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Brain clearance of protein aggregates: 
a close-up on astrocytes
Veronica Giusti1, Gurkirat Kaur2, Elena Giusto1* and Laura Civiero1,2*   

Abstract 

Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally result-
ing in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular 
space and be subsequently transferred among different cell types, thus spreading between connected brain districts.

Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evi-
dence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used 
by astrocytes to remove misfolded proteins are still largely unknown.

Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils 
that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight 
the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, 
collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-
mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized 
by protein misfolding and accumulation.
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Background
Proteinopathies of the central nervous system (CNS) are 
characterized by the progressive misfolding, aggregation 
and accumulation of amyloidogenic proteins, which ulti-
mately results in the formation of pathological deposits 
[1]. The amyloidogenic nature of these proteins is defined 
by their propensity to polymerize into fibrils with a pre-
dominant cross β-sheet structure, most likely due to 
the presence of distinctive aggregation prone regions 
(APRs), in spite of otherwise dissimilar sequences, struc-
tures and functions [2] (Fig.  1A-B). Among the most 

studied, Amyloid-β (Aβ), Tau, α-Synuclein (α-Syn) and 
TAR DNA-binding protein-43 are commonly associ-
ated, either alone or in combination, with some major 
neurodegenerative disorders (NDs), including Alzheimer 
disease (AD), Parkinson’s disease (PD) and amyotrophic 
lateral sclerosis (for a comprehensive review, please see 
[3]).

α-Syn and Tau are prototypical examples of amyloido-
genic proteins, for which similarities in the course of mis-
folding, aggregation and spreading have been described, 
thus supporting their implication in the onset of major 
proteinopathies [4, 5]. α-Syn consists of three distinct 
regions: an amphipathic acetylated N-terminal domain 
(aa 1–60), the non-amyloid β component (NAC) domain 
(aa 61–95) and an acidic carboxyl tail (aa 96–140) 
(Fig.  1A). The NAC domain represents the core of the 
protein, and it is accounted as the major responsible for 
α-Syn-induced toxicity, due to its potential to promote 
aggregation [6]. α-Syn aggregates are primarily found 
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within Lewy bodies and Lewy neurites in neurons of 
patients affected by PD, PD with dementia and dementia 
with Lewy bodies (DLB), a class of proteinopathies with 
similar clinical outcomes, characterized by substantial 
cognitive and motor alterations, collectively indicated as 
“synucleinopathies” [7]. Of note, α-Syn aggregates are not 
a peculiar characteristic of neurons, although most stud-
ies so far have analyzed the toxicity of α-Syn inclusions 
mainly in these cells. Indeed, the presence of α-Syn aggre-
gates has been confirmed also in glial cells. An example is 
represented by multiple system atrophy (MSA), in which 
α-Syn is predominantly accumulated within oligodendro-
cytes [8].

Similarly, the expression “tauopathies” has been intro-
duced to indicate a group of proteinopathies defined 
by the presence of Tau aggregates. Tau is encoded by 
the microtubule-associated protein Tau (MAPT) gene, 
which can give rise to different isoforms of the protein 
upon multiple alternative splicing events. Specifically, 
Tau isoforms can be distinguished for the presence of 
either three (3R) or four (4R) repetitions of highly con-
served domains at their C-terminal combined with 
the expression of none (0 N), one (1 N) or two (2 N) 
repeated sequences at the N-terminal [9] (Fig.  1B). In 
some cases, specific isoforms can be associated to dis-
tinct tauopathies; as an example, 3R-Tau aggregates are 

commonly found in patients affected by Pick’s disease, 
4R-Tau is characteristic of progressive supranuclear 
palsy (PSP)  tangles, while AD patients present aggre-
gates with both 3R- and 4R-Tau isoforms [10]. Moreover, 
tauopathies are conventionally indicated as “primary” 
when dysfunctional Tau is the leading cause of the dis-
ease, and “secondary” when Tau-pathology is contingent 
on (or associated with) other major pathological condi-
tions [11]. Primary tauopathies include frontotemporal 
dementia, Pick’s disease, PSP, corticobasal degeneration 
(CBD), globular glial tauopathy, argyrophilic grain dis-
ease, primary age-related tauopathy and aging-related 
Tau astrogliopathy, while AD, chronic traumatic enceph-
alopathy, Down syndrome and dementia with Lewy bod-
ies belong to secondary tauopathies [12].

Amyloid aggregates (with a major exception for Aβ) are 
mainly retained within the cytoplasm of affected cells; 
in some cases, however, they can be transferred to sur-
rounding cells or released in the extracellular space, thus 
triggering the progression and spreading of the pathol-
ogy. It has been consistently shown that extracellular 
aggregates can alter neurotransmitter signaling, impair 
synaptic transmission and long-term potentiation (LTP) 
[13]. As an example, the application of α-Syn oligomers 
reduces LTP in mice hippocampal slices through the acti-
vation of N-methyl-D-aspartate receptors [13]. Likewise, 
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Fig. 1 Common processes of α-Syn and Tau aggregation in neurons. Schematic representation of α-Syn (A) and Tau (B) structures with depicted 
some of the most common mutations. Both the proteins include an aggregation prone region (APR), a short sequence of amino acids (6–7 
residues) which confers an amyloid-like competence to form β-sheet structures. (C) In physiological conditions amyloidogenic proteins exist mainly 
as monomers. However, several factors may contribute to the progressive formation of oligomers and filaments, finally leading to the clinical onset 
of proteinopathies. Depending on the patient characteristic, α-Syn and Tau can give origin to a spectrum of synucleinopathies and tauopathies, 
respectively



Page 3 of 18Giusti et al. Molecular Neurodegeneration            (2024) 19:5  

the increased phagocytic activity performed by glial cells 
in presence of extracellular aggregates can lead to detri-
mental effects, finally affecting their homeostatic func-
tions and adding to the overall degree of inflammation 
[14]. Indeed, the treatment of rat dopaminergic primary 
neurons with α-Syn in the presence of microglia induces 
neuronal toxicity, most likely due to an increased oxi-
dative stress mediated by the activated microglia [15]. 
Therefore, the proper removal of extracellular aggregates 
is crucial to preserve a viable microenvironment and pre-
vent CNS damage.

Microglia are commonly indicated as the tissue-res-
ident macrophages, representing the forefront in the 
removal of unwanted debris, including protein aggre-
gates. However, it is becoming increasingly obvious that 
astrocytes can offer a significant help in this clearance 
activity and may compensate for impaired microglial 
phagocytosis, as suggested by in vivo experimental mod-
els of microglia-directed ablation [16]. Moreover, astro-
cytes actively participate in the elimination of unwanted, 
toxic material, including aggregates, and their engage-
ment in synaptic pruning in the developing brain is well 
established [17]. In support of this, astrocytes express 
several receptors, cytosolic and transmembrane mol-
ecules involved in phagocytosis and macropinocytosis, 
some of which are shared with microglia. Among these 
AXL, MER Proto-Oncogene Tyrosine Kinase (MERTK), 
Multiple EGF Like Domains 10 (MEGF10), αvβ5 integ-
rin, the low density lipoprotein receptor-related protein 1 
(LRP1), Cone-Rod Homeobox, Dedicator Of Cytokinesis 
1 and GULP PTB domain containing engulfment adaptor 
1 (Gulp1) have been shown to be expressed in mice [17, 
18]. Interestingly, the expression of some of these recep-
tors may be upregulated in mice upon prolonged stress 
or in pathological conditions such as experimental tran-
sient middle cerebral artery occlusion, a model of stroke 
[19, 20].

