD3, ADIPOR2 and ABHD2) and 
the UPR (e.g., BAG3, SERPINH1, DNAJB1 and HSPB1) 
(Fig. 3D, E; Supplementary Table 6), suggesting a reactive-
astrocyte identity [17]. Differential gene expression analy-
sis between PD and Controls showed downregulation of 
genes involved in the serine-threonine signaling cascade 
(PPP2R2B and SPRED1), and the upregulation of genes 
associated with the ubiquitin ligase complex (ANAPC16 
and KLHL24) (Fig. 3G, H; Supplementary Tables 7, 8).

Pathway analysis on the cell markers defining Astro-
cytes5 highlighted biological processes including axon 
development, axon ensheathment, development of neu-
ronal projections and synapse organization, suggesting 
that this subpopulation has an active role in neuronal 
maintenance and survival (Supplementary Table  6). In 
PD samples, differential gene expression analysis showed 
downregulation of CYP7B1, a gene involved in lipid 
homeostasis, and upregulation of PTOV1, a gene known 
to promote cell proliferation, in this subpopulation [18] 
(Fig. 3F; Supplementary Table 7).

(See figure on next page.)
Fig. 3 Astrocyte subpopulations found in human substantia nigra pars compacta and their response to PD. A Re‑clustering of astrocytes 
identified in Fig. 1B. B Proportion of nuclei coming from Control (blue) or PD (red) patients per subpopulation reported in Fig. 3A. Different shades 
of blue and red represent different donors. C A comparison of nuclei number (expressed as a percentage) deriving from PD or Control brains 
against their predicted abundance (based on 53.37% of all nuclei originating from PD samples: dashed line). A Binomial test was performed to see 
if there is any significant divergence of cell proportions from this value, * p‑value < 0.05, ** p‑value < 0.0005, *** p‑value < 0.00005. D Selected 
marker genes for astrocyte subpopulations reported in Fig. 3A. The full list of marker genes is reported in Supplementary Table 5. E A summary 
of pathway over‑representation analysis using the marker genes defining astrocyte populations 0–5. Two Sankey diagrams are shown which 
illustrate the relationships between the various astrocyte subpopulations and relevant cellular pathways identified (listed in Supplementary 
Table 6 in the column labeled “Group”). The thickness of the grey interconnecting lines is proportional to the number of individual pathways 
falling within a particular functional group that is significantly over‑represented among the markers of a given cellular subpopulation, normalized 
to the number of pathways displayed per Sankey plot. F A stripe chart reporting the number of significantly up‑ or downregulated genes 
in nuclei originating from PD donors (compared to Controls) per astrocyte subpopulation, found by fitting a linear mixed model. Red dots 
correspond to genes that are up‑ (coefficient > 0) or downregulated (coefficient < 0), with an adjusted p‑value < 0.1 (ANOVA test with Benjamini–
Hochberg correction). The full list of genes up‑ and downregulated in the various astrocyte subpopulations isolated from PD patients is reported 
in Supplementary Table 7. G A volcano plot reporting genes up‑ (cyan) or downregulated (orange) in nuclei originating from PD donors (compared 
to Controls): the astrocyte populations showing the most significant responses (Astrocytes0, Astrocytes3 and Astrocytes4) are shown. H Pathways 
over‑represented by up‑ or downregulated genes in nuclei originating from PD patients (compared to Controls) and assigned to subpopulations 
Astrocytes0, Astrocytes3 and Astrocytes4, as reported in Supplementary Table 8
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The well-known markers of reactive astrocytes, C3 and 
CD44, are more enriched in Astrocytes1, a subpopulation 
likely to represent another reactive astrocyte state [19–
21] (Fig.  3D). Genes involved in glutamate metabolism 

and synapse assembly were also highly expressed in this 
astrocyte population (Fig.  3E; Supplementary Table  6). 
Pathway analysis on the DEGs in Astrocytes1 between 
PD and Control samples indicated the dysregulation of 

Fig. 3 (See legend on previous page.)
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tumor necrosis factor (TNF)-mediated signaling (CCDC3 
and NOL3) in PD (Fig. 3F; Supplementary Table 7).

Astrocytes4 was enriched in PD samples and expressed 
high levels of various metallothionein genes (e.g., MT2A, 
MT1E and MT3) (Fig.  3D). This astrocyte subpopula-
tion also highly expresses GFAP, a canonical marker 
of astrogliosis [22] (Fig.  3D). Astrocytes4 also has the 
highest expression of APOE, MT3 and CLU, which are 
associated with mitochondrial changes, oxidative stress 
and immune response-related processes (Fig.  3D, E; 
Supplementary Fig.  4). At the level of differential gene 
expression between cells obtained from PD and Control 
samples, we found upregulation of T cell activity, lipid 
metabolism and ion transport in PD samples compared 
to Controls, in this subpopulation (Fig. 3H; Supplemen-
tary Table 8).

Microglia subpopulations in aged human SNpc and their 
response in sporadic PD
We next explored the molecular profiles of microglia 
subpopulations affected in sporadic PD. Re-clustering 
analysis of microglia revealed 6 subpopulations, which 
we named Microglia0—Microglia5 (Fig.  4A). All sub-
populations were represented in multiple PD and Control 
samples (Fig. 4B, Supplementary Table 2).

As with astrocytes, we saw that one population, Micro-
glia1, was significantly depleted in samples from patients 
diagnosed with sporadic PD (Fig.  4C). Marker gene 
analysis again revealed that this was the only microglia 
population enriched in markers involved in dopamine 
metabolism, including TH (Fig.  4D, E; Supplemen-
tary Fig.  5; Supplementary Tables  5, 6). Furthermore, 
this population expresses a high number of transcripts 
linked to processes involved in the UPR (e.g., HSP90AA1, 

HSP90AB1 and HSPA8), like we observed for Astro-
cytes2 (Fig.  4D, E). Similarly, Microglia1 was also posi-
tive for markers associated with apoptosis (e.g., FOS and 
ACTG1) (Fig.  4D, E). A high number of differentially 
expressed genes was observed between PD and Control 
samples (Fig.  4F; Supplementary Table  7). Of particular 
interest, Microglia1 shows upregulated expression of 
acetyltransferase activity (KAT2B, ATF2 and MCM3AP) 
in PD, which is known to be involved in inflammatory 
responses in microglia [23] (Fig.  4H; Supplementary 
Table 8).

Among the markers of Microglia2, P2RY12 stands 
out as a P2Y receptor involved in microglial motility 
and migration towards (damaged) cells releasing ATP, 
an initiating event in neuroinflammation [24] (Fig.  4D). 
Furthermore, DOCK8, a neuroinflammation-associated 
gene, was also highly expressed in Microglia2 (Fig. 4D), 
which also expressed ARHGAP family transcripts 
(including ARHGAP22 and ARHGAP15), which are 
known to be linked to alterations in the microglial acti-
vation state upon aging [25, 26]. Together, this suggests 
that Microglia2 may represent a pro-inflammatory subset 
of microglia, central to the neuroinflammatory response 
seen in PD.

Microglia4 was characterized by the high expression of 
APOE and SPP1 (Fig. 4D). Microglia4 is the only subpop-
ulation of microglia that expressed a high level of APOE 
(Fig. 4D). Microglia4 also appears to represent a popula-
tion of reactive microglia, expressing genes involved in 
the complement cascade (e.g., C1QC, C1QB and C1QA), 
the human leukocyte antigen (HLA) system (e.g., HLA-
DRA and HLA-DRB1), the UPR (e.g., HSP90 and HSPA), 
and the oxidative stress response (e.g., HSPA1A, TREM2, 
GSTP1 and HSPB1) (Fig. 4D, E). Microglia2 and Micro-
glia4 do not show significant differential expression of 

Fig. 4 Microglia subpopulations found in human substantia nigra pars compacta and their response to PD. A Re‑clustering of microglia identified 
in Fig. 1B. B Proportion of nuclei coming from Control (blue) and PD (red) patients per subpopulation reported in Fig. 4A. Different shades of blue 
and red represent different donors. C A comparison of nuclei number (expressed as a percentage) deriving from PD or Control brains against their 
predicted abundance (based on 50.19% of all nuclei originating from PD samples: dashed line). A Binomial test was performed to see if there 
is any significant divergence of cell proportions from this value, * p‑value < 0.05, ** p‑value < 0.0005, *** p‑value < 0.00005. D Selected marker 
genes for microglial populations shown in Fig. 4A. The full list of marker genes is reported in Supplementary Table 5. E A summary of pathway 
over‑representation analysis using the marker genes defining microglia populations 0–5. Two Sankey diagrams are shown which illustrate 
the relationships between the various microglia subpopulations and relevant cellular pathways identified (listed in Supplementary Table 6 
in the column labeled “Group”). The thickness of the grey interconnecting lines is proportional to the number of individual pathways falling 
within a particular functional group that is significantly over‑represented among the markers of a given cellular subpopulation, normalized 
to the number of pathways displayed per Sankey plot. F A stripe chart reporting the number of significantly up‑ or downregulated genes 
in nuclei originating from PD donors (compared to Controls) per microglial subpopulation, found by fitting a linear mixed model. Red dots 
correspond to genes that are up‑ (coefficient > 0) or downregulated (coefficient < 0), with an adjusted p‑value < 0.1 (ANOVA test with Benjamini–
Hochberg correction). The full list of genes up‑ or downregulated in the various microglia subpopulations isolated from PD patients is reported 
in Supplementary Table 7. G Volcano plots reporting genes up‑ (cyan) or downregulated (orange) in nuclei originating from PD donors (compared 
to Controls): two microglia populations (Microglia1 and Microglia3) are shown. H Pathways over‑represented by up‑ or downregulated genes 
in nuclei from PD patients (compared to Controls) and assigned to subpopulations Microglia1 and Microglia3, as reported in Supplementary Table 8

(See figure on next page.)
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genes between PD and Control conditions (Fig. 4F; Sup-
plementary Table 7).

Microglia3 was characterized by expression of ABCA1, 
MITF and STARD13 (Fig. 4D). This subpopulation is the 
only microglial subpopulation that expressed high levels 
of SRGAP1, SH3PXD2A and RGL1 (Fig.  4D). Differen-
tial gene expression analysis between PD and Controls 
showed downregulation of genes involved in GTPase 

activity (DOCK1, AGFG1 and ASAP1), and dysregulation 
of ubiquitin activity (PELI1 and CXCR4) (Fig. 4G, H; Sup-
plementary Tables 7, 8).

Oligodendrocyte subpopulations in aged human SNpc 
and their response in sporadic PD
We also performed re-clustering on the oligodendrocyte 
population, revealing 6 subpopulations, which we named 

Fig. 4 (See legend on previous page.)
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Oligos0 – Oligos5 (Fig. 5A). All subpopulations were rep-
resented in multiple PD and Control samples (Fig.  5B, 
Supplementary Table  2). However, the numbers of cells 
in Oligos2 and 5 were significantly lower in PD samples 
compared to Controls, whereas Oligos0, Oligos1 and Oli-
gos3 were significantly enriched in PD. Oligos4 was not 
significantly changed between PD and Control (Fig. 5C).

Like Astrocytes2 and Microglia1, Oligos2 represents a 
population enriched for TH, SLC6A3 and SNCG (genes 
associated with dopamine metabolism) and it is largely 
depleted in sporadic PD samples (Fig.  5C, D, E). This 
population is also enriched in transcripts linked to axon 
development and synapse organization (e.g., UCHL1, 
NEFL, MAP1B and NRXN3), transcripts linked to ion 
transport (e.g., CNTN1 and ANK3) and the synaptic 
vesicle cycle (e.g., SLC18A2 and CALY) (Fig. 5D, E; Sup-
plementary Fig.  6; Supplementary Tables  5, 6). Interest-
ingly, unlike TH enriched astrocytes and microglia, this 
TH enriched oligodendrocyte population does not show 
enrichment for genes involved in unfolded protein or oxi-
dative stress responses (Fig. 5E). All oligodendrocyte sub-
populations show a strong response in differential gene 
expression between PD and Control samples (Fig.  5F; 
Supplementary Table  7). Among them, Oligos2 demon-
strates upregulation of genes linked to spliceosome func-
tion (RBM22, PRPF8 and HNRNPU), ion channel activity 
(WNK1 and ENSA), serine/threonine kinase activity 
(CDKN1B and CDKN1C) and chaperone binding (BIRC2 
and SYVN1) (Fig. 5G, Supplementary Tables 7, 8). More-
over, Oligos2 also shows up-regulation of CAMK2G, 
consistent with the dysregulation of calcium homeo-
stasis and alterations in calmodulin-dependent protein 
kinase signaling observed in PD [27] (Supplementary 
Table  7). In addition, expression of the translocase of 
outer mitochondrial membrane 40 gene (TOMM40) was 
also dysregulated (Supplementary Table  7). The protein 

encoded by this gene is localized in the outer membrane 
of mitochondria and is the channel-forming subunit of a 
translocase complex essential for the import of protein 
precursors [28].

