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Abstract 

Lewy body dementia (LBD), a class of disorders comprising Parkinson’s disease dementia (PDD) and dementia 
with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer’s disease (AD). The 
identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, 
and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral 
prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkin‑
son’s disease (PD), PDD, and DLB diagnoses. We then analyzed co‑expression network protein alterations in those 
with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those 
observed in network analyses of AD cases. The LBD network revealed numerous groups or “modules” of co‑expressed 
proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. 
A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. 
Notably, synuclein‑associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. 
We also found that glial‑associated matrisome signatures consistently elevated in AD were more variably altered 
in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta‑amyloid deposition. 
In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal 
cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source 
of biomarkers that could enhance clinical recognition and management.
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Introduction
Lewy body dementia (LBD), a class of disorders compris-
ing Parkinson’s disease dementia (PDD) and dementia 
with Lewy bodies (DLB), is the second most common 
cause of dementia worldwide and is currently without 
cure or effective mitigating therapies [1]. The identifica-
tion of reliable biomarkers of its aggressive cognitive and 
neuropsychiatric symptoms is critical to advancing the 
clinical management of LBD. Yet, LBD biomarker discov-
ery has proven challenging, in large part due to the com-
plexity and often overlapping pathophysiology driving 
its dementia, psychosis, and mood disturbances. Patho-
logical evidence has linked the cognitive and neuropsy-
chiatric manifestations of LBD to the diffuse deposition 
of α-synuclein-rich Lewy bodies (LBs) throughout the 
limbic and neocortex [2–6]. However, a growing number 
of studies across multiple disciplines, including genetic, 
clinicopathological, imaging, and biofluid analyses, sug-
gests LBD pathophysiology encompasses a diverse array 
of corticolimbic processes extending beyond synuclein 
accumulation and neuronal loss. Among these implicated 
mechanisms are mitochondrial dysfunction, neuroin-
flammation, aberrant cholinergic and other neurotrans-
mitter activity, and synaptic dysregulation [1, 7–9]. This 
increasingly complex pathophysiological landscape indi-
cates multiple molecular signatures may be necessary for 
effective LBD biomarker development.

The genetic and molecular overlap LBD shares with 
Alzheimer’s disease (AD) and other neurodegenerative 
disorders further complicates the ability to unravel its key 
pathophysiological signatures. Genome-wide association 
studies (GWAS) have identified a significant amount of 
polygenic overlap between LBD and AD [7]. Meanwhile, 
according to certain clinicopathological estimates, over 
50% of those with LBD feature concurrent accumula-
tion of the extracellular amyloid-beta (Aβ) plaques and 
tau neurofibrillary tangles (NFTs) that comprise the core 
of AD neuropathology [10]. Furthermore, limbic-pre-
dominant TAR DNA-binding protein 43 (TDP-43) and 
other pathological inclusions are frequently detected in 
both LBD and AD [11]. This overlapping pathology has a 
marked impact on diagnostic accuracy, clinical trial strat-
ification, disease prognosis, and therapeutic development 
[10–13]. Thus, research strategies designed to better 
define not only unique signatures of LBD pathophysiol-
ogy but also its degree of overlap with other neurodegen-
erative diseases are critical to the discovery of biomarkers 
that meaningfully advance its diagnosis, monitoring, and 
treatment.

Network-based proteomics, which quantifies global 
pathophysiological changes in complex biological sam-
ples [14], is a tool designed to address many of these 
challenges. This data-driven approach organizes large 

proteomic datasets into groups or “modules” of proteins 
with similar expression patterns across individual sam-
ples. These co-expression modules are often enriched 
with markers specific to certain cell types, molecular 
functions, and organelles, providing insights into the 
diverse pathophysiological alterations reflected in the 
disease specimen. We have previously used this approach 
to define and characterize the network of complex pro-
tein pathophysiology within the brain tissues of those 
with pathologically defined AD [15–22]. These AD-asso-
ciated modules and their hub proteins have proven highly 
reproducible across different tissue cohorts and brain 
regions, allowing us to generate a large consensus AD 
brain network across hundreds of corticolimbic tissues 
[17]. In sum, our consensus findings have 1) enhanced 
understanding of neuronal and non-neuronal patho-
physiology in the AD brain; 2) provided a strong molec-
ular framework for network-level comparison to other 
neurodegenerative diseases, and 3) served as a strong 
foundation for panel-based biomarker discovery in cer-
ebrospinal fluid and plasma [23, 24]. Furthermore, these 
proteomic networks have revealed significant disease-
related alterations not reflected at the transcriptomic 
level [15–17, 20].

In the current study, we apply an unbiased co-expres-
sion network proteomic approach to the study of 
corticolimbic alterations in the brains of those with path-
ologically defined LBD, establishing a global systems-
based framework of the protein-level changes underlying 
neurodegeneration in these tissues. In addition, we per-
form a network-level comparison of the LBD and AD 
brain proteomes. Our results reveal protein co-expres-
sion alterations throughout a diverse range of pathophys-
iological systems in the LBD brain, including presynaptic 
signatures distinct from those observed in the AD pro-
teomic network. We also demonstrate how α-synuclein 
(SNCA) plays a critical “bottleneck” role in the network-
level communication among these synaptic signatures. 
Finally, we underscore the utility of proteomic network 
analysis in examining not only divergent changes but 
also overlapping features of LBD and AD, highlighting 
signatures capable of stratifying LBD cases with low ver-
sus high burdens of amyloid co-pathology. Overall, this 
approach offers a systems-based foundation for the dis-
covery of protein biomarkers that reflect the unique and 
complex pathophysiology of LBD.