Nevertheless, questions related to the nature and speci-
ficity of the molecular machinery responsible for amyloid 
proteins recognition and internalization in astrocytes 
remain largely unsolved. How do astrocytes collect extra-
cellular aggregates? Is this a process mediated by recep-
tors able to differentially recognize distinct amyloid 
proteins, or is it a less targeted process involving com-
mon players? Are mechanisms other than phagocytosis 
implicated? In addition, there are several questions asso-
ciated with the outcome of aggregates upon internaliza-
tion: are astrocytes able to efficiently digest the engulfed 
material, or is their degradative system unprepared to 
fully process amyloid aggregates? In the latter case, how 
are the aggregates finally cleared out? Answers to these 
questions will allow us to better define the still question-
able role of astrocytes in NDs (beneficial vs detrimental) 

and to possibly find novel and specific therapeutic targets 
to restore or enhance astrocyte-mediated clearance.

Mechanisms for α‑Syn and Tau aggregation 
and propagation
In homeostatic conditions, both α-Syn and Tau exist 
mainly in the form of soluble proteins. However, in 
pathological circumstances, a yet unidentified trigger-
ing event initiates a cascade of protein misfolding and 
oligomerization, which leads to the formation of “seeds”. 
For the most part, these seeds are promptly recognized 
and halted by the cellular quality control system which 
allows the elimination of misfolded or dysfunctional 
proteins and ensures cellular proteostasis [21]. Clear-
ance of altered proteins may occur either through the 
boost of the intracellular degradation systems or through 
the release of the damaged proteins in the extracellular 
space. Protein degradation can follow two different path-
ways: the ubiquitin-proteasome system (UPS), mainly 
addressed to the elimination of short-lived and solu-
ble proteins, or the lysosomal system, which is mainly 
responsible for the degradation of long-lived and insol-
uble aggregates [22]. The UPS is a multistep process, 
which involves the activity of three different ubiquitin 
enzymes and of the proteasome, a protein complex dedi-
cated to the catalytic degradation of ubiquitin-marked 
proteins [23]. Lysosomes, instead, receive proteins deter-
mined for elimination from different vesicular pathways, 
including endosomes, phagosomes, autophagosomes and 
amphisomes. While endosomes and phagosomes are 
responsible for the internalization of extracellular mate-
rial, amphisomes and autophagosomes are engaged in 
the clearance of intracellular misfolded or dysfunctional 
proteins, a process known as autophagy -further divided 
into microautophagy, macroautophagy and chaperone-
mediated autophagy (for a detailed review, please see 
[24]). Macroautophagy starts with the formation of a 
newly synthesized double-layered membrane, called pha-
gophore, which encloses the material to be degraded and 
subsequently fuses to form an autophagosome. The lat-
ter can further coalesce with late endosomes or multi-
vesicular bodies to form amphisomes, which represent a 
junction point between endocytosis and autophagy and 
contribute to the maturation of autophagosomes [25]. 
Finally, amphisomes fuse with lysosomes to form autolys-
osomes, where the cargo is finally degraded by lysosomal 
enzymes [25].

Otherwise, to maintain their own homeostasis, cells 
may release dysfunctional proteins into the extracellular 
space either as free molecules or by means of exosomes; 
moreover, cells can transfer some of their content to 
neighboring cells through the extension of tunneling 
nanotubes (TNTs) (see below).
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Despite the availability of these options for the cells to 
remove misfolded proteins, in a minority of cases, seeds 
may persist and initiate a nucleation event, offering the 
basis for the progressive maturation of amyloid fibrils. 
Fibrils can in turn break and serve as new seeds, thus 
perpetuating a deleterious process, which finally results 
in neuronal dysfunction and death (Fig.  1C) [1]. Along 
this multi-step progression, aberrant proteins assume 
several transient conformations, and are gradually con-
verted into β-sheet-rich oligomers, thus far considered 
the most likely species at fault for the onset and devel-
opment of the pathological insult [26]. The chance for 
the oligomer formation to occur increases significantly 
with aging or in pathological circumstances character-
ized by elevated expression, mutations, or post-transla-
tional modifications (PTMs) of native proteins [27–30]. 
Indeed, studies of genetic imbalance and comparative 
genome wide association studies focusing on alterations 
within the promoter region have shown that variabili-
ties in the amount of protein expression correlate with 
the formation of aggregates and the consequent onset of 
NDs [31–33]. Likewise, gene mutations, as well as pro-
tein PTMs, may also result in the formation of fibrils 
with specific structural and functional properties, also 
known as strains (see Suppl. Table 1). Initial studies have 
shown that mutations such as A53T and A30P lead to 
faster kinetics of fibrillogenesis in vitro and in cells com-
pared to wild type α-Syn [34, 35]. Moreover, mice over-
expressing A53T show neuropathological signs typical of 
PD, whose severity correlates with the amount of α-Syn 
expressed [36]. Boyer and colleagues have shown that 
the H50Q mutation of α-Syn determines a rearrange-
ment of the protofilament interface, finally leading to a 
fibril with faster kinetics of fibrillogenesis in vitro, which 
resulted in higher seeding and toxicity in cells [37]. Zhao 
et  al. have shown that the E46K mutation determines a 
conformational change by altering some electrostatic 
interactions with residue K80 of α-Syn, thus leading to 
a structural polymorph with less stability [38]. Sun and 
colleagues have demonstrated that α-Syn fibrils with the 
G51D mutation can induce wild type fibrils to change 
their structural organization and cross seed with mutant 
fibrils in vitro [39]. N- and C-truncated polymorphs are 
also known to exist as a result of α-Syn incomplete degra-
dation. Notably, C-truncated α-Syn exhibits a higher pro-
pensity to aggregate and enhanced cytotoxicity compared 
to wild type strains [40]. On the contrary, deletions of the 
N-terminal have shown reduced seeding abilities in vitro 
[41]. Post-translational modifications, such as phospho-
rylation, ubiquitination, acetylation, sumoylation, glyca-
tion, glycosylation, nitration and oxidation may also alter 
the structure, and thereof the function of α-Syn [42, 43].