The second population of oligodendrocytes depleted in 
sporadic PD is Oligos5 (Fig. 5C). Oligos5 highly expresses 
CRYAB, a small heat shock protein, which is implicated 
in various protein aggregation-related neurodegenerative 
diseases, such as PD, Alzheimer’s disease (AD), amyo-
trophic lateral sclerosis (ALS) and prion disorders [29] 
(Fig.  5D). Like Microglia4, Oligos5 has high expression 
of FTL and FTH1, genes which encode proteins involved 
in iron storage (Fig.  5D). Oligos5 also highly expresses 
S100B, which has been associated with the glial stress 
response in the midbrain of PD patients [6] (Fig.  5D). 
Pathway over-representation analysis on the markers 
of this population shows enrichment of terms related 
to oxidative stress (e.g., CRYAB, MT3, SELENOP and 
MAP1LC3A), the response to protein aggregates (e.g., 
CLU, HSPA2, HSPA1A and HSP90AB1), ATP biosynthesis 
(e.g., ATP5ME, ATP5F1E and ATP5MC2), mitochondrial 
function (e.g., MT3, UBB, UBC and UBA52) and apopto-
sis (e.g., FIS1, UBB, RACK1, RPS3 and NUPR1) (Fig. 5D, 
E; Supplementary Fig.  6; Supplementary Tables  5, 6). At 
the differential gene expression level, Oligos5 isolated 
from PD samples shows upregulation of hypoxanthine 
guanine phosphoribosyltransferase (HPRT1) and TRF1-
interacting ankyrin-related ADP-ribose polymerase 2 
(TNKS2), which are both involved in regulating pentosyl-
transferase activity (Fig. 5G; Supplementary Table 8).

Oligos1 is more highly represented in PD samples 
than Controls and highly expresses RBFOX1, a dosage-
sensitive gene whose disruption is associated with neu-
rodevelopmental conditions and synaptic transmission, 
through its critical role in the control of mRNA splicing 
[30] (Fig. 5D). Oligos1 does not show strong enrichment 

(See figure on next page.)
Fig. 5 Oligodendrocyte subpopulations found in human substantia nigra pars compacta and their response to PD. A Re‑clustering 
of oligodendrocytes identified in Fig. 1B. B Proportion of nuclei coming from Control (blue) and PD (red) patients per subpopulation reported 
in Fig. 5A. Different shades of blue and red represent different donors. C A comparison of nuclei number (expressed as a percentage) deriving 
from PD or Control brains against their predicted abundance (based on 47.89% of all nuclei originating from PD samples: dashed line). A Binomial 
test was performed to see if there is any significant divergence of cell proportions from this value, * p‑value < 0.05, ** p‑value < 0.0005, *** 
p‑value < 0.00005. D Selected marker genes for oligodendrocyte subpopulations shown in Fig. 5A. The full list of marker genes is reported 
in Supplementary Table 5. E A summary of pathway over‑representation analysis using the marker genes defining oligodendrocyte populations 
0–5. Two Sankey diagrams are shown which illustrate the relationships between the various oligodendrocyte subpopulations and relevant cellular 
pathways identified (listed in Supplementary Table 6 in the column labeled “Group”). The thickness of the grey interconnecting lines is proportional 
to the number of individual pathways falling within a particular functional group that is significantly over‑represented among the markers of a given 
cellular subpopulation, normalized to the number of pathways displayed per Sankey plot. F A stripe chart reporting the number of significantly 
up‑ or downregulated genes in nuclei originating from PD donors (compared to Controls) per oligodendrocyte subpopulation, found by fitting 
a linear mixed model. Red dots correspond to genes that are up‑ (coefficient > 0) or downregulated (coefficient < 0), with an adjusted p‑value < 0.1 
(ANOVA test with Benjamini–Hochberg correction). The full list of genes up‑ or downregulated in the various oligodendrocyte subpopulations 
isolated from PD patients is reported in Supplementary Table 7. G Pathways over‑represented by up‑ or downregulated genes in nuclei originating 
from PD donors (compared to Controls) and assigned to the oligodendrocyte subpopulations, as reported in Supplementary Table 8
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for transcripts linked to myelination, vesicle traffick-
ing or synapse assembly processes (Fig.  5E). Between 
PD and Control conditions, differential gene expres-
sion analysis identifies genes associated with GO/KEGG 
terms including RNA polymerase complex function 
(e.g., GTF2F2, POLR3G, GTF2H3 and CCNH), serine/

threonine phosphatase activity (e.g., PPP2R2B, PPP4R2, 
PPP2R2C and PPP3CA), histone acetyltransferase com-
plex function (e.g., CREBBP, EP300, JADE2 and TAF4), 
protein ubiquitination (e.g., ANAPC16, FBXW8, SKP2 
and KLHL21) and lysosomal activity (e.g., DMXL1, ARSB 
and SORT1) (Fig. 5G; Supplementary Table 8).

Fig. 5 (See legend on previous page.)
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Oligos3 is another oligodendrocyte subpopulation that 
is significantly over-represented in PD samples (Fig. 5C). 
Oligos3 expresses high levels of OPALIN, a marker 
of myelinating oligodendrocytes [6] (Fig.  5D). Path-
way analysis on marker genes for Oligos3 shows strong 
enrichment for transcripts involved in synapse assembly 
(Fig. 5E). At the level of differential gene expression, vari-
ous transcripts in Oligos3 showed either upregulation 
or downregulation in PD samples, when compared to 
Controls. Upregulated genes include several involved in 
MAP kinase activity (MAP3K7 and MAP3K2) and micro-
tubule organization (SUN2 and MID1); downregulated 
genes include those involved in fatty acid metabolism 
(ACSL4), oxidative stress (ENOX2) and the serine/threo-
nine signaling pathway (PTPDC1) (Fig.  5G; Supplemen-
tary Table 8).

PD‑associated genes and genes near PD‑associated 
variants show cell type‑specific expression patterns
Genetic factors play a role in the development of Par-
kinson’s disease. Although genetic methods and popu-
lation studies, including genome-wide association 
studies (GWAS), have identified various monogenic vari-
ants and susceptibility loci for PD, it remains to be shown 
whether these monogenic PD genes, or genes-associated 
with these loci, are specific to SNpc cell types (or their 
subpopulations).

In our study, we first explored the cell type specificity 
of a set of high-confidence genes associated with mono-
genic PD reported in [31]. We observed that certain 
genes exhibit cell type-specific enrichment (Fig.  6A). 
For instance, SNCA showed enrichment in neurons and 
microglia, LRRK2 in microglia and OPC, DNAJC6 in 
neurons and oligodendrocytes, and VPS13C in micro-
glia and T cells (Fig. 6A). Several monogenic PD genes 
demonstrated significant enrichment specifically in 
neurons, such as PARK7, PINK1, ATP13A2, VPS35 and 
SYNJ1 (Fig.  6A). Moreover, amongst all neuronal sub-
types, most of the monogenic PD genes investigated 
show significant enrichment in the DA neuronal pop-
ulation Neurons0 (DNAJC6, SNCA, PARK7, PINK1, 
ATP13A2, VPS35 and SYNJ1). Additionally, DNAJC6 
showed enrichment in Astrocytes5 and Microglia5, 
SNCA in Astrocytes2 and Astrocytes5, and VPS35 
in Neurons3. In contrast, PRKN shows enrichment 
in all neuronal subpopulations except Neurons0 and 
Neurons3 (Supplementary Fig.  7A). Furthermore, we 
were able to confirm some of these findings using spa-
tial transcriptomics on independent tissue sections 
obtained from the same donors sampled in our snRNA-
seq analysis, such as SNCA and ATP13A2 enrichment 
in neurons and LRRK2 enrichment in microglia (Sup-
plementary Fig. 7B, Supplementary Table 5). However, 

no significant enrichment of LRRK2 in OPC was 
observed, possibly due to the small size of the OPC 
population detected in our spatial data.

Although the caveats of GWAS studies are increas-
ingly recognized, we attempted to identify genes near 
PD-associated variants in our data by cross-referencing 
to the largest PD GWAS dataset publicly available at the 
time we conducted our study [32]. This dataset, curated 
by Nalls and colleagues, contains data collected over 17 
studies, and reports 7.8 million single nucleotide poly-
morphisms (SNPs) identified in 37,688 diagnosed PD 
cases, 18,618 proxy-cases (individuals who do not have 
PD but have a first degree relative who does) and 1.4 
million Controls. We predicted 203 genes to be highly 
associated with GWAS SNPs using Multi-marker Analy-
sis of GenoMic Annotation (MAGMA) analysis (Sup-
plementary Table  9). In this analysis, we also observed 
an overlap of MAGMA identified genes with the mark-
ers of distinct cell types we identified in our SNpc data-
set (Fig.  6B-F, Supplementary Fig.  7C). Specifically, 
neuronal cell markers exhibited an overlap with genes 
near PD-associated variants in GWAS, such as SNCA; 
microglia cell markers with P2RY12 and LRRK2; and 
OPC cell markers with LRRK2 (Fig.  6B, C, F; Supple-
mentary Table  9). We further explored the association 
of genes near PD-associated variants at the subpopula-
tion level and found that several subpopulations also 
displayed association with these genes. For instance, PD 
depleted Neurons0 and Microglia2 exhibited an associa-
tion with SNCA and P2RY12, respectively (Fig.  6B, C). 
Binomial testing did not reveal significant enrichment of 
the GWAS PD-associated-variant-proximal genes in any 
specific cell type (Fig.  6G), which could be due to the 
inherent uncertainty in assigning causal genes to GWAS 
lead variants. Overall, our analyses reveal that cell (sub)
populations show an association with at least a hand-
ful of genes near PD GWAS SNPs, as identified through 
MAGMA analysis, and display enrichment in several 
monogenic PD genes, consistent with a complex inter-
play between cells contributing to disease pathogenesis.