Results
Differential expression analysis demonstrates robust 
protein alterations in the LBD brain
The main objective of this study was to perform unbi-
ased co-expression network analysis of LBD brain tissues 
to better define global pathophysiological alterations in 
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cortical regions and compare these findings to the AD 
brain network proteome. We began our analyses with 
brain tissues derived from a pathologically well-charac-
terized autopsy collection within the University of Penn-
sylvania (UPenn) Alzheimer’s Disease Research Center 
(ADRC). We examined the dorsolateral prefrontal cortex 
(DLPFC) as it is often affected in the diffuse corticolimbic 
LB accumulation found in LBD and is routinely scored in 
its neuropathological diagnosis [25]. In addition, frontal 
executive deficits are commonly among the first symp-
toms observed in LBD [26], suggesting this region is at 
the forefront of LB-mediated cognitive changes. We 
analyzed a total of 354 UPenn DLPFC tissues of various 
neurological diagnoses by tandem mass tag mass spec-
trometry (TMT-MS) but focused our analyses on those 
with LB disease for this study (Fig. 1A). MS analysis of the 
total cohort quantified 9,661 proteins, each present in at 
least 50% of samples. Technical variance was minimized 
using a tunable median polish approach (TAMPOR) (Fig. 
S1A) [27]. To prioritize alterations driven by disease, the 
data was then regressed for variability due to age, sex, 
and post-mortem interval (PMI) (Fig. S1B).

Differential expression and network analyses were per-
formed on a subset of these UPenn tissues, including 47 
control, 33 Parkinson’s disease (PD), 47 PDD, and 11 DLB 
cases. The LB cases were slightly older and more male 
compared to controls (Table S1-S2). All groups featured 
similar post-mortem intervals. Pathological traits avail-
able for these brain tissues included levels of global Aβ 
neuritic plaque and tau NFT deposition as measured by 
the Consortium to Establish a Registry for Alzheimer’s 
Disease (CERAD) criteria and the Braak staging system, 
respectively [28, 29]. Severity levels of LB deposition in 
the frontal cortex were measured on a semi-quantita-
tive severity scale of 0 to 3. Nearly all 58 dementia cases 
harbored LBs in the frontal cortex, ranging from mild 
to severe. Robust amyloid co-pathology was common 

among the LBD cases. Yet, most harbored only mild to 
moderate NFT levels (Braak I-IV), increasing the likeli-
hood that their cognitive symptoms were driven by LB 
deposition as opposed to AD-associated neuropathologi-
cal change [26]. Only 7 PDD and 2 DLB cases featured 
severe NFT levels (Braak V-IV).

Prior to building a co-expression network, we exam-
ined the differential expression in each disease compared 
to controls (Fig.  1B, Table  S3). All three LB disorders 
featured > 1000 significantly altered proteins (p > 0.05) 
compared to controls. Isobaric labeling strategies like 
TMT-MS tend to compress quantitative data [30]. Thus, 
most of these differentially expressed proteins featured 
log-transformed fold changes  (log2Δ) between -1 and 
1, consistent with the fold-change magnitudes we have 
previously observed in TMT-MS analyses of the human 
brain [17]. Amyloid precursor protein (APP), which has 
historically correlated strongly to Aβ accumulation in 
our proteomic datasets [20], was significantly elevated in 
both PDD (p = 0.0038,  log2Δ = 0.18) and DLB (p = 4.15E-
05,  log2Δ = 0.39) but largely unaltered in PD (p = 0.98, 
 log2Δ = 0.024), aligning with the moderate to severe 
CERAD scores of the dementia cases. SNCA was notably 
increased in all three LB disorders, reaching significance 
in PD (p = 0.00021,  log2Δ = 0.15) and PDD (p = 1.51E-
06,  log2Δ = 0.17) and approaching significance in DLB 
(p = 0.089,  log2Δ = 0.12). In contrast, microtubule asso-
ciated protein tau (MAPT) levels were not significantly 
altered in any of the disease groups compared to con-
trols. APP and SNCA levels correlated significantly with 
neuropathology measures of neuritic plaque and LB dep-
osition, respectively (Fig. 1C).

Proteins most highly increased in dementia cases 
included phospholipid transporter TMEM30A, calcium 
channel modulator ORAI2, and various muscarinic cho-
linergic receptors (CHRM1, CHRM3). Meanwhile, both 
dementia groups featured starkly decreased levels of 

(See figure on next page.)
Fig. 1 Differential expression and network analysis of UPenn LBD tissues. A Study approach for analyzing differential expression and co‑expression 
across UPenn LB DLPFC tissues, including control (n = 47), PD (n = 33), PDD (n = 47), and DLB (n = 11) cases. B Volcano plots displaying the  log2 fold 
change (x‑axis) against the ‑log10 statistical p value (y‑axis) for proteins differentially expressed between pairwise comparisons of each disease 
to controls. All p values across pairwise comparisons were derived by ANOVA with Tukey post‑hoc correction. C Boxplots of MS‑measured APP 
and SNCA levels and their correlations to neuropathology measures of global amyloid plaque (CERAD) and frontal LB deposition, respectively. 
ANOVA p values are provided for each MS abundance plot (*, p < 0.05; **, p < 0.01; ***, p < 0.001), while the Pearson correlation coefficient 
with associated p value is provided for each correlation analysis. D Co‑expression network generated by WGCNA across control and LB cases, 
consisting of 33 modules each labeled with a number and color. Module relatedness is shown in the dendrogram. E Neuropathological trait 
correlations, cell type marker enrichment, and principal gene ontology for each module. Module abundances were correlated to disease 
diagnosis and measures of pathological burden with positive correlations indicated in red and negative correlations in blue. The cell type nature 
of each module was assessed by module protein overlap with cell type‑specific marker lists of astrocytes, microglia, neurons, oligodendrocytes, 
and endothelia. Gene ontology analysis was used to identify the primary biology reflected by each module. Asterisks in each heat map indicate 
the degree of statistical significance of trait correlations and cell type marker enrichment (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Abbreviations: CTL, 
control; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; DLB, Dementia with Lewy bodies; DLPFC, dorsolateral prefrontal cortex; TMT‑MS, 
Tandem mass tag mass spectrometry; APP, amyloid precursor protein; SNCA, α‑synuclein
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Fig. 1 (See legend on previous page.)
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known neuroprotective markers VGF and NPTX2, which 
are consistently decreased in the brains of those with 
neurodegeneration [31–39]. Neuritin 1 (NRN1), a synap-
tic protein linked to cognitive resilience in AD, was also 
significantly decreased in both PDD and DLB [40, 41]. 
Cholinergic disruption was further evidenced by excep-
tional decreases in the ion channel transporter SLC5A7 
across all three diseases, as large as fivefold lower in 
DLB compared to controls. This protein, also known as 
CHT1, mediates presynaptic high-affinity choline uptake 
in cholinergic neurons for acetylcholine (ACh) synthesis 
[42], and its dysfunction has been linked to AD in ani-
mal models [43, 44]. Yet, several of the most decreased 
LBD markers had less well-described links to neurode-
generation, such as the serotonin synthesizing enzyme 
TPH2. Overall, these results highlighted significant dif-
ferential expression across numerous proteins in all three 
LB diseases, including changes in known markers of 
neurodegeneration.