Likewise, mutations in the gene coding for MAPT may 
affect the aggregation propensity of Tau by altering its 
“paperclip” structure, by stabilizing its aggregation core 
or by influencing the occurrence of PTMs (for a complete 
review, please see [44]). Moreover, these mutations may 
induce or prevent alternative splicing events, thus alter-
ing the ratio between 3R and 4R isoforms. In a very inter-
esting paper, Strang and colleagues compared the effect 
of 15 different MAPT mutations on the aggregation 
properties of Tau upon treatment of cells with wild type 
K18 Tau (a truncated form of Tau commonly used to seed 
aggregation) [45]. In this paper, the authors found that 
the P301L, P301S, and S320F mutations led to a higher 
degree of aggregation in HEK293T cells [45]. Interest-
ingly, in another comparative study, two mutants, namely 
L315R and K369I underwent lower aggregation in  vitro 
upon arachidonic acid-induced polymerization [46]. 
Moreover, in this study, electron microscopy and right-
angle laser light scattering analyses showed that differ-
ent mutations were able to influence the ability of Tau to 
stabilize microtubules [46]. Notably, strains which differ 
for their conformational structures may induce the accu-
mulation of specific variants, thus explaining, at least in 
part, the clinical variability observed in patients [38, 47, 
48]. In the case of synucleinopathies, fibril strains with 
distinct characteristics have been isolated from patients 
affected by different pathologies, such as PD, MSA or 
DLB [49]. Similarly, fibrils with different structures have 
been shown to characterize the brains of patients affected 
by distinct tauopathies, including AD, PSP and Pick’s 
Disease [50, 51]. This is important also from a diagnostic 
point of view, since amplification protocols (e.g. protein 
misfolding cyclic amplification) associated with biochem-
ical techniques, spectroscopy and cryo-electron tomog-
raphy can discriminate patients affected by pathologies 
with partial clinical overlap (e.g PD vs MSA) through 
the analyses of cerebrospinal fluid (CSF) samples [52]. 
Finally, aggregates of different natures coexist in the same 
patient, a phenomenon that suggests an ability of fibrils 
to cross-seed and interact, likely increasing the level of 
clinical variability (reviewed in [1, 53]).

Self-propagating seeds are thought to behave as prion-
like proteins, alluding to their ability to induce strain/
conformational-specific aggregates and subsequently 
travel to neighboring cells [54]. In cells, this prion-like 
behavior has been extensively validated [48, 55–57]. 
In mice, the inoculation of fibrils obtained from patho-
logical human or mouse brain extracts induces protein 
aggregation in the receiving host [58]. Likewise, newly 
formed aggregates of α-Syn have been found in human 
fetal cells years after their transplantation in the brain of 
PD patients [59].
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The prion-like hypothesis pairs up with the Braak stag-
ing model, according to which aggregates propagate by 
following a hierarchical distribution and define a topo-
graphical pattern specific for each disease [60]. Although 
not utterly accepted by the scientific community yet, 
the Braak hypothesis is constantly growing confidence 
in the field. This stereotypical march between anatomi-
cally related brain regions most likely occurs on account 
of physical connections held by neighboring cells, which 
sustains the idea of a non-cell autonomous mechanism at 
the base of the disease spreading [61]. In support of this, 
spatial patterns of Tau distribution through synaptically 
connected neurons have been recently identified in stud-
ies analyzing Tau-Positron emission tomography signals 
in living subjects and integrated with simulating models 
[62, 63].

Origins of α‑Syn and tau in astrocytes
Both α-Syn and Tau are typically assumed to be neu-
ronal proteins. α-Syn is preferentially located at the 
pre-synaptic terminals where it is involved in the mobili-
zation of the synaptic vesicles to the pre-synaptic plasma 
membrane [64]. Tau is a microtubule-associated protein 
involved in the assembly and maintenance of the micro-
tubule network, which is crucial for the transport of mol-
ecules within neurons [65]. Therefore, the discovery of 
α-Syn and Tau aggregates within astrocytes in patients 
affected by proteinopathies, has opened new questions 
about the origin of these astrocytic deposits.

To date, there is little evidence regarding the expres-
sion levels and the physiological role of α-Syn in astro-
cytes, but one hypothesis is that α-Syn may be implicated 
in astrocytic fatty acid metabolism [66]. Indeed, the neu-
rotoxic effects of α-Syn could be decreased by a reduced 
fatty acid saturation in neural cells and primary neurons 
[67]. However, how α-Syn affects fatty acid metabolism 
in astrocytes should be further investigated. Although 
present at very low levels, endogenous α-Syn mRNA and 
protein can be enhanced in vitro by various inflammatory 
cytokines (e.g. IL-1β) or by conditions of cellular stress 
in cultured human and rat astrocytes [68, 69]. Astro-
cytes derived from human induced pluripotent stem cells 
(iPSCs) obtained from PD patients, express more α-Syn 
compared to astrocytes derived from healthy patients. 
This α-Syn is subsequently transferred to healthy ven-
tral midbrain dopaminergic neurons when grown in co-
cultures, finally leading to neuronal degeneration [70]. 
Likewise, Sonninen and colleagues have shown that 
iPSCs-derived astrocytes obtained from patients with 
familial PD present an increased amount of α-Syn com-
pared to iPSCs-derived astrocytes obtained from healthy 
controls, both at mRNA and protein level [71]. In par-
ticular, the transcript for SCNA increased along with the 

differentiation process; interestingly, while PD-derived 
astrocytes showed more intracellular α-Syn than control-
derived astrocytes, there was no difference in the amount 
of released protein, as shown by ELISA quantification 
[71]. In contrast, Tsunemi and colleagues have shown 
that lysates of (healthy) human iPSCs-derived astrocytes 
do not present endogenous α-Syn inclusions unless when 
they are co-cultured with dopaminergic neurons derived 
from iPSCs of patients with SCNA triplication, thus sug-
gesting a neuronal origin for astrocytic α-Syn inclusions 
[72]. In line with this, transgenic mice expressing α-Syn 
under a neuronal promoter, such as platelet-derived 
growth factor B-chain, present α-Syn aggregates both 
within astrocytes and neurons. Importantly, though, 
in  situ hybridization analyses in these mice show that 
SCNA mRNA is present in neurons but not in astrocytes, 
once more suggesting that neurons may be the source 
of astrocytic α-Syn [73]. The origin of Tau in astrocytes 
is also controversial since it is commonly believed that 
astrocytes do not express endogenous Tau. However, 
some studies suggest that astrocytes do possess an inher-
ent potential to transcribe MAPT. Indeed, a low level of 
astrocytic MAPT mRNA has been validated in healthy 
mice and in humans, and its expression may become 
more pronounced in a pathological context such as glio-
blastoma [74–76]. However, astrocytes derived from 
mice injected with AAV ubiquitously expressing either 
wild type human Tau or a pro-aggregating form of the 
same (both leading to neuronal tauopathy) did not show 
an upregulation of the endogenous MAPT gene, as quan-
tified by RT-qPCR [77]. Moreover, despite the low level of 
Tau expressed by astrocytes in physiological conditions, 
a study has recently shown that astrocytes obtained from 
 Tau−/− mice present a neuroprotective phenotype in vitro 
compared to astrocytes obtained from wild type mice, 
thus suggesting that astrocytic Tau may actually imply a 
functional consequence [78].