TH among several common genes enriched in cell types 
depleted in sporadic PD samples
Along with our analyses showing a strong depletion 
of TH enriched neurons in sporadic PD, we also tenta-
tively identified TH enriched astrocyte, microglia and 
oligodendrocyte subpopulations that appear depleted 
in PD. To try and increase the robustness of this find-
ing we took two independent approaches. First, we ana-
lysed the largest snRNA-seq dataset currently available 
of human substantia nigra tissue (obtained from cohorts 
of Controls and PD patients independent of our study), 
which was published by Kamath and colleagues [8]. 
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Fig. 6 PD‑associated genes and genes near PD‑associated variants show cell type‑specific expression patterns. A Cell type enriched expression 
of high‑confidence genes associated with monogenic PD. Ln‑fold change of SCT‑normalized counts is shown (Wilcoxon test, *FDR‑corrected 
p‑value < 0.05; see Supplementary Table 5). B‑F Pseudo‑Manhattan plots of the genes near PD‑associated variants generated by MAGMA 
on the GWAS dataset curated by Nalls and colleagues [32]. The top differentially expressed genes per population/subpopulation which 
show significant association with PD variants (MAGMA p‑value lower than 0.001, ln‑fold change > 0.3 for population‑level analysis, and ln‑fold 
change > 0.25 for subpopulation‑level analysis) are shown; VC, vascular cells; OPC, oligodendrocyte progenitor cells; Micro, microglia; Astro, 
astrocytes; Oligo, oligodendrocytes. G The number of cell type enriched marker genes that are also near PD‑associated variants. The results 
of two‑sided Binomial tests are shown at the top (ns = non‑significant). The dashed line shows the expected number of markers given the null 
hypothesis (see ‘Methods’ and Supplementary Table 9)
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Analysis revealed that although the correspondence of 
subpopulations detected in the individual datasets was 
not entirely comparable (Supplementary Figs.  8, 9, 10), 
it was possible not only to detect the presence of TH-
positive (TH +) glia in the Kamath et al. dataset but also 
observe that these cells were depleted in samples from 
PD donors (Supplementary Figs. 8C, 9C, 10C). To inves-
tigate possible shared molecular mechanisms of action, 
we compared the gene expression profiles of the four TH 
enriched subpopulations. First, we compared the levels of 
TH expression across these cell types and observed that 
TH enriched glial cells expressed TH at a relatively low 
level compared to DA neurons (Fig. 7A; Supplementary 
Fig. 11). We re-confirmed the identity of these subpopu-
lations using a panel of higher-level cell type markers. For 
example, Oligos2 is enriched in oligodendrocyte mark-
ers (MBP and MOBP) and TH (Fig.  7A). Furthermore, 
we also observed a relatively lower percentage of the glia 
populations expressing TH compared to dopaminergic 
Neurons0 (Fig.  7A). We next identified 28 cell markers 
that are shared between the depleted TH enriched cell 
types (Fig. 7B, C; Supplementary Table 10). We compared 
the expression of these genes across the PD depleted TH 
enriched subpopulations and again found them to be 
expressed at lower levels in glia compared to dopaminer-
gic neurons (Fig. 7C). GO term pathway analysis on these 
shared genes demonstrated enrichment in pathways 
involved in dopaminergic neurogenesis (e.g., ALDH1A1, 
SLC6A3, SLC18A2 and TH), neurofilament assembly 
(e.g., NEFM, NEFH and NEFL), regulation of neuro-
transmitter levels and transport (e.g., SLC6A3, SLC18A2, 
SNAP25 and SNCG) and synaptic signalling (MAP1B and 
YWHAG) (Fig.  7D, Supplementary Table  10). We con-
firmed TH expression in all major cell types resident in 
the SNpc using spatial transcriptomics with single cell 
resolution (Molecular Cartography) on tissue sections 
obtained from Control and PD donors (see ‘Methods’). 
Consistent with the results obtained using single nucleus 
sequencing, we found that glial cells in general express 
lower amounts of TH transcripts compared to neurons 
(Fig. 7E, F).

Discussion
Here we provide a new resource for PD research: a 
snRNA-seq dataset of human post-mortem SNpc 
samples, collected from 15 sporadic PD and 14 Con-
trol brains. Our dataset reports the transcriptomes 
of ~ 84K high-quality nuclei and allows us to identify 
PD-induced cell type-specific changes in all major cell 
types of human substantia nigra pars compacta. Oli-
godendrocytes (~ 41%) were the most abundant cell 
type in our dataset, followed by astrocytes (~ 25%), 
microglia (~ 15%), neurons (~ 7%), OPC (~ 8%) and T 

cells (< 2%). We found an increase in relative propor-
tions of glial and T cells and a decrease in neurons in 
samples from patients diagnosed with sporadic PD. 
As expected, we observed a dropout of dopaminergic 
neurons (Neurons0) in PD patients. This population 
has higher expression of AGTR1, in line with previous 
reports [8, 33]. In addition, we also identified a popu-
lation of GABAergic neurons (Neurons3), that shows a 
high vulnerability to PD (see below).

We further mined this transcriptome resource, to 
assess the expression patterns of genes associated with 
monogenic PD and PD GWAS variants across the various 
cell types. We observed that neurons are enriched in sev-
eral monogenic PD genes when compared to other cell 
types, consistent with the known vulnerability of neurons 
in PD. Specifically, in line with the findings of previous 
single nucleus transcriptomics studies [6, 8], we observed 
robust enrichment of SNCA in neurons, LRRK2 in OPC 
and microglia, DNAJC6 enrichment in oligodendro-
cytes, and no cell type-specific enrichment of PLA2G6 
or GBA. At the subpopulation level, most genes showed 
enrichment in the dopaminergic neuronal population 
Neurons0. In addition to Neurons0, DNAJC6 exhibited 
significant enrichment in Astrocytes5 and Microglia5, 
SNCA in Astrocytes5 and PD depleted Astrocytes2, 
and VPS35 in Neurons3. Interestingly, PRKN showed 
enrichment in all neuronal subpopulations except for PD 
depleted Neurons0 and Neurons3. Cross-referencing the 
PD GWAS SNPs dataset curated by Nalls and colleagues 
[32] revealed that out of 203 genes (MAGMA p-value 
lower than 0.001) located near a relevant PD GWAS vari-
ant, 46 were enriched in several major cell populations, 
although no significant enrichment in any single popu-
lation was observed. Additionally, some genes displayed 
cell subtype association. Notably, P2RY12 was associated 
with microglia, consistent with a previous study [6], and 
specifically associated with Microglia2, a microglia sub-
population displaying markers associated with an early 
activation state [24]. The suggestion that the expression 
of genes near PD-associated genetic variants could drive 
cell type-specific, disease-relevant pathology provides a 
rationale for future studies on how such genetic variants 
exert their pathological functions using iPSC-derived 
models.

While we detected various classes of neurons, the 
major effect of PD appears to be on the dopaminergic 
system. Besides dopaminergic neurons, however, popu-
lations of astrocytes, microglia and oligodendrocytes 
also appear to be TH enriched and lost in PD at statis-
tically significant levels, leading us to speculate that loss 
of dopaminergic signaling in PD has a complex multi-
cellular basis. Dopaminergic neurons show high expres-
sion of the protein chaperones HSPA8 and HSP90AA1, 
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which are known to regulate protein folding and stabil-
ity [34, 35]. GO/KEGG term over-representation analysis 
of genes up- or downregulated in PD samples (compared 
to Controls) suggests sugar metabolism and Golgi to ER 

vesicle trafficking as the main processes impacted within 
dopaminergic neurons. This is consistent with reports 
that glycosylation in the Golgi and ER are critical qual-
ity control steps in protein folding [36, 37]. Furthermore, 

Fig. 7 Molecular similarities between tyrosine hydroxylase (TH) enriched cell types depleted in the substantia nigra pars compacta of PD patients. 
A TH expression comparison between dopaminergic Neurons0 and TH enriched glial cell types (Astrocytes2, Microglia1 and Oligos2). Higher level 
cell markers were used to confirm the identity of these subpopulations. B Venn diagram showing overlap of cell markers defining dopaminergic 
Neurons0 and TH enriched glial cell types. C Gene expression levels of cell markers shared between dopaminergic Neurons0 and TH enriched glial 
cell types. D GO term pathway analysis on the shared cell markers. E Representative images from spatial transcriptomics experiments showing 
the presence of SNAP25, SLC6A3 and TH transcripts (dots) in higher‑order cell types (represented as polygons). Astro, astrocytes; VC, vascular cells; 
Micro, microglia; Oligo, oligodendrocytes; OPC, oligodendrocyte progenitor cells. Scale bar, 50 µm. F Gene expression levels for shared cell markers 
of higher‑order cell types determined by spatial transcriptomics. Violin plots of SCT‑normalized data are shown
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N-acetyl-glucosamine modification makes alpha-synu-
clein less toxic for neurons. Taken together, these obser-
vations are consistent with glycosylation as a cellular 
mechanism reducing aggregation of misfolded alpha-
synuclein within dopaminergic neurons [38]. We further 
speculate that abnormal glycosylation in PD patients may 
also be related to their abnormal sugar uptake [37, 39].

In PD research, the focus has been on degeneration of 
dopaminergic neurons and the functional loss of dopa-
minergic transmission. However, current evidence sug-
gests that neurotransmitters such as GABA, glutamate, 
serotonin and acetylcholine may play a key role in the 
pathophysiology of PD. In our PD samples, GABAer-
gic neurons3 appears significantly reduced compared to 
Control samples. In  vivo, dopaminergic neuronal axons 
in the striatum release GABA. Hence, loss of dopamin-
ergic neurons in PD could lead to a decreased level of 
GABA in basal ganglia circuits [40]. Interestingly, phar-
macological GABA agonists have been shown to protect 
dopaminergic neurons and alleviate motor symptoms in 
animal models of PD [41, 42]. A recent study has shown 
that induced GABAergic neurons, generated in  vivo 
from striatal astrocytes using a forward programming 
approach, ameliorate motor symptoms in a neurotoxin-
induced murine model of PD [43].

In our PD samples, we found upregulation of the 
NEAT1 gene, which encodes a long non-coding RNA in 
GABAergic Neurons3. There is contradicting evidence 
regarding upregulation of NEAT1 as a protective or del-
eterious mechanism in PD. A recent report has shown 
increased levels of NEAT1 in the peripheral blood cells 
of PD patients [44]. There are also studies showing that 
NEAT1 is highly expressed in the substantia nigra of PD 
patients and may play a role in regulating mitochondrial 
stability [14]. Some reports suggest a role for NEAT1 
over-expression in inducing apoptosis and autophagy 
[45]. In contrast, some reports suggest NEAT1 upregula-
tion is associated with protection from oxidative stress 
and regulation of neuroinflammation [46, 47]. Since there 
are so many contradicting results from multiple studies, 
our data may provide some clarity on the role of NEAT1 
in PD.

Dysregulation of astrocyte functions has been impli-
cated in many neurodegenerative diseases. We discov-
ered four distinct astrocyte populations enriched in 
PD samples. Among them was an astrocyte population 
which displayed increased expression of genes associated 
with the UPR. A recent report has shown that the UPR 
can trigger a reactive state in astrocytes that can cause 
non-cell autonomous neurodegeneration, suggesting 
that this population of astrocytes may be directly toxic to 
neurons [17]. The Astrocytes4 population in PD showed 
high expression of GFAP and APOE, as well as transcripts 

linked to mitochondrial changes and oxidative stress. 
Astrocytic oxidative stress is thought to play an impor-
tant role in the pathogenesis of both familial and spo-
radic PD [48]. Several studies have highlighted the role 
of mitochondria-induced oxidative stress in astrocytes in 
neurodegeneration [49, 50].

We explored microglia subpopulations in our dataset 
and their associated molecular profiles from both Control 
and PD samples. We observed a high degree of heteroge-
neity in disease-responsive subpopulations of microglia. 
All microglia subpopulations showed over-representation 
in PD samples, except TH enriched Microglia1. We found 
a microglia subpopulation (Microglia2) highly expressing 
a known marker of microglia, P2RY12, and several mark-
ers associated with neuroinflammation. However, this 
subpopulation does not show enrichment for any tran-
scripts linked to an immune response, suggesting that it 
may represent an early stage of microglia activation. On 
the other hand, two microglia subpopulations (Micro-
glia4 and Microglia0) showed enrichment for transcripts 
involved in the UPR, oxidative stress and cholesterol 
metabolism. Interestingly, Microglia4 displayed higher 
expression of genes associated with immune response 
compared to Microglia0. This suggests that Microglia0 
may be a state forming a continuum with Microglia4, pos-
sibly arising due to the UPR and oxidative stress. Micro-
glia4 showed the highest expression of iron storage genes 
(FTL and FTH1), APOE, human leukocyte antigen (HLA) 
genes and complement cascade components (C1QC, 
C1QB and C1QA). Higher expression of HLA-DRA in 
microglia has been reported in aged ventral tier substan-
tia nigra tissue, using the MPTP animal model of PD [51]. 
Also, there have been reports of alpha-synuclein aggre-
gate induced activation of the complement pathway and 
complement-mediated neurotoxicity [52].