Network analysis of the LBD brain reveals alterations 
across diverse cell types and molecular functions
To examine global systems-based alterations in LBD, we 
applied Weighted Gene Co-Expression Network Analysis 
(WGCNA), which organizes complex proteomic data-
sets into groups or modules (M) of proteins with simi-
lar expression patterns across individual cases [20]. Our 
resultant LBD co-expression network comprised 8,517 of 
the total 9,661 quantified proteins. Approximately 12% 
of the dataset (n = 1,144 proteins) did not map strongly 
to a particular module, consistent with the proportions 
of unassigned proteins we have encountered in previ-
ous network analyses [15–20]. These 8,517 proteins were 
clustered into 33 UPenn (P) co-expression modules, with 
P-M1 representing the largest module (n proteins = 601) 
and P-M33 the smallest module (n proteins = 39) (Fig. 1D, 
Table S4). The weighted expression profile, or eigenpro-
tein, of each module was correlated to disease diagnosis 
and various clinicopathological traits (Fig. 1E, Table S5). 
In addition, each module was further characterized by 
cell type enrichment and gene ontology (GO) analyses 
(Fig. 1E, Table S6), as previously described [16–18].

Over two-thirds of the 33 modules correlated signifi-
cantly to PDD, DLB, or both. These LBD-associated mod-
ules reflected a variety of cell type associations, biological 
ontologies, and cellular compartments. Modules with 
strongly negative correlations to disease included those 
linked to mitochondria (P-M1), Golgi transport (P-M15), 
ribosome biogenesis / function (P-M2, P-M25, P-M27, 
P-M33), and the postsynaptic density (P-M6, P-M8). In 
contrast, LBD-associated modules with highly positive 
disease correlations reflected myelination (P-M4), matri-
some / cell adhesion (P-M10), telomere maintenance 

(P-M11), RNA binding / splicing (P-M13), presynaptic 
vesicular transport / signaling (P-M17, P-M19, P-M26), 
sugar metabolism (P-M18), and proteasome function 
(P-M21) (Fig. 1E). Module abundance plots across diag-
nostic groups supported these correlation analyses, with 
LBD displaying significantly increased levels of positively 
correlated modules and significantly decreased levels of 
negatively correlated modules (Fig. 2A-H). Our pre-net-
work regression for protein variation due to age, sex, and 
PMI resulted in very few notable module correlations to 
these traits. Yet, because our LB cohorts tended to skew 
older and more male compared to controls, it was diffi-
cult to eliminate all age- and sex-related variance from 
the data and select modules, such as P-M1, did appear to 
significantly correlate with both disease and these demo-
graphics (Table S5).

Most LBD-associated modules were also highly cor-
related to one or more of the core neuropathologies 
(Fig.  1E). A few modules stood out for their selectively 
strong correlations to LB burden, most notably two 
synaptic modules (P-M17, P-M26) that featured strong 
positive correlations to LB deposition over other neuro-
pathological traits (Fig. 1E). These two modules, as well 
as a third synaptic module (P-M19), also displayed inter-
esting abundance trends. In our prior AD networks, syn-
aptic modules were uniformly decreased in disease [17, 
18, 20]. Yet, these three synaptic modules demonstrated 
significant increases in both PDD and DLB (Fig. 2A). The 
presynaptic compartment (vesicular signaling / trans-
port, cell localization) was most strongly reflected among 
the top GO terms for these elevated modules (Table S6). 
Accordingly, P-M19 contained SNCA among its mod-
ule members, a protein that has been repeatedly linked 
to presynaptic signaling and membrane trafficking [45]. 
There was a fourth presynaptic module (P-M7) that 
was not significantly altered in LBD, suggesting some 
selectivity in the upregulation of presynaptic proteins. 
Neuronal modules associated with the postsynaptic com-
partment (P-M6, P-M8) were significantly decreased in 
PDD and DLB, aligning more with our previous observa-
tions in AD (Fig.  2A). These postsynaptic modules fea-
tured strong negative correlations to neuritic plaque, tau, 
and LB pathology levels (Fig.  1E). In sum, these results 
suggested that network-level changes among synuclein-
associated presynaptic proteins may diverge between 
LBD and AD.

LBD‑associated modules are enriched in genetic risk 
targets
To investigate causal relationships to disease among our 
LBD-associated modules, we analyzed each for enrich-
ment of specific disease associated GWAS targets. 
This analysis was performed using a gene and gene-set 
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Fig. 2 Module abundances of UPenn LBD network reflect significant disease‑associated alterations across diverse biological ontologies. A‑H 
Abundance levels (eigenproteins) of select modules across control and disease groups with their top associated biological ontologies. ANOVA p 
values are provided for each abundance plot. All modules depicted were significantly altered (p < 0.05) across the four groups. Box plots represent 
the median and interquartile range between the 25th and 75th percentiles, while data points up to 1.5 times the interquartile range from the box 
hinge define the extent of error bar whiskers. I Module enrichment of PD (dark blue) and AD (purple) genetic risk factor proteins identified 
by GWAS. The dashed red line indicates a z score of 1.28, above which enrichment was significant (p = 0.05) with an FDR of < 10%. Gray shading 
indicates those modules with significant LBD‑associated alterations in disease that were also significantly enriched with GWAS targets. Modules 
are ordered by relatedness as shown in Fig. 1D. J Table highlighting modules containing proteins identified by integrative multi‑omic analysis 
as maintaining a causal role in PD (dark blue) and AD (purple). Abbreviations: FDR, false discovery rate
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analysis tool called MAGMA [46]. Given LBD shares a 
significant number of genetic risk factors with both PD 
and AD [47, 48], we utilized GWAS targets for these 
two disorders. Two LBD-associated pre-synaptic mod-
ules (P-M17, P-M19) were significantly enriched in 
PD GWAS targets (Fig.  2I, Table  S7). P-M16 was also 
enriched in PD targets, but this axonal module was not 
significantly altered in our LBD network. Post-synaptic 
P-M8 was the only LBD-associated module enriched 
with AD GWAS targets (Fig.  2I, Table  S8). To comple-
ment this GWAS enrichment analysis, we also examined 
our modules for the inclusion of proteins identified in a 
recent integrative multi-omic analysis as maintaining a 
pleiotropic or causal role in neuropsychiatric disease, 
including PD and AD [49]. Of these 48 causal proteins, 27 
mapped to a module in our LBD network (Fig. 2J). Again, 
synaptic modules were highly represented among these 
causal proteins, most notably P-M17 which harbored PD 
causal proteins calcium modulating ligand (CAMLG) 
and cyclin G associated kinase (GAK) and the AD causal 
protein angiotensin 1 converting enzyme (ACE). The 
remaining presynaptic modules (P-M7, P-M19, P-M26) 
each featured one causal protein each. Among postsyn-
aptic modules, P-M6 harbored the PD causal protein 
ectopic P-granules 5 autophagy tethering factor (EPG5). 
Other LBD-associated modules linked to causal pro-
teins included P-M1 mitochondrion, P-M4 myelination, 
P-M11 telomere maintenance, and P-M12 unfolded pro-
tein response. In summary, these findings highlighted 
modules with potential causative relationships to dis-
ease with select synaptic modules once again emerging 
as interesting given their enrichment with genetic risk 
targets.