Recently, by using RNAscope imaging and single-
nuclear RNAseq, Forrest and colleagues have shown the 
presence of the MAPT transcript in astrocytes (other 
than neurons and oligodendrocytes) both in patients 
affected by PSP and in control subjects [79]. Interest-
ingly, the amount of MAPT in PSP patients was similar 
between healthy and tufted astrocytes [79]. Moreover, by 
using the same techniques, Fiock and colleagues found 
that the number of astrocytes expressing MAPT and the 
amount of MAPT expressed by each astrocyte is com-
parable between patients affected by AD, CBD, PSP and 
healthy controls [80]. Also in this case, the authors did 
not find differences in the expression of MAPT between 
astrocytes with or without Tau aggregates in PSP patients 
[80]. As proposed in the first paper, it is likely that astro-
cytes express a basal amount of Tau, whose accumulation 
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exacerbates upon the uptake of neuron-released Tau. 
Alternatively, some still undefined conditions may trig-
ger the autonomous aggregation of Tau within astrocytes 
[79]. This latter observation could explain why in some 
pathological conditions, such as PSP, CBD and Pick’s dis-
ease, astrocytes show deposits of Tau in the absence of 
neuronal Tau [81]. However, in contrast with these obser-
vations, the knockdown of neuronal Tau expression in 
transgenic mice inhibits the propagation of Tau pathol-
ogy in astrocytes, thus suggesting that neuron-derived 
Tau is necessary for astrocytes to spread the disease [82].

Altogether, these studies suggest that astrocytes may 
express a very low level of endogenous α-Syn and Tau. A 
plausible assumption, therefore, is that astrocytes shall 
inherit pathological protein aggregates from external 
sources, with neurons being the most likely suppliers.

Transferring of protein aggregates from neurons 
to astrocytes
The release of proteins lacking a secretory signal peptide 
(like α-Syn and Tau) generally follows unconventional 
pathways that do not rely on the involvement of the 
endoplasmic reticulum and of the Golgi apparatus. The 
secretion of these proteins may instead occur through the 
formation of a pore in the plasma membrane or through 
the release of membranous organelles that fuse with 

the plasmalemma [83]. Alternatively, proteins can be 
released in the extracellular environment upon cell dam-
age and death [83, 84] (Fig.  2A). Secreted proteins can 
therefore be found as free molecules or enclosed within 
vesicles. In agreement, α-Syn and Tau are found mainly 
in their naked form in cell culture-derived media or in 
human biofluids, but they can also be wrapped within 
intraluminal vesicles such as exosomes and ectosomes 
where they maintain their seeding potential [85–87] 
(Fig.  2B). Indeed, amyloid proteins restrained within 
exosomes can leak out the vesicles upon endolysosomal 
permeabilization and work as new seeds [88]. Oligomeric 
species of α-Syn enclosed within exosomes are internal-
ized by human H4 neuroglioma cells and induce a higher 
level of apoptosis compared to free α-Syn [89]. In agree-
ment, several reports have shown that α-Syn-containing 
exosomes isolated from the CSF of patients affected 
by PD or by dementia with Lewy bodies can induce the 
oligomerization of α-Syn in vitro and in animal models, 
thus reinforcing the idea that exosomes may efficiently 
contribute to the spreading of the pathology [90].

Similarly, Tau is retained within the intraluminal side 
of exosomes, and the release of Tau-containing exosomes 
has been shown to occur in neuroblastoma cells, primary 
cortical neurons and organotypic cultures. Interestingly, 
even though exosomal Tau represents a minimal fraction 

Fig. 2 Modalities of amyloidogenic protein transmission from neurons to astrocytes. The figure shows several modalities by which α-Syn and Tau 
can be transferred from neurons to astrocytes. Specifically: amyloid proteins are released as free molecules by neurons upon degeneration 
and membrane rupture (1) (A). Alternatively, amyloid proteins can be transferred within extracellular vesicles (EVs) (B) or by means of Tunneling 
nanotubes (TNTs), either as free aggregates (2) or within lysosomal-derived vesicles (3) (C). Internalized proteins can be partially degraded 
through the endo-lysosomal pathway (4) or accumulate within astrocytes (5)
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of total extracellular Tau, exosomes derived from the con-
dition media obtained from cultured neuroblastoma cells 
(N2a), or from the CSF of early AD patients contain sig-
nificantly higher levels of phosphorylated (but not total) 
Tau compared to age-matched healthy subjects, although 
some controversies exist [91]. Tau-containing exosomes 
derived from the brain of rTg4510 mice (that express the 
human 4R0N Tau with the P301L mutation) contain a 
higher amount of phosphorylated Tau compared to con-
trol mice and this exosome-derived Tau is able to induce 
aggregation in acceptor cells [92]. Nevertheless, by using 
specific antibodies able to recognize phosphorylated Tau, 
Wang and colleagues showed that exosomal Tau released 
by rat primary neurons in culture is hypophosphorylated 
compared to intracellular Tau [93]. Of note, treatment of 
N2a cells overexpressing a pro-aggregation form of Tau 
(TauRDΔK) with exosomes isolated from human CSF 
induces aggregation of Tau, although there is no signifi-
cant difference in the seeding properties between AD- 
and healthy subject-derived exosomes [93].

However, although some indications show that astro-
cytes can uptake α-Syn-containing exosomes released 
by neurons and upregulate the expression of pro-inflam-
matory cytokines, these cells show limited ability to 
receive exosomes compared to neurons and microglia 
[94]. Therefore, it is likely that this may not represent the 
major pathway for α-Syn and Tau entry in astrocytes.

Most cells, including neurons and glia, can interact and 
exchange intracellular material by stretching networks 
of TNTs, actin-based extensions of the cells (50–200 nm 
in diameter) which are formed de novo to enable distal 
contact with neighboring cells [95]. Initially identified as 
unbranched channels conveying membranes of the endo-
lysosomal system, TNTs have been subsequently shown 
to mediate both electrical and functional coupling by 
establishing a continuous connection between remote 
cells [96, 97]. The cargo transported by TNTs is quite 
heterogeneous and include organelles, cellular vesicles, 
cytoplasmic molecules and pathogens [98]. TNTs have 
been suggested to favor the spreading of prion and prion-
like proteins, including α-Syn and Tau [99–102] (Fig. 2C). 
Of relevance, Abounit and colleagues have shown that 
the treatment with α-Syn fibrils induces the formation 
of TNTs in catecholaminergic mouse neuron-like cells 
(CAD cells) and in primary neurons [101]. In particular, 
the authors showed that α-Syn fibrils travel within TNTs 
enclosed in lysosomal-derived vesicles, thus favoring 
the transfer of α-Syn from donor to acceptor cells [101]. 
TNT-based intercellular exchange of α-Syn occurs also 
in SH-SY5Y cells, in primary human brain pericytes and 
between astrocytes derived from human embryonic stem 
cells [103, 104]. Interestingly, healthy astrocytes were 
shown to use TNTs to transfer functional mitochondria 

to α-Syn exposed astrocytes, thus suggesting that these 
structures may serve as a rescue strategy [104].

Similarly to α-Syn, overexpressed Tau (2N4R and 
1N4R) was found to favor the formation of TNTs and 
to be transported within these structures between com-
municating CAD cells as well as between primary neu-
rons [100, 105]. TNTs-mediated transport of Tau (and 
β-amyloid) has been shown also in glial cell lines in stress 
conditions that favor the formation of TNTs [106]. Fibrils 
composed of a truncated form of Tau (K18) as well as Tau 
obtained from AD brain extracts can propagate between 
CAD or SH-SY5Y cells within TNTs and are able to seed 
the formation of new aggregates upon intercellular trans-
fer. Similar results have been observed also in organo-
typic cultures where Tau aggregates can be received by 
both neurons and astrocytes through TNT-mediated 
transfer [107].