Like the rest of the cell types, we detected a high degree 
of heterogeneity in the oligodendrocyte population. Oli-
gos0 and Oligos1, major subsets of the oligodendrocyte 
population, which are highly over-represented in PD 
samples, show very mild/no enrichment for transcripts 
associated with neuronal maintenance-related processes. 
Oligos1 expresses RBFOX1, which encodes an mRNA 
splicing factor, at high levels. Dysregulation of RBFOX1 
has been implicated in various neurodevelopmental con-
ditions, such as autism, intellectual disability and epi-
lepsy [53]. Upregulation of RBFOX1, and dysregulation of 
splicing, have been reported in PD patient iPSC-derived 
dopaminergic neurons [54]. The presence of apparently 
dysfunctional oligodendrocytes in such a high number 
in PD samples may be PD-specific and contribute to the 
unique disease pathology.

Certain astrocyte, microglia and oligodendrocyte sub-
populations (Astrocytes2, Microglia1 and Oligos2) were 
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observed to be almost absent in PD samples. These glial 
subpopulations are enriched in ALDH1A1, SLC6A3, 
SLC18A2 and TH. We were able to confirm that ALDH1A1, 
SLC6A3 and TH are also detected in glial cells using spatial 
transcriptomics, supporting the existence of TH expressing 
glial populations. In addition, we confirmed the depletion 
of TH + glia populations in PD by performing a meta-anal-
ysis on data acquired from an independent sample cohort 
(Supplementary Figs. 8, 9, 10) [8].

The role of TH expression in glial subpopulations is 
not clear. However, previous studies have suggested that 
inducing TH expression in astrocytes may prevent Par-
kinsonism in rats [55, 56]. Furthermore, reports have 
shown that microglia express functional dopamine recep-
tors [57, 58], while expression of DAT, MAO-B, and 
COMT has been reported in astrocytes, suggesting they 
can uptake and metabolize dopamine [57]. Furthermore, 
a study has shown that impaired dopamine homeostasis 
in the prefrontal cortex, induced by astrocyte-specific 
knockout of the vesicular monoamine transporter 2 
(VMAT2 encoded by SLC18A2), adversely impacts syn-
apse formation and function, suggesting that glial regula-
tion of dopaminergic transmission is critical for correct 
CNS development [59]. Interestingly, Astrocytes2 and 
Microglia1 express genes involved in apoptosis, oxidative 
stress and the UPR, while Oligos2 does not. This suggests 
that the reduction in numbers of Astrocytes2 and Micro-
glia1 in PD may result from the UPR and oxidative stress. 
Since dopamine oxidation produces reactive quinones 
and reactive oxygen species that can cause cell damage 
and death [60], these TH enriched PD glia subpopula-
tions might be vulnerable to dopamine-induced oxidative 
stress. Dopamine has been reported to act as an NLRP3 
inflammasome inhibitor in primary human microglia 
[61]. Reduction of dopamine levels in the brain due to 
the loss of DA neurons and TH enriched glial cells may, 
therefore, contribute to activated microglia-mediated 
neuroinflammation and subsequent neurodegeneration.

In summary, our comprehensive snRNA-seq study 
makes a substantial contribution to our understanding 
of Parkinson’s disease as a complex pathology driven by 
the interplay of multiple cell types, each displaying dis-
tinctive cell type-specific responses. Importantly, key 
findings from our study of 14 Controls and 15 Sporadic 
PD donors could not only be validated by spatial tran-
scriptomics on tissue samples from the same cohort but 
were also consistent with a meta-analysis conducted on 
the largest snRNA-seq dataset from substantia nigra 
currently available. Hence, we believe our dataset is a 
valuable resource for guiding future hypothesis-driven 
experiments and represents a significant step forward in 
understanding the cellular dysfunction that drives Par-
kinson’s disease.

Methods
Selection of donors
We selected a total of 29 individuals from the Oregon 
Brain Bank, a human tissue repository for brain research, 
from which to obtain tissue for single nucleus sequenc-
ing. The Ethics Committee of UZ Leuven/KU Leuven 
approved the study under the S-number 64182. Fresh 
frozen tissue was obtained, alongside detailed clini-
cal records. These reports provided information on the 
donor’s clinical diagnosis, age, sex, as well as details 
about post-mortem interval (PMI) before the tissue was 
collected, the quality of RNA (RNA integrity number, 
RIN), the presence of Lewy bodies in midbrain, limbic 
(amygdala) and neocortical (frontal cortex) regions, as 
well as possible AD-related changes in cortex (presence 
of neuritic plaques and neurofibrillary tangles). This 
information is summarized in Supplementary Table  1. 
The 29 samples contained tissue from 14 Control and 15 
PD brains. We selected individuals from both sexes (male 
and female), who were mostly aged 60 + .

Isolation of nuclei from frozen post‑mortem brain tissue 
and single nucleus RNA‑seq
To identify the substantia nigra in Control and PD tis-
sues, cryostat sections of 5 μm thickness were cut, hae-
matoxylin and eosin (H&E) stained and viewed under 
the microscope by a neuropathologist (D.R.T.) to identify 
the tissue region containing melanin expressing neurons 
(substantia nigra pars compacta), which was then manu-
ally annotated with a waterproof pen. H&E-guided 2 mm 
biopsy punches were then collected. Nuclei were isolated 
using an optimized nucleus isolation protocol [62] and 
sequencing libraries were prepared using the Chromium 
Single Cell 3’ Reagent Kit v3, according to the manu-
facturer’s protocol (10X Genomics). The snRNA-seq 
libraries generated were subsequently sequenced using 
a NovaSeq6000 system: 1% PhiX, paired-end sequenc-
ing with 10X v3 parameters (28-8-0-91 cycles). 13 librar-
ies having a read saturation rate lower than 60% were 
re-sequenced, using the same 10X parameters, to obtain 
more reads and improve the quality of the database. 
Combining reads from both runs gave a > 40% saturation 
rate for all the samples (Supplementary Table 2).

Pre‑processing single nucleus RNA‑seq data
Gene counts were obtained by aligning reads to the 
human hg38 genome (GRCh38/Ensemble 93 pre-built by 
10X Genomics), using CellRanger software (v3.0.2) (10X 
Genomics). To account for unspliced nuclear transcripts, 
reads mapping to pre-mRNA were counted (as recom-
mended by CellRanger v.3.0.2). The quantification of pre-
mRNA was done using the CellRanger count pipeline on 
each of the 29 individual libraries, providing double input 
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fastq files for re-sequenced libraries. Default CellRanger 
parameters were used throughout the pipeline.

Quality control of single nucleus RNA‑seq data
Initial processing for downstream identification of major cell 
types
The initial dataset contained 173,197 nuclei, expressing a 
total of 30,194 unique transcripts. Thresholds to exclude 
degrading nuclei with low RNA-content (< 500 tran-
scripts) and doublets having high RNA-content (> 6000 
transcripts) were imposed. MALAT1 was excluded from 
the transcript list, since it was highly enriched and could 
bias the clustering. Next, to make sure that only results 
from single nuclei were left in the database, the Scrub-
let algorithm [63] was run on each dataset (using default 
parameters), to further identify nuclei doublets. In total 
2,496 doublets were identified (Supplementary Table  2) 
and removed from the database at this point. Finally, high 
mitochondrial RNA content was accounted for. A first 
round of clustering was performed using Seurat v3.1.1 
R package [64], limiting the percentage of mitochon-
drial genes detected per library to 1%, 2% or 5% of total 
transcripts. This analysis showed a clear bias towards the 
grouping together of nuclei with high levels of mitochon-
drial transcripts; this was very apparent in the case of the 
5% threshold and became less relevant for the 1% and the 
2% thresholds. Hence, to keep the maximum number of 
nuclei for further analysis, while minimizing the poten-
tial for clustering bias, libraries in which 2% or more of 
the detected transcripts were of putative mitochondrial 
origin were removed, leaving 83,484 nuclei and 30,194 
unique transcripts for downstream analysis.

Downstream processing for identification of cell 
subpopulations
Neuronal and glial populations were subclustered after 
removing transcripts expressed in less than 10% of 
nuclei, resulting in the retention of nuclei that expressed 
between 500 to 6,000 transcripts per nucleus. The 
percentage of mitochondrial genes detected was re-
calculated and libraries containing more than 2% mito-
chondrial content were removed from further analysis. 
In the case of neurons, a small subpopulation derived 
from a single Control individual was removed (188 
nuclei from donor s.0147) and the remaining nuclei were 
re-clustered.

Single nucleus RNA‑seq data—integration of the datasets 
and clustering
Data normalization and clustering were done with the 
Seurat v3.1.1 package [64]. First, each dataset was SCT-
normalized using the SCTransform() function. The 6000 
most variable features were selected for downstream 

integration using the SelectIntegrationFeatures() func-
tion. Principal component analysis (PCA) was performed 
on each dataset separately with the RunPCA() func-
tion, with the top 50 Principal Component (PC) coordi-
nates evaluated. Integration anchors were found using 
the FindIntegrationAnchors() method, using sample 
s.0096 as a reference. Datasets were integrated by apply-
ing the IntegrateData() function to the top 20 dimen-
sions. PCA was repeated on the integrated database and 
the top 10 PCs were used for UMAP analysis, using the 
RunUMAP() function. Finally, the top 10 PCs were used 
to build a k-nearest-neighbours graph, using the Find-
Neighbors() function: 0.6 resolution was used to group 
nuclei in the clusters. Populations enriched for well-
known cell type-specific markers were grouped together 
to define broad cell types. Subclustering of neuronal and 
glial populations was done based on the top 4 PCs at 0.2 
resolution.

Single nucleus RNA‑seq data – cell type enriched marker 
identification
For each subcluster, marker genes were identified using 
differential gene expression analysis performed by com-
paring transcripts expressed by the nuclei within a given 
subcluster and all the other nuclei defining a given cell 
population, using a Wilcoxon rank-sum test implemen-
tation of Seurat v3.1.1 with a false discovery rate (FDR)-
corrected p-value < 0.05 and a ln(mean gene expression 
across cells in a given  subcluster/mean gene expression 
across cells in all  other subclusters) of 0.25. Transcripts 
detected in at least 25% of the nuclei within a given 
subcluster were considered. The full list of markers is 
reported in Supplementary Table 5.

PD gene association analysis
To understand the relationship between cell type-spe-
cific gene expression in the substantia nigra and the 
predisposition to Parkinson’s disease, we obtained a list 
of high-confidence genes associated with monogenic 
PD [31]. For analysis of GWAS data, we applied Multi-
marker Analysis of GenoMic Annotation (MAGMA) 
v1.10 on a large Parkinson’s disease GWAS database 
curated by Nalls and colleagues (using all datasets 
except those provided by 23andMe) [32]. MAGMA 
is an enrichment analysis method that tests the joint 
association of all risk SNPs in a genomic region with 
a given phenotype, while accounting for the linkage 
disequilibrium (LD) structure between SNPs [6, 65]. 
For this study, MAGMA analysis was performed as 
described by Smajić et  al. (2022). We took the SNPs 
and their p-values from the published summary statis-
tics available in Nalls et  al. [32] and used the publicly 
available European subset of the 1000 Genomes project 
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(Phase 3) as a reference to estimate the LD between 
SNPs. Only the first two steps of the MAGMA work-
flow were performed. First, SNPs were mapped to 
genes using the NCBI GRCh37 genome build (annota-
tion release 105). Gene boundaries were defined as the 
transcribed region of each gene, plus an extended win-
dow of 35 kb upstream and 10 kb downstream of each 
gene to account for potential regulatory elements [66]. 
Second, we computed the gene-wise p-values based 
on the SNP GWAS p-values. The association of a gene 
with a PD-associated variant is quantified as a z-score. 
Z-scores are negative if a gene is not associated with 
a PD-associated variant, whereas positive association 
is indicated by a positive z-score (MAGMA p-value 
lower than 0.001 is equivalent to a z-score value higher 
than 3). We selected differentially expressed genes 
for given cell (sub)populations, based on the follow-
ing criteria: filtered for FDR-corrected p-values < 0.05, 
percentage of cells in a given cluster where expression 
was detected > 0.1, and ln-fold change > 0.3 (population 
level) or ln-fold change > 0.25 (subpopulation level). 
Genes were ordered by average ln-fold change, with 
a maximum of the top 5 genes showing high associa-
tion with PD-associated variants shown in the ‘pseudo-
Manhattan’ plots in Fig.  6. The full list of genes is 
reported in Supplementary Table 9.