Alpha‑synuclein protein serves as a bottleneck 
to LBD‑associated presynaptic modules
In co-expression protein networks, there are two pre-
dominant categories of centrally important molecules: 1) 

hub proteins and 2) bottleneck proteins. A hub protein is 
critical to the structure of its assigned module, harbor-
ing large numbers of interactors within its community of 
co-expressed proteins. Thus, the deletion or removal of 
a hub from a network is often lethal to cells [50, 51]. In 
contrast, bottleneck proteins mediate the flow of infor-
mation between modules, representing key connectors 
across different communities of co-expressed proteins. 
The disruption of a protein so critical to module com-
munication could partition the network and similarly 
cause significant harm to the cell [50, 51]. Given its cen-
tral neuropathological role in LBD, we were interested in 
whether SNCA played one or more of these key roles in 
our proteomic co-expression network.

WGCNA assigns each protein to only one module 
based on the strength of its correlation to the module 
eigenprotein [52]. This correlation metric (kME) can 
also be used to identify module hubs, which are often 
defined as those proteins ranking among the top 20% of 
module members based on kME [50, 52]. Using these 
criteria, SNCA was not a hub of its assigned module 
(P-M19). While it featured a moderately strong correla-
tion to P-M19 (kME = 0.6838), SNCA ranked 95 among 
its 242 module members and fell well outside of hub 
status (Fig.  3A). Yet, we noticed that SNCA harbored 
kMEs of similar strength to other modules, including 
P-M7 (kME = 0.6245), P-M17 (kME = 0.5820), and P-M26 
(kME = 0.5688) (Table S4). Like P-M19, all three of these 
modules featured strong links to presynaptic gene ontol-
ogies. Furthermore, P-M17 and P-M26 were also highly 
correlated to LB deposition, as opposed to neuritic 
plaque and NFT accumulation. These observations indi-
cated that while it was not a hub of its assigned module, 
SNCA may play more of a central role in the communi-
cation between this group of closely related presynaptic 
modules.

We thus investigated whether SNCA might serve as 
a bottleneck protein between these four modules. In 

(See figure on next page.)
Fig. 3 Alpha‑synuclein serves as a bottleneck protein between presynaptic UPenn modules. A Graphical representation of SNCA module 
membership (kME) relative to four neuronal modules in the UPenn co‑expression network. While assigned to P‑M19, SNCA was not a hub of this 
module. In addition, SNCA maintained moderately strong correlations to P‑M7, P‑M17, and P‑M26 with kME values approaching or exceeding 
0.6. All four modules were linked to presynaptic biological ontologies. The top hub proteins for P‑M19 are shown. B Graphical representation 
of the bottleneck analysis performed among the four presynaptic modules of interest. Top bottlenecks for P‑M19 across these modules are shown 
based on measures of betweenness centrality (g). SNCA featured the highest g value of P‑M19, indicating its central role in information flow 
between the four modules. C Volcano plot displaying the biweight midcorrelation (bicor) to SNCA abundance (x‑axis) against the ‑log10 statistical 
p value (y‑axis) for all proteins quantified in the UPenn dataset. Proteins are shaded according to color of module membership. There were 2,394 
proteins with statistically significant (p < 0.05) negative correlations and 2222 proteins with significant positive correlations to SNCA abundance. 
Presynaptic modules were among those most highly represented among proteins with the strongest positive SNCA correlations. SNCA ‑log10 p 
value was set from > 200 to 25 to keep plot scale. D Abundance plots for select individual proteins with significant positive correlations to SNCA 
abundance, highlighting presynaptic modules P‑M17, P‑M19, and P‑M26. ANOVA p values are provided for each abundance plot (*, p < 0.05; 
**, p < 0.01; ***, p < 0.001). Module eigenprotein box plots represent the median and 25th and 75th percentiles, while data points up to 1.5 
times the interquartile range from each box hinge define the extent of error bar whiskers. Abbreviations: SNCA, α‑synuclein
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Fig. 3 (See legend on previous page.)
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network theory, bottleneck status is typically measured 
using the metric “betweenness centrality (g)”, which 
in WGCNA can be calculated utilizing the topologi-
cal overlap matrix generated with each network [52, 
53]. Applying this method, we were thus able to meas-
ure and rank the top bottleneck proteins of P-M19 
among the presynaptic modules of interest. SNCA was 
identified as the strongest bottleneck in this analysis 
(g = 0.003089), highlighting this protein as central to 
flow of information between the four modules (Fig. 3B, 
Table  S9). This result underscored the importance of 
SNCA within the UPenn LBD network and further bol-
stered the links we previously observed between these 
presynaptic modules and neuropathological LB burden.