Astrocyte‑mediated phagocytosis of aggregated proteins
Astrocytes can collect extracellular aggregates by means 
of receptor-mediated phagocytosis/pinocytosis (Fig.  3). 
Toll-like receptors (TLRs) are among the most promising 
candidates for the uptake of α-Syn in astrocytes. TLRs are 
part of the pattern recognition receptors family, and their 
overexpression in both neurons and glia have been docu-
mented both in PD patients and in transgenic mice over-
expressing α-Syn [108, 109]. Treatment of astrocytes with 
conditioned media obtained from SH-SY5Y cells over-
expressing α-Syn induces the upregulation of TLR2 and 
their switch to a pro-inflammatory gene expression pro-
file [73]. In accordance, the administration of anti TLR2 
antibody in mice expressing α-Syn under the Thy1 pro-
moter reduces the proinflammatory profile of astrocytes, 
most likely due to a decreased transfer of α-Syn from 
neurons to astrocytes [109]. Of note, TLRs are expressed 
also by microglia, and, similarly to astrocytes the treat-
ment of rat microglia with α-Syn induces the switch to a 
pro-inflammatory phenotype through the activation of 
TLR2 [110]. Likewise, the activation of TLR4 mediated 
by different forms of α-Syn (soluble, fibrillary and trun-
cated) promotes the phagocytic activity in microglia and 
its transition to an activated status, which is prevented in 
microglia derived from  TLR4−/− mice. Similarly, TLR4 
activation does determine a pro-inflammatory status in 
astrocytes but the presence of the receptor in these cells 
is not necessary for the uptake of α-Syn [111].

However, a recent study reported that a member of the 
low-density lipoprotein receptor (LDLR) family, LRP1, 
that is expressed both in microglia and astrocytes (see 
below), mediates the internalization of aggregated pro-
teins including Tau and α-Syn in neurons [112]. Nota-
bly, the expression of LRP1 together with the activation 
of TLR4, could reduce the proinflammatory response in 
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macrophages in  vitro [113, 114]. Therefore, it would be 
interesting to investigate whether the expression of LRP1 
may play a critical role in the pro-inflammatory profile 
shift through the activation of TRL4 and others TRLs 
receptors in astrocytes.

Several reports have been investigating the presence of 
alternative mechanisms adopted by astrocytes to inter-
nalize α-Syn (Fig.  3). Filippini and colleagues recently 
proposed a role for clusterin, an extracellular chaperon 
protein which interacts with α-Syn fibrils (but not with 
monomers) and affects their conformation and aggrega-
tion state, finally reducing their internalization [115]. 
Indeed, clusterin KO primary murine astrocytes and 
clusterin knock-down human iPSCs-derived astrocytes, 
internalize a higher amount of extracellular α-Syn fibrils 
[115]. Considering that clusterin is a ligand for low-
density lipoprotein receptor-related protein 8 (LRP8/
ApoEr2), a receptor expressed in astrocytes, LRP8 may 

be involved in this mechanism, even though there is no 
data regarding its involvement in astrocyte-mediated 
α-Syn internalization [116].

Our group has recently proposed AnnexinA2 
(ANXA2) as a novel modulator of α-Syn uptake in 
astrocytes [117]. ANXA2 is an actin-binding protein 
involved in the regulation of intracellular trafficking; in 
particular, ANXA2 regulates the phago/endocytic path-
way by providing stability to endosomes and the abol-
ishment of its expression leads to dysfunctions in the 
endo/phagocytic system [118]. Of note, ANXA2 inter-
acts with Tau, thus suggesting a possible role in the reg-
ulation of Tau/microtubule interaction. In accordance, 
ANXA2 is upregulated in astrocytes surrounding senile 
plaques and degenerating neurons in patients affected 
by AD and ANXA2 has been found to be one of the 
major components of synaptosomes obtained from 
AD patients and from mice overexpressing the P301S 

Fig. 3 Receptor-mediated phagocytosis of amyloidogenic proteins and processing in astrocytes. The figure recapitulates the different 
receptors able to interact with α-Syn and Tau, as described in the text. Once recognized by the appropriate receptor(s), α-Syn and Tau are 
enclosed into phagosomes, which fuse with lysosomes into phago-lysosomes, and subsequently degraded. However, likely due to a high pH 
into the phagolysosomes, astrocytes cannot perform a complete digestion of the phagocytosed material, which can then be accumulated 
and released in the extracellular space as free molecules (1) or within vesicles (2). Moreover, the progressive accumulation of α-Syn and Tau can 
lead to mitochondrial damage (3) or to the formation of deposits (4) that, together with the activation of TLRs (5) can induce a pro-inflammatory 
phenotype of the astrocytes. Furthermore, astrocytes can expose partially digested antigens on MHC-I, MHC-II or CD40 molecules (6), thus working 
as antigen presenting cells
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pathological form of Tau [119, 120]. We have shown 
that the downregulation of ANXA2 in primary striatal 
astrocytes reduces the clearance of extracellular small 
aggregates of human recombinant α-Syn fibrils. In our 
setting, ANXA2 expression correlates with the activ-
ity of Leucine-rich repeat kinase 2, a kinase involved in 
the pathogenesis of both familial and sporadic PD, thus 
suggesting a possible contribution of ANXA2 in the 
pathogenesis of PD [117].

In a proteomic study where rat neurons and astrocytes 
were treated for a short time (10 minutes) with oligomeric 
or fibrillar forms of α-Syn, several candidate interactors 
were identified. The authors suggested that the specific 
involvement of these interactors could be dependent 
both on the conformation of the proteins and on the 
nature of the receiving cell (astrocytes vs neurons) [121]. 
These observations are in accordance with further studies 
investigating the role of the heparan sulfate proteoglycan 
(HSPG) in the uptake of amyloidogenic proteins. Indeed, 
HSPG participates in the internalization of extracellu-
lar α-Syn fibrils, but not oligomers, in both neurons and 
oligodendrocytes, but it does not seem to be involved in 
microglia- and astrocyte-mediated recognition of α-Syn 
in vitro [122]. Strikingly, HSPG is engaged in the macro-
pinocytosis of Tau in neurons, possibly facilitated by the 
presence of several heparin-binding domains within Tau 
structure [123]. Indeed, HSPG allowed the binding and 
the internalization of Tau (both the RD domain and the 
full length 2N4R isoform) in C17.2 cells. Moreover, pri-
mary hippocampal neurons do not uptake Tau fibrils in 
the absence of Ext1, a protein involved in the synthesis 
of HSPGs [123]. In the same paper, the authors showed 
that the injection of a heparin mimetic in mice cortex 
determines a reduction in neuronal uptake of Tau [123]. 
Interestingly, treatment of primary astrocytes with hepa-
rin or heparinase (to compete with or abolish the func-
tionality of HSPG) does not impair astrocyte-mediated 
uptake of Tau, thus suggesting that HSPG may not be as 
crucial as in neurons [124, 125]. However, HSPG medi-
ates the internalization of the monomeric 0N4R Tau 
splice variant in glioma cells, once more reinforcing the 
idea that the mechanisms used for the uptake of Tau (and 
maybe α-Syn) in astrocytes may differ according to the 
conformational properties of the amyloid protein [126]. 
Also, the molecular architecture and the nature of PTMs 
of HSPG itself may influence its interaction with bind-
ing proteins [127]. HSPG can act in concert with other 
receptors, such as LRP1, which is implicated in Tau 
internalization and spreading. Indeed, the knockdown 
of LRP1 reduces the uptake of both Tau monomers and 
oligomers in glioma cell lines and its expression depends 
on the presence of HSPG [126, 128]. Therefore, although 
HSPG is not crucial for the internalization of α-Syn and 

Tau in astrocytes, its presence may be necessary to allow 
LRP1-mediated uptake.