Assessing relative cell type enrichment of genes 
near PD‑associated variants
A Binomial test was performed to assess cell type-
specific enrichment of genes near PD-associated vari-
ants using a two-sided R function ‘binom.test()’, using 
the parameters reported in Supplementary Table 9. The 
tests were performed separately for major cell types and 
glial/neuronal subpopulations, considering markers 
with the following thresholds: ln-fold change in aver-
age expression > 0.3, fraction of the cells expressing the 
marker in the designated cluster > 0.25, and adjusted 
p-value < 0.05 (Supplementary Table 9).

Single nucleus RNA‑seq data—differential 
gene‑expression analysis among phenotypes
Differential expression analysis, using single nucleus 
data obtained from PD patients or Control individu-
als, was performed by fitting a linear mixed model (in 
which the individual of origin was assigned as a random 
effect), using the R package lme4. One way ANOVA test 
with Benjamini–Hochberg correction was performed to 
assess the statistical significance of the observed up- or 
downregulation, using the R package Car. The full list of 
significantly up- or downregulated genes detected by this 
analysis is reported in Supplementary Table 7.

Pathway analysis
Over-representation analysis was performed on subpop-
ulation specific marker genes (Figs. 2, 3, 4, 5 panel E; Sup-
plementary Table 6), as well as on the genes differentially 
expressed between PD and Control conditions (Figs. 2, 3, 
4 panel H, Fig. 5 panel G; Supplementary Table 8), using 
clusterProfiler version 4.4.4 [67]. Over-representation 
analysis on the common cell marker genes expressed by 
TH + cell types (Fig. 7D) was performed using Metascape 
[68].

Spatial transcriptomics—sample preparation
SNpc tissue sections were prepared from the brains of 
three Control donors and three PD donors, as reported 
in Supplementary Table 1. Samples were first positioned 
on the sectioning block and then embedded using FSC 
22 frozen section media. A Leica CM3050 cryostat was 
used to section the samples at a chamber temperature 
of -18°C and an object temperature of -16°C. The sam-
ples were sectioned with a thickness of 10 μm and sub-
sequently placed on pre-chilled coverslips. Following the 
sectioning process, the samples were stored at -80°C and 
then shipped to Resolve GmbH on dry ice for additional 
processing.

Spatial transcriptomics—molecular cartography
Spatial transcriptomics was performed using Resolve 
Biosciences’ commercially available Molecular Cartog-
raphy™ platform. Sections were hybridized with probes 
specifically targeting 96 unique transcripts (Supple-
mentary Table  4). Following hybridization, samples 
were washed to remove excess probes and then fluores-
cently labelled through a two-step color development 
process. Regions were imaged and the fluorescent sig-
nal was removed during the decolorization step. This 
cycle of color development, imaging and decolorization 
was repeated to generate a unique combinatorial code 
for each target transcript. Images with DAPI staining, 
alongside the corresponding coordinates of each tran-
script on the image, were provided. The coordinate files 
served as input for segmentation using Baysor [69].

Spatial transcriptomics—object segmentation
Segmentation was performed in two steps using Baysor 
version 0.5.2. First, the molecular data (x, y, z coordi-
nates) was segmented with the following parameters: 
cell radius (45 pixels), cell radius standard deviation 
(25%) and a minimum number of molecules per cell 
(15). However, it is known that Baysor may over-seg-
ment objects that have large areas, often resulting in 
multiple smaller objects being identified instead of a 
single large object. To ensure proper segmentation, we 
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then repeated the process using a radius of 90 pixels. In 
this step, only molecules considered as noise (param-
eter given as output by Baysor) during the initial seg-
mentation and objects having an area larger than 80% of 
the calculated area (0.8 * π *  45px2) were used as input. 
Images were classed as correctly segmented when the 
number of output objects was smaller than the number 
of large objects used as input. If not, the large objects 
from the initial segmentation were considered as prop-
erly segmented. Properly segmented images were then 
used to generate information on the transcript counts 
per cell, as well as single molecule and cell meta-data.

Spatial transcriptomics—quality control
A total of 75,416 cells remained after removing objects 
with undefined area or infinite density. Objects were 
retained if they contained more than 10 molecules, 
originating from at least 2 unique genes, had a mole-
cule-to-gene ratio higher than 1, elongation below 
10, density below 0.04, average confidence above 0.7 
and area larger than 500 pixels. These thresholds were 
chosen based on visual examination of each variable’s 
numeric distribution, plotted using histograms. No 
maximum area threshold was defined, due to some cells 
having large sizes. This resulted in 41,198 segmented 
objects. An initial clustering quality check was per-
formed by clustering the filtered objects using Seurat 
v4.3.0 with the SCT algorithm, followed by Harmony 
batch effect correction. Parameters were set as fol-
lows: scaleFactor (10,000), nFeatures (200), PCA com-
ponents (13), resolution (0.3), variable features (3,000) 
and residualVariance cutoff (1.3). Variables corrected 
by Harmony included batch variations (batchID: batch 
1 and batch 2), differences between imaged sections 
(tissueSection_ID) and selected regions of interest 
(tissueROI_ID).

Spatial transcriptomics—cell type classification 
and clustering
Cell type identification was performed using a unimodal 
UMAP projection workflow run  in Seurat v4.3.0, which 
allows projection of a query dataset (spatial) onto a refer-
ence UMAP structure (snRNA-seq dataset described in 
this manuscript). The reference dataset was downsam-
pled to 26,907 nuclei  -  sampling 5,000 nuclei from each 
cell type, except for vascular cells (1,560) and T-cells 
(347). Anchors between the query and reference datasets 
were determined using the FindTransferAnchors func-
tion, using CCA reduction, SCT normalization and 40 
PCA dimensions. These anchors were imported into the 
MapQuery function with cellType_L1 as a class variable, 
again using CCA reduction and the UMAP reduction 

model. Following mapping, a secondary filtering step 
was performed: within each UMAP-defined spatial clus-
ter, outlier cells that did not belong to the predominant 
population were identified and removed. For example, in 
a cluster composed by microglia (green dots), a few inter-
spersed oligodendrocytes (blue dots) were removed to 
ensure the homogeneity of the cluster assignment. This 
filtering step resulted in 36,806 high-quality cells. Final 
clustering and batch effects correction were performed 
as detailed in the ‘Spatial transcriptomics - quality con-
trol’ section.

Meta‑data analysis
To compare the similarity between the glia subpopula-
tions identified in our study and those populations found 
in published datasets, we performed a comprehensive 
meta-analysis, focusing on the snRNA-seq data pub-
lished by Kamath et al. [8]. We extracted and processed 
the gene expression data for the major glial cell types: 
microglia, astrocytes and oligodendrocytes. To identify 
differentially expressed genes for each subpopulation, we 
used the FindAllMarkers function in Seurat v4.3.0, using 
default parameters. For individual subpopulations in 
this dataset, for instance microglia MG_CECR2_FLG11, 
we retained only genes that met the following criterion: 
significant enrichment (adjusted p-value < 0.05) in any 
subpopulation of the same major cell type (Microglia0, 
Microglia1, Microglia2, Microglia3, Microglia4 and 
Microglia5) in our study (Supplementary Table  5). To 
evaluate the expression profiles of each gene set, we used 
the AddModuleScore function from Seurat v4.3.0. This 
function provides a measure of enrichment for a defined 
set of genes within a group of individual nuclei. We plot 
the percentage of nuclei from each subpopulation with a 
module score of 0.5 or higher in Supplementary Figs. 8, 9, 
10, panel E and show the module scores as feature plots 
in Supplementary Figs. 8, 9, 10, panel F.

Abbreviations
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ALS  Amyotrophic lateral sclerosis
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TNKS2  TRF1‑interacting ankyrin‑related ADP‑ribose polymerase 2
TOMM40  Translocase of outer mitochondrial membrane 40
UPR  Unfolded protein response
VC  Vascular cells
VMAT2  Vesicular monoamine transporter 2

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13024‑ 023‑ 00699‑0.

Additional file 1: Supplementary Table 1. Description of donor material 
and tissue usage.

Additional file 2: Supplementary Table 2. Single nucleus RNA‑seq 
(snRNA‑seq) quality assessment and the distribution of recovered nuclei 
across cell types.

Additional file 3: Supplementary Table 3. Cell proportion analysis 
(major cell types and subpopulations of neurons, astrocytes, microglia and 
oligodendrocytes).

Additional file 4: Supplementary Table 4. List of spatial transcriptomics 
probes used in this study.

Additional file 5: Supplementary Table 5. Differentially expressed genes 
in higher order cell types identified based on snRNA‑seq (SN) or spatial 
transcriptomics (ST) data. Differentially expressed genes in neuronal, astro‑
cyte, microglial and oligodendrocyte subpopulations identified based on 
the snRNA‑seq data.

Additional file 6: Supplementary Table 6. Pathway (GO and KEGG) 
over‑representation analysis on the cell type markers reported in Sup‑
plementary Table 5.

Additional file 7: Supplementary Table 7. Differentially expressed genes 
in neuronal, astrocyte, microglial and oligodendrocyte subpopulations 
when comparing PD to Control samples.

Additional file 8: Supplementary Table 8. Pathway (GO and KEGG) over‑
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Table 5, which are commonly expressed across the TH enriched subpopu‑
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Additional file 11: Supplementary Figure 1. High level cell type clus‑
tering. (A) The expression pattern of key markers that identify higher 
order cell types. SCT‑normalized expression levels are shown except for 
the nFeatures, which refers to the number of genes reporting non‑zero 
expression in a given nucleus. (B) Proportion of nuclei coming from 
Control (red) and PD (blue) patients for each cell type reported in Fig‑
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Additional file 12: Supplementary Figure 2. Landscape of single‑
nucleus RNA datasets for human midbrain. (A) Summary table of main 
parameters. SN, substantia nigra; SNpc, substantia nigra pars compacta; 
MB, midbrain; NA, information not available. (B) Total number of nuclei 
sequenced and assigned to various cell populations. DA, dopaminergic 
neurons; non‑DA, non‑dopaminergic neurons. Only nuclei from Control 
and PD donors were included in the assessment. Data obtained from 
nuclei extracted from patients diagnosed with Lewy body dementia 
were excluded. (C) Number of TH+ nuclei across cell populations.

Additional file 13: Supplementary Figure 3. Markers for neuronal 
subpopulations grouped by enriched terms reported in Supplemen‑
tary Table 6, as well as AGTR1, which is reported by Kamath et al. [8] to 
be a marker for a dopaminergic neuron subpopulation vulnerable to 
degeneration in PD.

Additional file 14: Supplementary Figure 4. Markers for astrocyte 
subpopulations grouped by enriched terms reported in Supplementary 
Table 6.

Additional file 15: Supplementary Figure 5. Markers for microglial 
subpopulations grouped by enriched terms reported in Supplementary 
Table 6.

Additional file 16: Supplementary Figure 6. Markers for oligo‑
dendrocyte subpopulations grouped by enriched terms reported in 
Supplementary Table 6.

Additional file 17: Supplementary Figure 7. PD‑associated genes 
and genes near PD‑associated variants show cell type‑specific expres‑
sion patterns. (A) Subpopulation specific enrichment of high‑confi‑
dence genes associated with monogenic PD. Ln‑fold change of SCT‑
normalized counts is shown (Wilcoxon test, *FDR‑corrected p‑value < 
0.05; see Supplementary Table 5). (B) Confirmation of cell type‑specific 
enrichment of PD‑associated genes using spatial transcriptomics; 
 Log2‑fold change of SCT‑normalized counts is shown. A full list of 
markers of higher order cell types identified through spatial transcrip‑
tomics is provided in Supplementary Table 5. (C) Population specific 
enrichment of selected genes near PD‑associated variants identified 
by MAGMA analysis on GWAS data. Ln‑fold changes in SCT‑normalized 
counts are shown. (Wilcoxon test, *FDR‑corrected p‑value < 0.05, see 
Supplementary Table 5).