Accordingly, the same presynaptic modules were 
also highly represented among individual proteins with 
strong positive correlations to SNCA abundance levels 
(Fig. 3C-D, Table S10). These highly correlated proteins 
included known SNCA interactors, such as beta-synu-
clein (SNCB) of P-M26 and synaptobrevin-2 (VAMP2) 
of P-M19 [45, 54, 55]. P-M19 and P-M26 also harbored 
numerous other SNCA-correlated cell surface proteins, 
such as L1 cell adhesion molecule (L1CAM), neural cell 
adhesion molecule 1 (NCAM1), and ankyrin 2 (ANK2). 
Synuclein levels in L1CAM-positive plasma-derived 
exosomes have emerged recently as a possible prodro-
mal PD biomarker, supporting the strong association 
between these proteins [56, 57]. The highly positive 
correlation between SNCA and cholinergic receptor 
muscarinic 1 (CHRM1) of P-M26 suggested synuclein-
mediated cholinergic dysfunction may play a key role in 
LBD pathophysiology. Many signaling molecules from 
P-M17 were also among those proteins highly corre-
lated to SNCA, including various members of the G 
protein family (GNAO1, GNB1, GNB2, GRM5). Select 
SNCA-correlated proteins among these presynap-
tic modules appeared more strongly linked to protein 
transport and targeting, such as tumor protein D52 
(TPD52) of P-M17 and NEDD8 ubiquitin like modi-
fier (NEDD8) of P-M26. TPD52 localizes primarily to 
endoplasmic reticulum (ER), highlighting the complex 
interactions between the ER and synaptic compart-
ments. Indeed, the ER of neurons is known to mediate 
several aspects of synaptic transmission, including cal-
cium signaling / homeostasis and vesicular trafficking 
[58–60].

In sum, we established that SNCA serves as a key bot-
tleneck node to modules with strong links to presynaptic 
ontologies, robust elevations in LBD, and positive cor-
relations to LB pathology. Numerous individual proteins 
across these modules demonstrated strong correlations 
to SNCA abundance and together reflected a wide range 
of synapse-associated processes.

LBD‑associated network alterations are preserved 
in replication analyses
Emory replication analysis
To examine the validity of our LBD-associated network 
findings, we analyzed the proteome of a separate cohort 
of DLPFC tissues derived from the Emory University 
ADRC brain bank. These cases included tissues with neu-
ropathologically confirmed diagnoses of control (n = 15), 
PDD (n = 10), and DLB (n = 19). Like the UPenn cohort, 
Emory cases with dementia were on average in their 
mid-70  s (PDD = 75.3 ± 10.7, DLB = 74.6 ± 7.9) and pre-
dominantly male (Tables S11-12). Neuritic plaque depo-
sition was common among the Emory LBD cases. Nearly 
all Emory DLB cases (n = 17) and half of the PDD cases 
(n = 5) featured moderate to severe levels of plaque depo-
sition (CERAD 2–3). NFT tau levels were overall milder. 
Yet, 10 of the 19 DLB cases featured severe NFT depo-
sition (Braak V-VI), increasing the likelihood that both 
AD and LBD pathology were contributing to cognitive 
decline within this group. All Emory LBD cases featured 
some degree of LB deposition throughout the frontal cor-
tex. Almost all DLB cases harbored frequent frontal LB 
inclusions, while those with PDD generally maintained 
lower burdens often ranging from sparse to moderate.

TMT-MS analysis across all 44 Emory cases quan-
tified 8,213 proteins (Fig.  4A), including only those 
proteins quantified in at least 50% of samples. Like 
the UPenn cohort, TAMPOR was used to minimize 
technical variance and the protein abundance data 
was regressed for variance due to age, sex, and PMI 
[17, 18, 27]. We then used WGCNA to build a co-
expression network on the dataset. The resultant 
network comprised 7,829 proteins organized into 39 
Emory (E) modules with the largest (E-M1) featur-
ing 431 proteins and the smallest (E-M39) harboring 
90 proteins (Fig.  4B, Table  S13). Module eigenprotein 
correlations were similar to those observed in the 
UPenn LBD network. This included strongly negative 
disease and pathological correlations among modules 
linked to postsynaptic (E-M3, E-M10, E-M25), ribo-
somal (E-M23, E-M36), mitochondrial (E-M2, E-M5, 
E-M19), and cilia function (E-M6, E-M33) (Table S14-
S15). Highly positive disease and pathological corre-
lations among modules linked to the matrisome / cell 
adhesion (E-M8), proteasome (E-M11), transcription / 
RNA localization (E-M12), and ER / synaptic signaling 
(E-M24) also mirrored our UPenn findings. Module 
preservation analysis revealed that all 39 Emory mod-
ules were highly preserved (z score > 10) in the UPenn 
network (Fig. 4C). To directly compare the expression 
trends of preserved modules across the two LBD net-
works, we examined the weighted module abundance 
of the top 20% of proteins by kME in each Emory 
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module within the UPenn dataset. These UPenn “syn-
thetic eigenproteins” revealed strong concordance 
between abundance trends in both networks across a 
variety of biological ontologies (Fig. 4D).

A hypergeometric Fisher’s exact test (FET) revealed 
a closely related cluster of Emory modules (E-M24, 
E-M26, E-M29) that overlapped strongly with the 
SNCA-associated presynaptic modules in the UPenn 
network (Fig. S2). Accordingly, synaptic signaling 
ontologies were featured among the top GO terms 
for these Emory modules (Table S15). E-M24 was also 
strongly linked to ER function, again highlighting the 
close associations between the synaptic and ER com-
partments. E-M24 was particularly interesting among 
this module cluster, as it featured significant increases 
in LBD and highly positive correlations to frontal LB 
deposition compared to amyloid and tau. Furthermore, 
E-M24 harbored SNCA among its module members 
(Fig. 4E, Table S13). As in the UPenn network, SNCA 
was not a strong hub of E-M24 (kME = 0.71). Its kME 
ranking of 32 within this relatively small module of 161 
proteins placed it at the edge of the top 20th percen-
tile. SNCA also maintained similar kME values relative 
to other synapse-associated Emory modules, includ-
ing E-M26 (kME = 0.6481) and E-M29 (kME = 0.6210). 
This suggested a preserved bottleneck role for SNCA 
within the Emory network. In addition to SNCA, 
E-M24 also featured stark elevations in many of the 
same synapse-associated proteins also increased in the 
UPenn network, including L1CAM, ANK2, TPD52, 
and NEDD8 (Fig.  4F). Overall, these results from our 
Emory cases validated many of the observations from 
the UPenn network, including increases in proteins 
associated with SNCA and presynaptic functions.