Intriguingly, both HSPG and LRP1 have been impli-
cated also in the internalization of Aβ in hypothalamic 
neurons and in N2a cells. Moreover, neuronal-specific 
downregulation of LRP1 in a mouse model of AD (the 
APP/PS1 mouse model) crossed with mice expressing 
either human Apolipoprotein E3 (APOE3) or APOE4 
showed that LRP1 is crucial for APOE4-mediated Aβ 
pathology, thus suggesting that multiple pathways 
cooperate to internalize extracellular aggregates of dif-
ferent nature [129, 130]. Finally, by using mass spectrom-
etry analysis, Wang and Ye identified αV/β1 integrin as 
a novel receptor able to promote the internalization of 
both Tau monomers and fibrils in a HSPG independent 
way [131].

As already mentioned, many of the proteins involved 
in the phagocytic process are expressed also by micro-
glia, with which astrocytes embark on a collaborative 
bi-directional crosstalk for the removal of supernumer-
ary synapses and dead cells [14, 132]. Microglia-depleted 
mice may therefore be very useful to isolate the role of 
these receptors in astrocytes and their specific contribu-
tion to the clearance of amyloid aggregates.

Astrocyte‑mediated phagocytosis as a mechanosensitive 
process
Mechanotransduction should also be considered as a 
possible contributor of aggregates internalization medi-
ated by astrocytes [133–135]. As a matter of fact, physi-
cal constraints may define the phagocytic process and 
a delicate balance between all forces is needed. In this 
context, the role of the multiple players - i.e. composition 
and stiffness of the extracellular matrix (ECM), plasma 
membrane lipid composition and availability - have 
been widely characterized in professional phagocytes 
[133–135]. Indeed, during phagocytosis, both the plasma 
membrane and the cellular cortex need to be significantly 
reorganized and the ability of the cell to reorganize itself 
highly depends on the extracellular environment. In par-
ticular, the coordination between the cell and the ECM 
is essential for the interaction of the cell with its target. 
The lack of adhesion sites between the cell and the ECM 
might hinder the pickup of the phagocytic target, and it 
can rather jostle it away [133]. Moreover, the phagocytic 
efficacy and kinetics also depend on the target shape, 
size and rigidity [136]. For example, the target shape and 
rigidity regulate the ability of the cell to organize its actin 
filaments. Studies on macrophage-mediated phagocyto-
sis have shown that upon the engagement of the target, 
the cell pushes the particles away for a few micrometers 
and rapidly pull it back, facilitating in this way the target 
ingestion [136]. Moreover, it has also been demonstrated 
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that macrophages rotate the rod-shaped substrates in a 
stiffness dependent manner, until the long axis is pointed 
toward the cell, to facilitate their pickup [136]. The abil-
ity of the phagocytic cells to recognize the physical prop-
erties of the target might depend on mechanosensitive 
regulators. A recent study has demonstrated a role of 
the mechanosensory channel Piezo1 in the regulation of 
microglial-mediated phagocytosis of Aβ plaques [137, 
138]. In particular, activation of Piezo1 by Aβ plaques 
induces a calcium influx, which, in turn, causes micro-
glial clustering and phagocytosis [137]. The contribution 
of mechanosensitive modulators to astrocytic phago-
cytosis, especially in the context of extracellular aggre-
gates, is currently unknown, but future studies in this 
direction may open a new perspective to define their 
phagocytic properties and to plan novel pharmacological 
interventions.

Elimination of protein aggregates by astrocytes
Initial reports with in vitro neuron-astrocytes co-cultures 
and organotypic-based studies have shown that astro-
cytes degrade intracellular aggregates of α-Syn more effi-
ciently than neurons [72, 139]. Importantly, these studies 
show that the degraded material is not discharged in the 
medium and the translocation of α-Syn from astrocytes 
to neurons is very limited, thus suggesting that the over-
all effect of astrocyte-mediated clearance is be beneficial, 
and that astrocytes do not contribute to the propaga-
tion of the disease [139]. However, results coming from 
Erlandsson lab have shown that upon extensive uptake 
in  vitro, astrocytes exhibit large intracellular deposits, 
most likely due to the overwhelming activation of the 
endo-lysosomal machinery [102, 140]. This leads to an 
incomplete digestion, which is indicative of an impaired 
phagocytic activity. Indeed, astrocytes do not completely 
degrade the engulfed material, which is therefore accu-
mulates and induces mitochondrial damage. This impairs 
the astrocytes’ capability to support neuronal metabo-
lism and synaptic function [102, 140]. For example, in 
human primary astrocytes, excessive α-Syn accumulates 
into the mitochondria causing reduced oxygen consump-
tion and reactive oxygen species generation [141]. Con-
sistent with this evidence, postmortem analyses showed 
loss of complex I activity and oxidative damage in the 
brain of sporadic PD patients [142]. Similar results have 
been obtained upon Aβ exposure, whose prolonged 
intracellular storage causes severe endosomal/lysosomal 
defects in astrocytes, which finally release Aβ-containing 
vesicles in the surrounding extracellular space [143]. 
Notably, the acidity of lysosomes is reduced by the activ-
ity of Rab27a, which is highly expressed by astrocytes 
[144]. Indeed, Rab27 recruits Nox2, which prevents 
the acidification of phagosomes, thus influencing the 

alkalinization of astrocytic lysosomes that cannot reach 
the ideal pH to promote full degradation [144, 145]. Nev-
ertheless, the recruitment of Nox2 has been described 
only in the degradation of dead cells in  vitro, hence its 
role in aggregated protein clearance needs to be further 
explored [144]. According to a recent hypothesis, the 
prolonged stagnation of extracellular material into lys-
osomes may be intentional, since astrocytes could work 
as antigen presenting cells (APCs), where the degrada-
tion of the ingested material has to be slow, in order to 
obtain smaller fragments to be presented to T-helper 
cells [146]. In accordance with this hypothesis, healthy 
astrocytes derived from hiPSCs overexpress the major 
histocompatibility complex II (MHC-II) upon treatment 
with α-Syn fibrils. Moreover, brain sections obtained 
from PD patients and healthy controls show that almost 
50% of MHC-II positive cells are indeed astrocytes [146, 
147]. In addition, astrocytes upregulate the expression 
of APCs-related molecules such as CD40, CD80 and 
CD86 upon stimulation with sonicated fibrils of α-Syn 
[146]. Reactive astrocytes expressing CD80 and CD86 
have also been identified in patients affected by multiple 
sclerosis, once more suggesting their potential to work 
as APCs [148]. Nevertheless, several controversies exist, 
since reports have shown that human fetal astrocytes 
express little CD80 or CD86 mRNA and protein both in 
unstimulated and cytokine-stimulated conditions [149, 
150]. Moreover, the in  vivo expression of APCs-related 
molecules needs to be further validated. Interestingly, 
human microglial expression of APCs-related molecules 
(MHC-I, MHC-II, CD80, CD86, CD40) does not change 
upon treatment with α-Syn fibrils in vitro [146]. However, 
it has also been shown that a small population of micro-
glia increase their expression of MHC-II in mice upon 
the injection of Aβ-Th1 cells, actually working as APCs 
and contributing to the clearance of Aβ-pathology [151]. 
However, it is important to point out that most of these 
studies have been conducted in vitro, a setting that only 
partially recapitulates the authentic microglia-astrocyte 
interplay occurring in vivo.