Additional file 18: Supplementary Figure 8. Meta‑analysis of astro‑
cyte subpopulations. (A) UMAP of astrocyte subpopulations identified 
in our study. (B) UMAP of astrocyte subpopulations identified in the 
Kamath et al. study. (C) Bar plot showing the total number of TH‑posi‑
tive (TH+) astrocytes isolated from healthy Controls (CTR) or Parkinson’s 
disease (PD) samples in our study (left) and the number isolated from 
Controls (Ctrl), Lewy body dementia (LBD) samples and PD samples in 
Kamath et al. (right). (D) Bar plot showing the number of TH‑positive 
(TH+) astrocytes at the subpopulation level in our dataset (left) and the 
Kamath et al. dataset (right). (E) Heatmap showing the percentage of 
individual cells in each subpopulation identified in our study (x‑axis) 
that shows an enrichment score of 0.5 or higher. The enrichment score 
measures the enrichment of subpopulation gene sets extracted from 
Kamath et al. (y‑axis) (see ‘Methods’). (F) Feature plots showing the 
distribution of the module scores using the UMAP space shown in (A).

Additional file 19: Supplementary Figure 9. Meta‑analysis of micro‑
glia subpopulations. (A) UMAP of microglia subpopulations identified 
in our study. (B) UMAP of microglia subpopulations identified in the 
Kamath et al. study. (C) Bar plot showing the total number of TH‑posi‑
tive (TH+) microglia isolated from healthy Controls (CTR) or Parkinson’s 
disease (PD) samples in our study (left) and the number isolated from 
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Controls (Ctrl), Lewy body dementia (LBD) samples and PD samples in 
Kamath et al. (right). (D) Bar plot showing the number of TH‑positive (TH+) 
microglia at the subpopulation level in our dataset (left) and the Kamath 
et al. dataset (right). (E) Heatmap showing the percentage of individual 
cells in each subpopulation identified in our study (x‑axis) that shows an 
enrichment score of 0.5 or higher. The enrichment score measures the 
enrichment of subpopulation gene sets extracted from Kamath et al. 
(y‑axis) (see ‘Methods’). (F) Feature plots showing the distribution of the 
module scores using the UMAP space shown in (A).

Additional file 20: Supplementary Figure 10. Meta‑analysis of oligo‑
dendrocyte subpopulations. (A) UMAP of oligodendrocyte subpopula‑
tions identified in our study. (B) UMAP of oligodendrocyte subpopulations 
identified in the Kamath et al. study. (C) Bar plot showing the total number 
of TH‑positive (TH+) oligodendrocytes isolated from healthy Controls 
(CTR) or Parkinson’s disease (PD) samples in our study (left) and the 
number isolated from Controls (Ctrl), Lewy body dementia (LBD) samples 
and PD samples in Kamath et al. (right). (D) Bar plot showing the number 
of TH‑positive (TH+) oligodendrocytes at the subpopulation level in our 
dataset (left) and the Kamath et al. dataset (right). (E) Heatmap showing 
the percentage of individual cells in each subpopulation identified in 
our study (x‑axis) that shows an enrichment score of 0.5 or higher. The 
enrichment score measures the enrichment of subpopulation gene sets 
extracted from Kamath et al. (y‑axis) (see ‘Methods’). (F) Feature plots 
showing the distribution of the module scores using the UMAP space 
shown in (A).

Additional file 21: Supplementary Figure 11. TH expression across 
subpopulations. Violin plots showing the SCT‑normalized expression of 
tyrosine hydroxylase (TH) across subpopulations of neurons, astrocytes, 
microglia and oligodendrocytes.

Acknowledgements
The authors thank the tissue donors and their families, Oregon Brain Bank and 
the funders that made this research possible. We would like to thank Sarah 
Field for proof‑reading and assessing the structure of the manuscript draft. 
Figure 1A was created using BioRender.

Authors’ contributions
M.G.H. initiated the project in collaboration with A.K. and V.J.H–S. at Verge Genom‑
ics. D.R.T. isolated the SNpc from human brain samples for tissue dissociation and 
sequencing by C.M., under the supervision of S.P. Initial single nucleus data process‑
ing and analysis was done by K.H., with input from S.G. The analysis of sequenc‑
ing data (including resequencing experiments for enhanced read depth) was 
finalised by A.M., who also co‑ordinated the spatial transcriptomics experiments. 
F.P. prepared tissue sections and A.M. designed the gene panel used by Resolve 
Biosciences for Molecular Cartography. F.P. performed the analysis of data produced 
by Resolve Biosciences, with the help of R.Al. on aspects of cell segmentation. T.G.B. 
provided expert guidance on computational analysis of sequencing and imaging 
data. R.An., W.P. and E.M. gave expert input on data interpretation. A.M., R.An, F.P., W.P. 
and S.H. prepared the figures. A.M., R.An. and H.G. performed pathway overrepre‑
sentation analysis. A.M. prepared the first draft of the text with input from all the 
authors. M.G.H. finalised the manuscript with input from all co‑workers, particularly 
A.M., R.An., F.P., W.P., E.M. and T.G.B. All authors approved submission.

Funding
A.M. gratefully acknowledges VIB Institutional Support. A.M. was supported by 
Stichting Alzheimer Onderzoek (SAO‑FRA) (Belgium) Grant 20200034 and VIB 
Tech Watch funding. FP holds a Fundação para a Ciência e a Tecnologia (FCT) 
scholarship (2020.08750BD). D.R.T. received grants from Fonds Wetenschap‑
pelijk Onderzoek (FWO): Grants G0F8516N and G065721N, SAO‑FRA Grant 
2020/017, and KU‑Leuven Internal Funding (Grants C14/17/107, C14/22/132 
and C3/20/057). E.M. was funded by the UK Dementia Research Institute, Grant 
RRZA/175. R.An. was funded by Bit.Bio Ltd., studentship code RRAG/257. S.H. 
was funded by the Wellcome Trust (RG86251). W.P. was funded by Open Targets 
(OTAR2052). M.G.H. is currently the ERA Chair (NCBio) at i3S Porto, funded by the 
European Commission (H2020 WIDESPREAD‑2018–2020‑6; NCBio; 951923). 

Availability of data and materials
snRNA‑seq data files can be accessed at https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE24 3639. Spatial transcriptomics data files are available 
at https:// doi. org/ 10. 5281/ zenodo. 10451 502.

Declarations

Ethics approval and consent to participate
The Ethics Committee of UZ Leuven/KU Leuven approved the use of human 
samples and gave ethical approval in line with the relevant Belgian legislation 
on privacy. Samples used in this study are registered in the UZ Leuven Biobank 
under the S‑number S64182. Further details are available at https:// www. uzleu 
ven. be/ en/ uzku‑ leuven‑ bioba nk/ regis try

Competing interests
T.G.B. is CEO of The Bioinformatics CRO and Senior Director of Bioinformatics at 
Bit.Bio. D.R.T. has received various honoraria related to speaking engagements 
from Biogen (USA) and UCB (Brussels, Belgium), and benefited from research 
collaborations with Novartis Pharma AG (Basel, Switzerland), Probiodrug (Halle 
(Saale), Germany), GE Healthcare (Amersham, UK), and Janssen Pharmaceuti‑
cals (Beerse, Belgium).  E.M. is an employee and shareholder of Bit.Bio. M.G.H. 
acted as a paid consultant to Resolve Biosciences during development of 
their Molecular Cartography system. A.M. is currently an employee at Muna 
Therapeutics.

Author details
1 VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium. 2 UK 
Dementia Research Institute, Department of Clinical Neurosciences, University 
of Cambridge, Cambridge CB2 0AH, UK. 3 Verge Genomics, South San Fran‑
cisco, CA, USA. 4 Armenian Bioinformatics Institute, Yerevan, Armenia. 5 Depart‑
ment of Mathematics and Mechanics, Yerevan State University, Yerevan, Arme‑
nia. 6 Laboratory for Neuropathology, Department of Imaging and Pathology 
and Leuven Brain Institute, KU Leuven, and Department of Pathology, UZ 
Leuven, Leuven, Belgium. 7 The Bioinformatics CRO, Orlando, FL, USA. 8 bit.bio, 
The Dorothy Hodgkin Building, Babraham Research Institute, Cambridge CB22 
3FH, UK. 9 Laboratory of Synapse Biology, i3S, Porto, Portugal. 

Received: 16 May 2023   Accepted: 14 December 2023
Published: 20 January 2024

References
 1. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–

303. https:// doi. org/ 10. 1016/ s0140‑ 6736(21) 00218‑x.
 2. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. 

Alpha‑synuclein in Lewy bodies. Nature. 1997;388:839–40. https:// doi. 
org/ 10. 1038/ 42166.

 3. Ma SX, Lim SB. Single‑cell RNA sequencing in Parkinson’s disease. Bio‑
medicines. 2021;9(4):368. https:// doi. org/ 10. 3390/ biome dicin es904 0368.

 4. Lang C, Campbell KR, Ryan BJ, Carling P, Attar M, Vowles J, et al. Single‑cell 
sequencing of iPSC‑Dopamine neurons reconstructs disease progression 
and identifies HDAC4 as a regulator of Parkinson cell phenotypes. Cell 
Stem Cell. 2019;24:93‑106.e6. https:// doi. org/ 10. 1016/j. stem. 2018. 10. 023.

 5. Fernandes HJR, Patikas N, Foskolou S, Field SF, Park JE, Byrne ML, 
et al. Single‑cell transcriptomics of Parkinson’s disease human 
in vitro models reveals dopamine neuron‑specific stress responses. 
Cell Rep. 2020;33(2):108263. https:// doi. org/ 10. 1016/j. celrep. 2020. 
108263.

 6. Smajić S, Prada‑Medina CA, Landoulsi Z, Ghelfi J, Delcambre S, Dietrich C, 
et al. Single‑cell sequencing of human midbrain reveals glial activation 
and a Parkinson‑specific neuronal state. Brain. 2022;145:964–78. https:// 
doi. org/ 10. 1093/ brain/ awab4 46.

 7. Agarwal D, Sandor C, Volpato V, Caffrey TM, Monzón‑Sandoval J, Bowden 
R, et al. A single‑cell atlas of the human substantia nigra reveals cell‑
specific pathways associated with neurological disorders. Nat Commun. 
2020;11:4183. https:// doi. org/ 10. 1038/ s41467‑ 020‑ 17876‑0.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE243639
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE243639
https://doi.org/10.5281/zenodo.10451502
https://www.uzleuven.be/en/uzku-leuven-biobank/registry
https://www.uzleuven.be/en/uzku-leuven-biobank/registry
https://doi.org/10.1016/s0140-6736(21)00218-x
https://doi.org/10.1038/42166
https://doi.org/10.1038/42166
https://doi.org/10.3390/biomedicines9040368
https://doi.org/10.1016/j.stem.2018.10.023
https://doi.org/10.1016/j.celrep.2020.108263
https://doi.org/10.1016/j.celrep.2020.108263
https://doi.org/10.1093/brain/awab446
https://doi.org/10.1093/brain/awab446
https://doi.org/10.1038/s41467-020-17876-0


Page 23 of 24Martirosyan et al. Molecular Neurodegeneration  (2024) 19:7 

 8. Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V, Nadaf NM, et al. 
Single‑cell genomic profiling of human dopamine neurons identifies a 
population that selectively degenerates in Parkinson’s disease. Nat Neuro‑
sci. 2022;25:588–95. https:// doi. org/ 10. 1038/ s41593‑ 022‑ 01061‑1.

 9. McClymont SA, Hook PW, Soto AI, Reed X, Law WD, Kerans SJ, et al. 
Parkinson‑associated SNCA enhancer variants revealed by open chro‑
matin in mouse dopamine neurons. Am J Hum Genet. 2018;103:874–92. 
https:// doi. org/ 10. 1016/j. ajhg. 2018. 10. 018.