ROSMAP replication analysis
As a second replication study, we examined the pro-
teomes of DLPFC tissues derived from the Religious 
Orders Study or Rush Memory and Aging Project (ROS-
MAP) cohorts [61–63]. While the UPenn and Emory 
datasets were newly generated for these LBD analyses, 
this ROSMAP replication was performed using a previ-
ously published TMT-MS dataset comprising 610 total 
tissues [64]. We used available clinical and pathological 
traits to identify three groups of interest among these 
cases: control (n = 42), asymptomatic LB pathology 
(AsymLB, n = 21), and Lewy body dementia (LBD, n = 40) 
(Tables S16-S17). Control cases comprised those with 
no cognitive impairment or corticolimbic LB deposition 
at death. AsymLB was defined as cases with corticolim-
bic LB deposition but normal cognition at death. Finally, 
LBD cases included those with clinical dementia and cor-
ticolimbic LB pathology present at death. Control cases 
featured minimal to no AD pathology, while AsymLB 
and LBD cases were restricted to those with only mild to 
moderate NFT deposition. These criteria helped ensure 
a high likelihood that LB deposition, as opposed to AD 
pathology, was the primary contributor to cognitive 
decline in our LBD cases [26].

Using TMT-MS, we quantified a total of 7,801 proteins 
across these cases. All quantified data was regressed for 
age, sex, and PMI. We then built a co-expression network 
on this ROSMAP data for comparison with the UPenn 
LBD network. We found that the co-expression observed 
in the UPenn data remained consistent among these 
ROSMAP cases. All 33 UPenn modules were significantly 
preserved in the ROSMAP dataset with the majority sur-
passing preservation z scores of 10 (Fig. S3A). Synthetic 
eigenproteins of UPenn module members within the 

Fig. 4 LBD‑associated network alterations are replicated in an Emory tissue cohort. A Study approach for analyzing co‑expression across the Emory 
DLPFC tissues and comparing these network‑level alterations to the UPenn dataset. TMT‑MS resulted in the quantification of 8,213 proteins 
across all cases, which included 15 controls, 10 PDD, and 19 DLB tissues. The Emory and UPenn networks were compared using module 
preservation and overlap analyses. B Co‑expression network generated by WGCNA across all Emory cases, consisting of 39 modules each labeled 
with a number and color. Module relatedness is shown in the dendrogram. As in the UPenn network, module abundances were correlated 
to each disease diagnosis and measures of pathological burden with positive correlations indicated in red and negative correlations in blue. Gene 
ontology analysis was used to identify the primary biology reflected by each module. Asterisks in each heat map indicate the statistical significance 
of the trait correlation (*, p < 0.05; **, p < 0.01; ***, p < 0.001). C Module preservation analysis of the Emory network into the UPenn network. Modules 
with a  Zsummary score of greater than or equal to 1.96 (q = 0.05, blue dotted line) were considered preserved, while modules with  Zsummary scores 
of greater than or equal to 10 (q = 1.0E‑23, red dotted line) were considered highly preserved. D Select Emory network module eigenproteins 
with their corresponding synthetic eigenproteins in the UPenn network. The UPenn synthetic eigenproteins reflected the weighted module 
abundance of the top 20% of proteins by kME comprising each Emory module. All Emory module eigenproteins shown were significantly altered 
(p < 0.05) across groups with synthetic eigenproteins that replicated in the UPenn network. ANOVA p values are provided for each eigenprotein 
plot. Box plots represent the median and 25th and 75th percentiles, while data points up to 1.5 times the interquartile range from the box hinge 
define the extent of error bar whiskers. E Graphical representation of individual proteins in the E‑24 module arranged by kME with strong hubs 
at the center. SNCA is designated in bold. F Plots of individual protein abundances across groups for members of the E24 protein module. ANOVA 
p values are provided for each abundance plot (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Abbreviations: CTL, control; PDD, Parkinson’s disease dementia; 
DLB, Dementia with Lewy bodies; SNCA, α‑synuclein; ER, endoplasmic reticulum

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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ROSMAP dataset demonstrated concordance between 
the two cohorts across multiple modules, including the 
presynaptic UPenn modules of interest (P-M17, P-M19, 
P-M26) (Fig. S3B). Interestingly, among these presynap-
tic modules, increased protein levels were also observed 
in those with AsymLB, suggesting these alterations occur 
early in preclinical LB deposition. In sum, these results 
provided additional validation of the disease-associated 
alterations observed in our discovery UPenn cohort.

Network level proteome comparison reveals LBD 
presynaptic co‑expression signatures distinct from AD
Unique pathophysiological signatures of LBD that dis-
tinguish it from AD and other related dementias are 
necessary to advance diagnostic and therapeutic target 
development. Our LBD network observations suggested 
key differences in co-expression patterns between LBD 
and our previous AD networks [15–22] that could inform 
biomarker discovery. To further compare network-level 
changes between LBD and AD, we performed a series 
of overlap analyses with our UPenn LBD network and 
two separate AD co-expression networks (Fig.  5A). The 
first AD network was derived from our UPenn DLPFC 
tissues, comprising 49 pathologically defined AD cases 
and the same 47 control cases analyzed in the LBD net-
work (Table S1-S2). The second AD network was a pre-
viously published consensus analysis comprising 516 
control, asymptomatic AD (AsymAD), and AD DLPFC 
cases from the Banner Sun Health Research Institute and 
ROSMAP cohorts [17]. AsymAD cases were defined as 
those with an Aβ and NFT burden similar to pathologi-
cally defined AD cases but without significant cognitive 
impairment close to death [17]. Thus, these tissues rep-
resented an early preclinical phase of AD [65]. We first 
analyzed the preservation of the 33 modules in our LBD 
network in these two AD networks (Fig.  5B). Nearly all 
LBD modules were highly preserved  (Zsummary > 10) in 

both AD networks, indicating that the framework of 
protein co-expression was consistent across all three 
datasets.