Some studies suggest that upon internalization, also 
Tau is  processed along the major degradative pathways 
in astrocytes [124, 152]. Indeed, compared to naïve cells, 
mouse astrocytes overexpressing the transcription factor 
EB - a master regulator of autophagy-lysosomal biogen-
esis [153] - phagocytose a higher amount of Tau fibrils, 
which then co-localize with the lysosomal-associated 
membrane protein 1, a protein involved in autophagic 
and endo-lysosomal protein degradation [124]. In 
accordance, iPSCs-derived astrocytes obtained from 
patients affected by sporadic or familial AD can engulf 
both monomeric Tau 2N4R and aggregated Tau, which is 
thereafter confined to the lysosomal compartment [152].
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The progressive accumulation of protein aggregates 
may affect astrocytes and impair their overall function-
ality (Fig.  3). Excessive inclusions in astrocytes upon 
exposure to α-Syn preformed fibrils in vitro induce the 
release of multiple pro-inflammatory cytokines (e.g. 
IL-1α, IL-1β) and chemokines (e.g. CC- and CXCL-
type), increase their neurotoxicity and impair their 
phagocytic ability [73]. Dysfunctions in astrocytes 
may also translate into loss of neuroprotective proper-
ties. Astrocytes derived from mice overexpressing the 
P301S pathological form of Tau under the control of 
the neuronal Thy1.2 promoter show reduced ability to 
support degenerating neurons [154], while the selective 
expression of A53T α-Syn in astrocytes induces astro-
gliosis and disrupts normal astroglial function lead-
ing to neurodegeneration in mice [155]. IPSC-derived 
astrocytes obtained from both familial and sporadic 
PD patients co-cultured with midbrain dopaminer-
gic neurons induce morphological changes indicative 
of neuronal degeneration [70]. Although this has been 
attributed to the secretion and transfer of α-Syn from 
astrocytes to neurons, the release of additional toxic 
molecules that affect neuronal survival could not be 
ruled out [70]. On the contrary, however, astrocytes 
derived from iPSCs obtained from AD patients exert 
beneficial effects on Tau-exposed iPSCs-derived neu-
rons by releasing matrix metalloproteinases (MMPs) 
[152]. Exposure of cultured mouse astrocytes to Tau 
oligomers significantly affects the frequency and ampli-
tude of  Ca2+ transients and the consequent release of 
gliotransmitters, ultimately resulting in synaptotoxic 
effects [156]. In particular, the presence of extracellu-
lar oligomeric Tau alters the functionality of the astro-
cytic  Na+/K+ ATPase (NKA) while its internalization 
impairs the activity of the excitatory amino acid trans-
porters, whose proper expression is crucial in both PD 
patients and in PD experimental animal models [157, 
158]. Interestingly, also α-Syn interacts with the neu-
ronal α3-subunit of NKA, causing its clustering and 
relocalization, finally impairing the maintenance of 
 Na+ gradient [159]. Moreover, Tau internalization has 
been associated with morphological alterations and 
enhanced reactivity of astrocytes. Exposure to mono-
meric or fibrillary Tau induces the activation of the 
extracellular signal-regulated kinases ERK1/2 and the 
expression of cytokines and chemokines such IL-6 and 
tumor necrosis factor-α (TNF-α), switching astrocytes 
to a pro-inflammatory phenotype [126].

Altogether, these studies suggest that astrocytes can 
internalize extracellular protein aggregates, but their deg-
radative potential is quite limited. As a consequence, sig-
nificant doubts remain regarding the overall outcome of 
astrocyte-mediated clearance in proteinopathies.

Targeting glial cells to block proteinopathies
The growing awareness of astrocytes’ contribution to 
both the physiology and pathology of the CNS has led 
scientists to consider these cells as potential targets for 
the development of novel therapeutic strategies (Fig. 4). 
In the past years, great attention has been addressed to 
active immunization as a potential approach to treat 
proteinopathies, and several vaccines against Aβ have 
been raised, some of which are currently being tested 
in clinical trials [160]. In a recent study, Jung and col-
leagues engineered a novel antibody to induce microglia 
and astrocyte-mediated phagocytosis while reducing 
secondary inflammation, often associated with antibody-
based immunotherapies [161]. Specifically, the authors 
took advantage of the molecular structure and biological 
function of the Growth Arrest Specific 6 (GAS6) protein. 
GAS6 binds both phosphatidylserine and TAM receptors 
thanks to its N-terminal and laminin G-like domains, 
respectively, thus bridging dying cells (exposing phos-
phatidylserine) to microglia and astrocytes. By replacing 
the N-terminal domain of GAS6 with the single-chain 
fragment variable of a validated Aβ-targeting monoclonal 
antibody, the authors obtained a molecule able to induce 
microglia and astrocyte-mediated phagocytosis of extra-
cellular Aβ, upon infusion in models of AD [161]. There-
fore, in the future, a similar approach could be used to 
target α-Syn or Tau aggregates. Alternative approaches 
directed to the elimination of amyloid protein aggregates 
based on oligonucleotide therapies, gene therapies and 
gene editing as well as targeted protein degradation and 
stem cell therapies are also being developed (for a recent 
review, see [160]).

So far, however, only a few studies have investigated 
the application of therapies to modulate astrocytic clear-
ance of amyloid proteins, most likely due to the poor 
knowledge of the molecular machinery involved. As 
mentioned above, TLRs are implicated in the internali-
zation of α-Syn; therefore, the application of molecules 
able to target these receptors may represent a valid 
pharmacological strategy for proteinopathies, although 
most of these drugs have mainly been tested in patients 
affected by cancer [162]. A study in a preclinical model 
of synucleinopathies has shown that the administration 
of anti-TLR2 improves the neuropathology and behavio-
ral outcome by limiting neurons-to-astrocytes transmis-
sion of α-Syn, thus boosting new hopes for future clinical 
applications of TLR2 antagonists in the field of PD [109]. 
Likewise, targeting of HSPG and/or its interaction with 
LRP1 may reduce Tau internalization. For instance, mol-
ecules that interfere with HSPG expression may be worth 
to be studied, since they can indirectly affect the activity 
of other receptors, such as LRP1. So far, molecules able 
to antagonize HSPG activity and/or expression, including 
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monoclonal antibodies, antibiotics, and peptides, are 
currently being tested mainly in cases of cancer [163]. 
Future strategies including pharmacological and gene 
therapy treatment to modulate the expression of LRP-1 
may also be considered. Molecules able to induce LRP1 
expression, such as Rosiglitazone, which has shown ben-
eficial effects in  APOE ε4-negative patients (but not 
in APOE ε4-positive patients) may be re-evaluated in 
future studies [164]. However, we should consider that 
receptors such as TLRs and LRP1 are expressed also by 
microglia, other than astrocytes. Therefore, any proto-
col aimed at modulating the functionality/interactions 
of these receptors might have effects on the microglial 
population as well. Compelling evidence has shown that 
starvation induces an increase in ANXA2 expression 
correlated with an increase in the autophagic pathway 
[165]. Of note, it is emerging that diet habits might have 
important implications for brain health, and for several 
brain disorders as PD [166]. Therefore, the modulation of 
ANXA2 levels through diet might have beneficial effects 
on protein aggregates uptake, reducing PD progression. 
More specific approaches to target ANXA2 have been 
recently tested. For example, natural compounds such as 