 10. Dunn L, Allen GFG, Mamais A, Ling H, Li A, Duberley KE, et al. Dysregula‑
tion of glucose metabolism is an early event in sporadic Parkinson’s 
disease. Neurobiol Aging. 2014;35:1111–5. https:// doi. org/ 10. 1016/j. 
neuro biola ging. 2013. 11. 001.

 11. Genau HM, Huber J, Rogov V, Correspondence CB, Baschieri F, Akutsu M, 
et al. CUL3‑KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP 
proteins to spatially restrict TIAM1‑RAC1 signaling. Mol Cell. 2015;57:995–
1010. https:// doi. org/ 10. 1016/j. molcel. 2014. 12. 040.

 12. Singh PK, Muqit MMK. Parkinson’s: a disease of aberrant vesicle trafficking. 
Annu Rev Cell Dev Biol. 2020;36:237–64. https:// doi. org/ 10. 1146/ annur 
ev‑ cellb io‑ 100818‑ 125512.

 13. Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, et al. The 
Parkinson’s disease protein α‑synuclein disrupts cellular Rab homeostasis. 
PNAS. 2008;105:145–50. https:// doi. org/ 10. 1073/ pnas. 07106 85105.

 14. Boros FA, Vécsei L, Klivényi P. NEAT1 on the field of Parkinson’s dis‑
ease: Offense, defense, or a player on the bench? J Parkinsons Dis. 
2021;11:123–38. https:// doi. org/ 10. 3233/ jpd‑ 202374.

 15. Tranchevent LC, Halder R, Glaab E. Systems level analysis of sex‑depend‑
ent gene expression changes in Parkinson’s disease. NPJ Parkinsons Dis. 
2023;9:1–16. https:// doi. org/ 10. 1038/ s41531‑ 023‑ 00446‑8.

 16. Pollard A, Shephard F, Freed J, Liddell S, Chakrabarti L. Mitochondrial 
proteomic profiling reveals increased carbonic anhydrase II in aging and 
neurodegeneration. Aging (Albany NY). 2016;8:2425–36. https:// doi. org/ 
10. 18632/ aging. 101064.

 17. Smith HL, Freeman OJ, Butcher AJ, Holmqvist S, Humoud I, Schätzl T, 
et al. Astrocyte unfolded protein response induces a specific reactivity 
state that causes non‑cell‑autonomous neuronal degeneration. Neuron. 
2020;105:855‑866.e5. https:// doi. org/ 10. 1016/j. neuron. 2019. 12. 014.

 18. Cánovas V, Lleonart M, Morote J, Paciucci R. The role of prostate tumor 
overexpressed 1 in cancer progression. Oncotarget. 2017;8:12451–71. 
https:// doi. org/ 10. 18632/ oncot arget. 14104.

 19. Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano‑
Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future 
directions. Nat Neurosci. 2021;24:312–25. https:// doi. org/ 10. 1038/ 
s41593‑ 020‑ 00783‑4.

 20. Matsumoto T, Imagama S, Hirano K, Ohgomori T, Natori T, Kobayashi K, 
et al. CD44 expression in astrocytes and microglia is associated with ALS 
progression in a mouse model. Neurosci Lett. 2012;520:115–20. https:// 
doi. org/ 10. 1016/j. neulet. 2012. 05. 048.

 21. Hartmann K, Sepulveda‑Falla D, Rose IVL, Madore C, Muth C, Matschke J, 
et al. Complement  3+‑astrocytes are highly abundant in prion diseases, 
but their abolishment led to an accelerated disease course and early dys‑
regulation of microglia. Acta Neuropathol Commun. 2019;7:83. https:// 
doi. org/ 10. 1186/ s40478‑ 019‑ 0735‑1.

 22. Kang W, Balordi F, Su N, Chen L, Fishell G, Hébert JM. Astrocyte activation 
is suppressed in both normal and injured brain by FGF signaling. PNAS. 
2014;111:E2987–95. https:// doi. org/ 10. 1073/ pnas. 13204 01111.

 23. Suuronen T, Huuskonen J, Pihlaja R, Kyrylenko S, Salminen A. Regulation of 
microglial inflammatory response by histone deacetylase inhibitors. J Neu‑
rochem. 2003;87:407–16. https:// doi. org/ 10. 1046/j. 1471‑ 4159. 2003. 02004.x.

 24. Gómez Morillas A, Besson VC, Lerouet D. Microglia and neuroinflamma‑
tion: what place for P2RY12? Int J Mol Sci. 2021;22:1636. https:// doi. org/ 
10. 3390/ ijms2 20416 36.

 25. Namekata K, Guo X, Kimura A, Arai N, Harada C, Harada T. DOCK8 is 
expressed in microglia, and it regulates microglial activity during neuro‑
degeneration in murine disease models. J Biol Chem. 2019;294:13421–33. 
https:// doi. org/ 10. 1074/ jbc. ra119. 007645.

 26. Zöller T, Attaai A, Potru P, Ruß T, Spittau B. Aged mouse cortical microglia 
display an activation profile suggesting immunotolerogenic functions. 
Int J Mol Sci. 2018;19:706. https:// doi. org/ 10. 3390/ ijms1 90307 06.

 27. Bohush A, Leśniak W, Weis S, Filipek A. Calmodulin and its binding pro‑
teins in Parkinson’s disease. Int J Mol Sci. 2021;22:3016. https:// doi. org/ 10. 
3390/ ijms2 20630 16.

 28. Bakeberg MC, Hoes ME, Gorecki AM, Theunissen F, Pfaff AL, Kenna JE, 
et al. The TOMM40 ‘523’ polymorphism in disease risk and age of symp‑
tom onset in two independent cohorts of Parkinson’s disease. Sci Rep. 
2021;11:1–9. https:// doi. org/ 10. 1038/ s41598‑ 021‑ 85510‑0.

 29. Lu SZ, Guo YS, Liang PZ, Zhang SZ, Yin S, Yin YQ, et al. Suppression of 
astrocytic autophagy by αB‑crystallin contributes to α‑synuclein inclusion 
formation. Translational Neurodegeneration. 2019;8:1–14. https:// doi. org/ 
10. 1186/ s40035‑ 018‑ 0143‑7.

 30. Bill BR, Lowe JK, DyBuncio CT, Fogel BL. Orchestration of neurodevelop‑
mental programs by RBFOX1: Implications for autism spectrum disorder. 
Int Rev Neurobiol. 2013;113:251–67. https:// doi. org/ 10. 1016/ b978‑0‑ 12‑ 
418700‑ 9. 00008‑3.

 31. Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Par‑
kinson’s disease. Lancet Neurol. 2020;19:170–8. https:// doi. org/ 10. 1016/ 
S1474‑ 4422(19) 30287‑X.

 32. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres‑Ciga S, Chang D, 
et al. Identification of novel risk loci, causal insights, and heritable risk for Par‑
kinson’s disease: a meta‑analysis of genome‑wide association studies. Lancet 
Neurol. 2019;18:1091–102. https:// doi. org/ 10. 1016/ S1474‑ 4422(19) 30320‑5.

 33. Lee AJ, Kim C, Park S, Joo J, Choi B, Yang D, et al. Characterization of 
altered molecular mechanisms in Parkinson’s disease through cell type–
resolved multiomics analyses. Sci Adv. 2023;9:eabo2467. https:// doi. org/ 
10. 1126/ sciadv. abo24 67.

 34. Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein. 
Autophagy. 2013;9:1937–54. https:// doi. org/ 10. 4161/ auto. 26448.

 35. Blagg BSJ, Kerr TD. Hsp90 inhibitors: small molecules that transform the 
Hsp90 protein folding machinery into a catalyst for protein degradation. 
Med Res Rev. 2006;26:310–38. https:// doi. org/ 10. 1002/ med. 20052.

 36. Stanley P. Golgi glycosylation. Cold Spring Harb Perspect Biol. 
2011;3:a005199. https:// doi. org/ 10. 1101/ cshpe rspect. a0051 99.

 37. Bell SM, Burgess T, Lee J, Blackburn DJ, Allen SP, Mortiboys H. Peripheral 
glycolysis in neurodegenerative diseases. Int J Mol Sci. 2020;21:8924. 
https:// doi. org/ 10. 3390/ ijms2 12389 24.

 38. Marotta NP, Lin YH, Lewis YE, Ambroso MR, Zaro BW, Roth MT, et al. 
O‑GlcNAc modification blocks the aggregation and toxicity of the protein 
α‑synuclein associated with Parkinson’s disease. Nat Chem. 2015;7:913–
20. https:// doi. org/ 10. 1038/ nchem. 2361.

 39. Haas J, Berg D, Bosy‑Westphal A, Schaeffer E. Parkinson’s disease and 
sugar intake‑reasons for and consequences of a still unclear craving. 
Nutrients. 2022;14:3240. https:// doi. org/ 10. 3390/ nu141 53240.

 40. Murueta‑Goyena A, Andikoetxea A, Gómez‑Esteban JC, Gabilondo I. 
Contribution of the GABAergic system to non‑motor manifestations 
in premotor and early stages of Parkinson’s disease. Front Pharmacol. 
2019;10:1294. https:// doi. org/ 10. 3389/ fphar. 2019. 01294.

 41. Lozovaya N, Eftekhari S, Cloarec R, Gouty‑Colomer LA, Dufour A, Riffault 
B, et al. GABAergic inhibition in dual‑transmission cholinergic and GABAe‑
rgic striatal interneurons is abolished in Parkinson disease. Nat Commun. 
2018;9:1422. https:// doi. org/ 10. 1038/ s41467‑ 018‑ 03802‑y.

 42. Hajj R, Milet A, Toulorge D, Cholet N, Laffaire J, Foucquier J, et al. Combina‑
tion of acamprosate and baclofen as a promising therapeutic approach for 
Parkinson’s disease. Sci Rep. 2015;5:16084. https:// doi. org/ 10. 1038/ srep1 6084.

 43. Giehrl‑Schwab J, Giesert F, Rauser B, Lao CL, Hembach S, Lefort 
S, et al. Parkinson’s disease motor symptoms rescue by CRISPRa‑
reprogramming astrocytes into GABAergic neurons. EMBO Mol Med. 
2022;14:e14797. https:// doi. org/ 10. 15252/ emmm. 20211 4797.

 44. Boros FA, Maszlag‑Török R, Vécsei L, Klivényi P. Increased level of NEAT1 
long non‑coding RNA is detectable in peripheral blood cells of patients 
with Parkinson’s disease. Brain Res. 2020;1730:146672. https:// doi. org/ 10. 
1016/j. brain res. 2020. 146672.

 45. Dong LI, Zheng Y, Gao L, Luo X. lncRNA NEAT1 prompts autophagy 
and apoptosis in MPTP‑induced Parkinson’s disease by impairing miR‑
374c‑5p. Acta Biochim Biophys Sin. 2021;53:870–82. https:// doi. org/ 10. 
1093/ abbs/ gmab0 55.

 46. Simchovitz A, Hanan M, Niederhoffer N, Madrer N, Yayon N, Bennett ER, 
et al. NEAT1 is overexpressed in Parkinson’s disease substantia nigra and 
confers drug‑inducible neuroprotection from oxidative stress. FASEB J. 
2019;33:11223–34. https:// doi. org/ 10. 1096/ fj. 20190 0830r.