To compare the direction of expression of preserved 
modules across networks, we examined the synthetic 
eigenproteins of the LBD modules in each AD network. 
As with our above replication analyses, these AD syn-
thetic eigenproteins reflected the weighted expression 
profiles of the top 20% of proteins in each UPenn LBD 
module. As expected, synaptic modules significantly 
decreased in LBD were also significantly decreased in 
AD (Fig. 5C). This included P-M6 and P-M8, which were 
both associated with the postsynaptic density. In con-
trast, modules associated with presynaptic functions 
(P-M7, P-M17, P-M19, P-M26) showed much less con-
cordance between LBD and AD (Fig.  5D). P-M19 and 
P-M26 were significantly increased in LBD but decreased 
in AD, while P-M17 featured significant increases in LBD 
but remained largely unchanged in AD. Finally, P-M7 
was unchanged in LBD but significantly decreased in 
AD. Individual proteins with the starkest divergence in 
expression trends between LBD and AD are highlighted 
in Fig. 5E. These differentially expressed markers included 
SNCA and several co-expressed proteins of interest, such 
as L1CAM, ANK2, NEDD8, and CEP68. These findings 
supported our observations that the LBD frontal cortex 
harbored expression trends among synaptic proteins that 
diverged from those found in AD. These results also sug-
gested that these two diseases may feature marked differ-
ences in presynaptic protein pathophysiology.

Matrisome‑associated protein levels differentiate LBD 
cases with high levels of amyloid co‑pathology
Overlapping AD pathology is extremely frequent in both 
DLB and PDD with as many as 90% of cases harboring 
accumulation of extracellular amyloid-beta (Aβ) plaques 
[10]. The presence of this concurrent pathology can also 

(See figure on next page.)
Fig. 5 Network level proteome comparison between LBD and AD reveals divergent signatures. A Study approach for comparing network‑level 
alterations between the UPenn LBD network and two independent AD networks. The first AD network comprised DLPFC UPenn tissues, 
including 49 AD cases and the same 47 control cases analyzed in the initial UPenn LBD network. The second AD network was a previously 
published consensus analysis comprising > 500 control, asymptomatic AD (AsymAD), and AD DLPFC cases from the Banner Sun Health Research 
Institute and ROSMAP cohorts. Module preservation and overlap analyses were used to compare these networks. B Module preservation analyses 
of the UPenn LBD network into the UPenn and Consensus AD networks. Modules with a  Zsummary score of greater than or equal to 1.96 (q = 0.05, 
blue dotted line) were considered preserved, while modules with  Zsummary scores of greater than or equal to 10 (q = 1.0E‑23, red dotted line) 
were considered highly preserved. C‑D UPenn LBD network module eigenproteins associated with the postsynaptic (C) and presynaptic (D) 
compartments with their corresponding synthetic eigenproteins in the two AD networks. The AD synthetic eigenproteins reflected the weighted 
module abundance of the top 20% of proteins by kME comprising each LBD module. ANOVA p values are provided for each eigenprotein plot. 
Box plots represent the median and 25th and 75th percentiles, while data points up to 1.5 times the interquartile range from the box hinge define 
the extent of error bar whiskers. E Heat maps depicting the fold change magnitude of select presynaptic proteins across UPenn LBD and AD cases. 
Increases in protein levels are indicated in red, while decreases are in blue. Asterisks in each heat map indicate the statistical significance of the fold 
change (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Abbreviations: CTL, control; AsymAD, Asymptomatic Alzheimer’s disease; AD, Alzheimer’s disease; PDD, 
Parkinson’s disease dementia; DLB, Dementia with Lewy bodies
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Fig. 5 (See legend on previous page.)
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influence clinical progression and disease severity. There-
fore, we were interested in examining protein expres-
sion trends across cases with low and high AD pathology 
burden. In our UPenn cohort, nearly half of the 58 LBD 
cases harbored minimal to no Aβ plaque pathology 
(CERAD 0–1), including 26 PDD and 2 DLB cases. The 
remaining cases, including 21 PDD and 9 DLB, featured 
moderate to severe plaque pathology (CERAD 2–3). 
Differential expression analysis of these low- and high-
amyloid LBD cases revealed > 700 proteins significantly 
altered between these two groups (Fig.  6A, Table  S18). 
As expected, this included APP and several additional 
members of P-M13 (NXPH1, OSTM1), which were sig-
nificantly elevated in the high-amyloid cases compared 
to those with low amyloid levels. Yet, most altered were 
numerous members of P-M10 (MDK, NTN1, SMOC1, 
CTHRC1), a glial and endothelial enriched module 
highly linked to the extracellular matrix (i.e., matrisome) 
and cell adhesion. Compared to low-amyloid LBD cases, 

these P-M10 markers demonstrated large, highly signifi-
cant fold-change elevations in those with high-amyloid 
LBD and were even more elevated in the UPenn AD cases 
(Fig. 6B-C). These results aligned well with our previous 
observations in the AD brain network, in which these 
matrisome proteins serve as hubs of a highly preserved 
plaque-associated module consistently elevated in AD 
[17, 18]. Interestingly, certain matrisome markers were 
significantly decreased in low-amyloid LBD compared to 
controls (Fig.  6B-C), suggesting a separate physiological 
process in this cohort in which the expression of these 
plaque-associated proteins is actively suppressed. Such 
markers included midkine (MDK), a heparin-binding 
growth factor involved in cell growth and angiogenesis, 
and collagen triple helix repeat containing 1 (CTHRC1), 
a protein implicated in vascular remodeling and the cel-
lular response to arterial injury [66, 67]. Both are often 
elevated in not only AD, but also cancer and tumorigen-
esis. Overall, these results revealed how the LBD brain 

Fig. 6 Matrisome proteins distinguish UPenn LBD cases with low and high amyloid burden. A Volcano plot displaying the  log2 fold change (x‑axis) 
against the ‑log10 statistical p value (y‑axis) for proteins differentially expressed between UPenn LBD cases with low (CERAD 0–1) versus high 
(CERAD 2–3) amyloid deposition. All p values were derived by t‑test analysis. Proteins are shaded according to color of module membership. 
Proteins mapping to M10 matrisome in the UPenn LBD network were among those most differentially expressed. B Heat maps depicting the fold 
change magnitude of select matrisome and other proteins across UPenn LBD and AD cases. Increases in protein levels are indicated in red, 
while decreases are in blue. Asterisks in each heat map indicate the statistical significance of the fold change (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
(C) Plots of individual protein abundances across groups, including low‑ and high‑amyloid LBD. ANOVA p values are provided for each abundance 
plot (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Abbreviations: CTL, control; PD, Parkinson’s disease;  LBDLow, Low‑amyloid Lewy body dementia;  LBDHigh, 
High‑amyloid Lewy body dementia
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network can be a source of not only unique pathophysi-
ological markers, but also those that overlap with other 
neurodegenerative conditions, distinguishing LBD cases 
with mixed pathology from cases with more pure LB 
deposition. It also highlighted potential divergent glial-
mediated pathophysiology in LBD cases with low versus 
high amyloid plaque burdens.