ginsenosides Rg5 and Rk1, as well as a plant lectin and a 
plant alkaloid, have been found to interact with ANXA2 
and inhibit its downstream pathway in cells [167]. Like-
wise, DNA/RNA hybrid nanoparticles, shRNA, miRNA 
and a monoclonal antibody against ANXA2 have shown 
some pre-clinical effect in cellular and animal models 
of cancer [167]. However, while these approaches aim 
at reducing the expression or functionality of ANXA2, 
no strategies have been investigated, to the best of our 
knowledge, to upregulate the expression of this pro-
tein, an instance that would be desired in the case of 
proteinopathies.

However, as described, astrocytes are not very efficient 
at digesting the engulfed material. Therefore, whether the 
induction of astrocyte-mediated clearance may be ben-
eficial or may aggravate the pathological condition, still 
needs to be defined. In this scenario, the application of 
a therapy to induce astrocytic digestion-other than pro-
tein internalization- may be advantageous to ensure an 
efficient clearance of the extracellular environment. A 
recent study points to astrocytes as potential targets for 
the proteolysis of aggregates in Huntington’s disease 
pathology. Indeed, Abjean and colleagues, describe that 

Fig. 4 Possible astrocyte-focused strategies to treat proteinopathies. The figure recapitulates the modalities of α-Syn and Tau transmission 
from neurons to astrocytes, as well as the possible fate of the ingested proteins. Moreover, possible strategies to treat proteinopathies are 
highlighted, such as the use of monoclonal antibodies fused with GAS6 to specifically direct phagocytosis (1) the application of anti-TLRs antibodies 
(2) and gene therapy/gene editing (3) to regulate the internalization of amyloid proteins; the use of drugs to modulate the interaction of amyloid 
proteins with receptors like HSPG or LRP-1 (4) or to reduce the release of toxic protein within exosomes (5). Moreover, the transplantation 
of patients’ derived astrocytes may represent an alternative therapeutic approach to favor extracellular clearance (6)
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the activation of JAK-STAT3 pathway in reactive astro-
cytes could decrease mutant Huntingtin aggregation and 
increase its degradation, which in the end, helps neurons 
in handling toxic protein and preventing degeneration 
[168].

Alternative strategies may focus at reducing the spread-
ing of the pathology. In this context, the calcium-sensing 
receptor antagonist NPS 2143 significantly reduces the 
amount of phosphorylated Tau in astrocyte-derived 
exosomes upon exposure to Aβ25–35 in cortical adult 
human astrocytes [169]. Recently, the transplantation 
of astrocytes derived from the ventral midbrain region 
lessens neuronal accumulation and spreading of α-Syn, 
thus suggesting a novel therapeutic approach [170]. Con-
sidering the technological acceleration we have been 
witnessing in the past few decades and the escalation of 
knowledge that this brings, we can speculate that in the 
upcoming years, novel mechanisms lying behind astro-
cyte-mediated clearance will be revealed, hopefully lead-
ing to effective astrocyte-specific therapeutic approaches.

Conclusions
Due to the growing extension of life-expectancy, the 
impact of proteinopathies is anticipated to quickly esca-
late in the next future. Therefore, efforts at finding new 
therapeutic strategies to slow the progression of these 
chronic and thus far incurable diseases are highly desir-
able. While the causal events triggering the onset of these 
pathological conditions have not been fully disclosed 
yet, progressive advances have allowed the identifica-
tion of new cellular and molecular players involved in 
the later phases of these diseases. It is now recognized 
that proteinopathies are not pure “neuronal” patholo-
gies, but they do involve a more heterogeneous popula-
tion of cells, whose functionality becomes affected in a 
diseased environment. Although the role of astrocytes 
in proteinopathies is not fully defined yet, growing evi-
dence suggests that the loss of proper astrocyte-mediated 
clearance activity might contribute to the onset and/
or progression of several proteinopathies. As described, 
proteinopathies are distinguished by a common sequence 
of aggregates formation and propagation, an aspect that 
is both provocative and appealing at the same time. 
Therefore, it is reasonable to wonder whether there are 
common mechanisms involved in the removal of these 
aggregates, or if protein-specific mechanisms are instead 
at play, an aspect that would obviously lead to very dif-
ferent therapeutic strategies. We have discussed here sev-
eral studies reporting the role of specific receptors in the 
engulfment of α-Syn and Tau. Nevertheless, results have 
been contrasting in some cases (e.g. HSPG). It is possible 
that these discrepancies may be due to the use of proteins 
with different properties (e.g. monomers vs oligomers). 

Moreover, both α-Syn and Tau exist in several confor-
mations, characterized by distinct aggregation dynam-
ics. Therefore, it would be important in the future to 
understand if the internalization of amyloid proteins may 
depend on the properties of a specific strain, the presence 
of certain PTMs or on the nature of the protein itself. 
Overall, it is tempting to think that astrocytes may adopt 
different strategies to remove distinct aggregated proteins 
from the CNS. However, as discussed, astrocyte-medi-
ated engulfment of extracellular aggregates may have a 
deleterious effect, due to their switch to a pro-inflamma-
tory state and their contribution to the disease spread-
ing. In this case, therefore, strategies aimed at blocking 
the ingestion of extracellular aggregates may instead be 
desirable. Crucially, astrocytes display anatomical, mor-
phological and molecular heterogeneity, which leads to 
both regional and local diversity [171, 172]. These struc-
tural differences, which have been described both at tran-
scriptomic and proteomic levels, are reflected by distinct 
physiological and functional properties [173]. Moreover, 
these differences may be further enhanced in pathologi-
cal conditions, thus adding an extra level of complexity 
[174]. Therefore, it is likely that distinct subpopulations 
of astrocytes may respond differently to a given thera-
peutic strategy, an observation that needs to be taken 
into account when approaching pathologies with specific 
brain region etiology.

Despite many steps forward have been made in the 
comprehension of the molecules and pathways involved 
in astrocyte-mediated clearance, multiple questions 
still remain unresolved. Answering these questions will 
advance our understanding of astrocytes contribution in 
proteinopathies and will hopefully lead to the develop-
ment of novel therapeutic strategies.
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