 47. Pan Y, Wang T, Zhao Z, Wei W, Xin W, Yang X, et al. Novel insights into the 
emerging role of Neat1 and its effects downstream in the regulation of 
inflammation. J Inflamm Res. 2022;15:557–71. https:// doi. org/ 10. 2147/ jir. 
s3381 62.

https://doi.org/10.1038/s41593-022-01061-1
https://doi.org/10.1016/j.ajhg.2018.10.018
https://doi.org/10.1016/j.neurobiolaging.2013.11.001
https://doi.org/10.1016/j.neurobiolaging.2013.11.001
https://doi.org/10.1016/j.molcel.2014.12.040
https://doi.org/10.1146/annurev-cellbio-100818-125512
https://doi.org/10.1146/annurev-cellbio-100818-125512
https://doi.org/10.1073/pnas.0710685105
https://doi.org/10.3233/jpd-202374
https://doi.org/10.1038/s41531-023-00446-8
https://doi.org/10.18632/aging.101064
https://doi.org/10.18632/aging.101064
https://doi.org/10.1016/j.neuron.2019.12.014
https://doi.org/10.18632/oncotarget.14104
https://doi.org/10.1038/s41593-020-00783-4
https://doi.org/10.1038/s41593-020-00783-4
https://doi.org/10.1016/j.neulet.2012.05.048
https://doi.org/10.1016/j.neulet.2012.05.048
https://doi.org/10.1186/s40478-019-0735-1
https://doi.org/10.1186/s40478-019-0735-1
https://doi.org/10.1073/pnas.1320401111
https://doi.org/10.1046/j.1471-4159.2003.02004.x
https://doi.org/10.3390/ijms22041636
https://doi.org/10.3390/ijms22041636
https://doi.org/10.1074/jbc.ra119.007645
https://doi.org/10.3390/ijms19030706
https://doi.org/10.3390/ijms22063016
https://doi.org/10.3390/ijms22063016
https://doi.org/10.1038/s41598-021-85510-0
https://doi.org/10.1186/s40035-018-0143-7
https://doi.org/10.1186/s40035-018-0143-7
https://doi.org/10.1016/b978-0-12-418700-9.00008-3
https://doi.org/10.1016/b978-0-12-418700-9.00008-3
https://doi.org/10.1016/S1474-4422(19)30287-X
https://doi.org/10.1016/S1474-4422(19)30287-X
https://doi.org/10.1016/S1474-4422(19)30320-5
https://doi.org/10.1126/sciadv.abo2467
https://doi.org/10.1126/sciadv.abo2467
https://doi.org/10.4161/auto.26448
https://doi.org/10.1002/med.20052
https://doi.org/10.1101/cshperspect.a005199
https://doi.org/10.3390/ijms21238924
https://doi.org/10.1038/nchem.2361
https://doi.org/10.3390/nu14153240
https://doi.org/10.3389/fphar.2019.01294
https://doi.org/10.1038/s41467-018-03802-y
https://doi.org/10.1038/srep16084
https://doi.org/10.15252/emmm.202114797
https://doi.org/10.1016/j.brainres.2020.146672
https://doi.org/10.1016/j.brainres.2020.146672
https://doi.org/10.1093/abbs/gmab055
https://doi.org/10.1093/abbs/gmab055
https://doi.org/10.1096/fj.201900830r
https://doi.org/10.2147/jir.s338162
https://doi.org/10.2147/jir.s338162


Page 24 of 24Martirosyan et al. Molecular Neurodegeneration  (2024) 19:7

 48. Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E. Astrocytic oxidative/nitro‑
sative stress contributes to Parkinson’s disease pathogenesis: The dual 
role of reactive astrocytes. Antioxidants. 2019;8:265. https:// doi. org/ 10. 
3390/ antio x8080 265.

 49. Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K, et al. The role of astrocytes 
in oxidative stress of central nervous system: A mixed blessing. Cell Prolif. 
2020;53:e12781. https:// doi. org/ 10. 1111/ cpr. 12781.

 50. Michael GJ, Esmailzadeh S, Moran LB, Christian L, Pearce RKB, Graeber 
MB. Up‑regulation of metallothionein gene expression in Parkinsonian 
astrocytes. Neurogenetics. 2011;12:295–305. https:// doi. org/ 10. 1007/ 
s10048‑ 011‑ 0294‑5.

 51. Collier TJ, Kanaan NM, Kordower JH. Aging and Parkinson’s disease: differ‑
ent sides of the same coin? Mov Disord. 2017;32:983–90. https:// doi. org/ 
10. 1002/ MDS. 27037.

 52. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, et al. Aggregated 
α‑synuclein activates microglia: a process leading to disease progression 
in Parkinson’s disease. FASEB J. 2005;19:533–42. https:// doi. org/ 10. 1096/ fj. 
04‑ 2751c om.

 53. Hamada N, Ito H, Nishijo T, Iwamoto I, Morishita R, Tabata H, et al. Essential 
role of the nuclear isoform of RBFOX1, a candidate gene for autism spec‑
trum disorders, in the brain development. Sci Rep. 2016;6:1–19. https:// 
doi. org/ 10. 1038/ srep3 0805.

 54. Lin L, Göke J, Cukuroglu E, Dranias MR, VanDongen AMJ, Stanton LW. 
Molecular features underlying neurodegeneration identified through 
in vitro modeling of genetically diverse Parkinson’s disease patients. Cell 
Rep. 2016;15:2411–26. https:// doi. org/ 10. 1016/j. celrep. 2016. 05. 022.

 55. Tornatore C, Baker‑Cairns B, Yadid G, Hamilton R, Meyers K, Atwood W, 
et al. Expression of tyrosine hydroxylase in an immortalized human fetal 
astrocyte cell line; in vitro characterization and engraftment into the 
rodent striatum. Cell Transplant. 1996;5:145–63. https:// doi. org/ 10. 1177/ 
09636 89796 00500 206.

 56. Segovia J, Vergara P, Brenner M. Astrocyte‑specific expression of tyrosine 
hydroxylase after intracerebral gene transfer induces behavioral recovery 
in experimental Parkinsonism. Gene Ther. 1998;5:1650–5. https:// doi. org/ 
10. 1038/ sj. gt. 33007 76.

 57. Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see 
it?: Dopamine‑mediated immune cell function in health and disease. 
J Neuroimmune Pharmacol. 2020;15:114–64. https:// doi. org/ 10. 1007/ 
s11481‑ 019‑ 09851‑4.

 58. Mastroeni D, Grover A, Leonard B, Joyce JN, Coleman PD, Kozik B, et al. 
Microglial responses to dopamine in a cell culture model of Parkinson’s 
disease. Neurobiol Aging. 2009;30:1805–17. https:// doi. org/ 10. 1016/j. 
neuro biola ging. 2008. 01. 001.

 59. Petrelli F, Dallérac G, Pucci L, Calì C, Zehnder T, Sultan S, et al. Dysfunc‑
tion of homeostatic control of dopamine by astrocytes in the develop‑
ing prefrontal cortex leads to cognitive impairments. Mol Psychiatry. 
2018;25:732–49. https:// doi. org/ 10. 1038/ s41380‑ 018‑ 0226‑y.

 60. Takahashi S, Koizumi S. Neuroprotective function of high glycolytic 
activity in astrocytes: common roles in stroke and neurodegenerative 
diseases. Int J Mol Sci. 2021;22:6568. https:// doi. org/ 10. 3390/ ijms2 
21265 68.

 61. Pike AF, Longhena F, Faustini G, van Eik JM, Gombert I, Herrebout MAC, 
et al. Dopamine signaling modulates microglial NLRP3 inflammasome 
activation: implications for Parkinson’s disease. J Neuroinflammation. 
2022;19:50. https:// doi. org/ 10. 1186/ s12974‑ 022‑ 02410‑4.

 62. Habib N, Li Y, Heidenreich M, Swiech L, Avraham‑Davidi I, Trombetta JJ, 
et al. Div‑Seq: Single‑nucleus RNA‑Seq reveals dynamics of rare adult 
newborn neurons. Science. 2016;353:925–8. https:// doi. org/ 10. 1126/ 
scien ce. aad70 38.

 63. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of 
cell doublets in single‑cell transcriptomic data. Cell Syst. 2019;8:281‑291.
e9. https:// doi. org/ 10. 1016/j. cels. 2018. 11. 005.

 64. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. 
Comprehensive integration of single‑cell data. Cell. 2019;177:1888‑1902.
e21. https:// doi. org/ 10. 1016/j. cell. 2019. 05. 031.

 65. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized 
gene‑set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219. 
https:// doi. org/ 10. 1371/ journ al. pcbi. 10042 19.

 66. Reynolds RH, Botía J, Nalls MA, International Parkinson’s Disease Genom‑
ics Consortium (IPDGC), System Genomics of Parkinson’s Disease (SGPD), 
Hardy J, et al. Moving beyond neurons: the role of cell type‑specific gene 

regulation in Parkinson’s disease heritability. NPJ Parkinsons Dis 2019;5:6. 
https:// doi. org/ 10. 1038/ s41531‑ 019‑ 0076‑6.

 67. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal 
enrichment tool for interpreting omics data. Innovation (Cambridge 
(Mass)). 2021;2:100141. https:// doi. org/ 10. 1016/j. xinn. 2021. 100141.

 68. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, 
et al. Metascape provides a biologist‑oriented resource for the analysis of 
systems‑level datasets. Nat Commun. 2019;10:1523. https:// doi. org/ 10. 
1038/ s41467‑ 019‑ 09234‑6.

 69. Petukhov V, Xu RJ, Soldatov RA, Cadinu P, Khodosevich K, Moffitt JR, et al. 
Cell segmentation in imaging‑based spatial transcriptomics. Nat Biotech‑
nol. 2022;40:345–54. https:// doi. org/ 10. 1038/ s41587‑ 021‑ 01044‑w.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.3390/antiox8080265
https://doi.org/10.3390/antiox8080265
https://doi.org/10.1111/cpr.12781
https://doi.org/10.1007/s10048-011-0294-5
https://doi.org/10.1007/s10048-011-0294-5
https://doi.org/10.1002/MDS.27037
https://doi.org/10.1002/MDS.27037
https://doi.org/10.1096/fj.04-2751com
https://doi.org/10.1096/fj.04-2751com
https://doi.org/10.1038/srep30805
https://doi.org/10.1038/srep30805
https://doi.org/10.1016/j.celrep.2016.05.022
https://doi.org/10.1177/096368979600500206
https://doi.org/10.1177/096368979600500206
https://doi.org/10.1038/sj.gt.3300776
https://doi.org/10.1038/sj.gt.3300776
https://doi.org/10.1007/s11481-019-09851-4
https://doi.org/10.1007/s11481-019-09851-4
https://doi.org/10.1016/j.neurobiolaging.2008.01.001
https://doi.org/10.1016/j.neurobiolaging.2008.01.001
https://doi.org/10.1038/s41380-018-0226-y
https://doi.org/10.3390/ijms22126568
https://doi.org/10.3390/ijms22126568
https://doi.org/10.1186/s12974-022-02410-4
https://doi.org/10.1126/science.aad7038
https://doi.org/10.1126/science.aad7038
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1371/journal.pcbi.1004219
https://doi.org/10.1038/s41531-019-0076-6
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41587-021-01044-w

	Unravelling cell type-specific responses to Parkinson’s Disease at single cell resolution
	Abstract 
	Introduction
	Results
	Single nucleus RNA-seq reveals cell type heterogeneity in human SNpc
	Neuronal subpopulations in aged human SNpc and their response in sporadic PD
	Astrocyte subpopulations in aged human SNpc and their responses in sporadic PD
	Microglia subpopulations in aged human SNpc and their response in sporadic PD
	Oligodendrocyte subpopulations in aged human SNpc and their response in sporadic PD
	PD-associated genes and genes near PD-associated variants show cell type-specific expression patterns
	TH among several common genes enriched in cell types depleted in sporadic PD samples

	Discussion
	Methods
	Selection of donors
	Isolation of nuclei from frozen post-mortem brain tissue and single nucleus RNA-seq
	Pre-processing single nucleus RNA-seq data
	Quality control of single nucleus RNA-seq data
	Initial processing for downstream identification of major cell types
	Downstream processing for identification of cell subpopulations

	Single nucleus RNA-seq data—integration of the datasets and clustering
	Single nucleus RNA-seq data – cell type enriched marker identification
	PD gene association analysis
	Assessing relative cell type enrichment of genes near PD-associated variants
	Single nucleus RNA-seq data—differential gene-expression analysis among phenotypes
	Pathway analysis
	Spatial transcriptomics—sample preparation
	Spatial transcriptomics—molecular cartography
	Spatial transcriptomics—object segmentation
	Spatial transcriptomics—quality control
	Spatial transcriptomics—cell type classification and clustering
	Meta-data analysis

	Acknowledgements
	References