Discussion
The corticolimbic pathophysiology underlying the 
aggressive cognitive and neuropsychiatric deteriora-
tion in LBD is extremely complex, poorly understood, 
and features significant overlap with AD. In the current 
study, we employed co-expression network proteomics 
to define systems-based pathophysiologic alterations in 
the frontal cortex of a large UPenn autopsy cohort and 
compare these signatures to those observed in AD. We 
identified a diverse array of protein modules altered in 
the brains of those with PDD and DLB, encompassing 
synaptic, metabolic, and inflammatory pathophysiol-
ogy. We then validated these network signatures across 
independent LBD cohorts and identified reproducible 
synaptic alterations that diverged from those in the AD 
brain. We also identified informative overlapping signa-
tures between LBD and AD, including glial-associated 
matrisome markers that proved highly concordant with 
Aβ deposition and capable of stratifying LBD cases with 
low versus high burdens of amyloid plaque co-pathology. 
These results underscore how proteomic co-expression 
network analysis can yield insights into key divergent and 
overlapping pathophysiological signatures in the LBD 
and AD brain.

Synaptic protein loss is generally considered a univer-
sal feature of the neuropathological changes observed 
in dementia. Numerous studies in AD have shown that 
pathological measures of synaptic loss correlate more 
strongly with cognitive impairment compared to Aβ and 
tau pathology [68–71]. Accordingly, we and others have 
observed stark decreases in a variety of synaptic proteins 
in the AD brain across multiple independent cohorts and 
brain regions [15–21, 72]. We have also identified these 
synaptic decreases in the brains of those with AsymAD, 
or individuals with significant neuritic plaque and NFT 
deposition but no evidence of clinical cognitive impair-
ment at death [17, 18, 20]. These results suggest early 
synaptic losses in AD independent of clinical declines. 
Aligning with these observations, we found significant 
decreases among our LBD cases in two large modules 
linked to postsynaptic function (P-M6, P-M8). These 
modules included synaptic markers that already feature 
well-described decreases in neurodegeneration, such as 
VGF and NPTX2 [31–39], reinforcing their potential as 

reliable markers of degeneration across different neuro-
logic diseases.

Yet, we also observed increased levels in presynap-
tic modules among our UPenn LBD cases, contrasting 
with our prior AD observations. These included P-M17, 
a neuron-enriched module linked to synaptic vesicular 
transport that featured various GTPases among its hub 
proteins (RAB1A, GNB2, GNAO1), as well as P-M19, 
another neuronal module that included SNCA and other 
proteins linked to vesicular signaling. The third neuronal 
module significantly increased in LBD was P-M26, which 
maintained ontological associations to both the synapse 
and cellular localization. While its hub proteins included 
largely cell surface proteins (ANK2, L1CAM), this mod-
ule also featured proteins involved in protein targeting, 
folding, and processing (CEP68, NEDD8). All three of 
these modules were either unchanged or significantly 
decreased when examined in our comparison AD net-
works, indicating divergent pathophysiology between the 
two dementias. The reasons underlying these presynap-
tic increases in LBD are unclear and will require further 
investigation. The network-based links these modules 
shared with SNCA levels and LB deposition suggests 
that aberrant SNCA function is to some extent mediat-
ing these findings. Yet, it is still possible these increases 
represent a compensatory, rather than pathological, 
response in this brain region.

SNCA served as a strong bottleneck node among these 
presynaptic modules. While hub proteins, which demon-
strate high connectivity within their respective modules, 
are often considered key molecular drivers in co-expres-
sion networks [73], there is also growing recognition 
that proteins with a high degree of connectivity between 
modules are also highly relevant to disease. These bot-
tleneck proteins have been shown to play central roles 
in various disorders and serve as successful therapeutic 
targets [50, 74–76]. As a strong presynaptic bottleneck, 
SNCA mediated communication between the three mod-
ules highlighted above (P-M17, P-M19, P-M26), as well 
as a fourth larger module (P-M7) also heavily associated 
with vesicular signaling and the presynaptic compart-
ment. This aligns with the growing amount of research 
indicating SNCA localizes to the presynaptic terminal 
and participates in vesicular cycling, including regulation 
of vesicle pool size, mobilization, and endocytosis [45]. 
In addition, these presynaptic modules featured proteins 
known to interact closely with SNCA, such as synapto-
brevin-2 (VAMP2) and synapsin 1 (SYN1) [45, 55, 77]. L1 
cell adhesion molecule (L1CAM), an increasingly studied 
neuronal surface marker for isolating and measuring exo-
some associated SNCA in biofluids [56, 57], also mapped 
to these presynaptic modules (P-M26), and its increas-
ing abundance in LBD correlated strongly with those of 
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SNCA. Thus, our LBD network underscored well-estab-
lished links between SNCA and the presynaptic com-
partment and supported its central role in the unique 
pathophysiological changes of LBD.

These presynaptic LBD signatures also revealed unique 
alterations in cholinergic pathways. P-M26 featured 
muscarinic cholinergic receptors CHRM1 and CHRM4, 
which have both demonstrated promise as synaptic tar-
gets for cognitive and behavioral symptoms in demen-
tia [78, 79]. Drugs that enhance synaptic CHRM1 and 
CHRM4 activity are currently being explored in the 
management of both AD and DLB. Compared to con-
trols, both receptors demonstrated significant increases 
among LBD cases but stable, largely unchanged levels in 
AD. While this reveals potential differences in AD and 
LBD cholinergic function, it also suggests both diseases 
are able to preserve these receptors to some extent and 
may be responsive to CHRM1 and CHRM4 agonists. The 
stark increases LBD demonstrated in these cholinergic 
receptors, as well as others (CHRM2, CHRM3), could be 
in response to significant losses in other components of 
the cholinergic pathways. For instance, all three LB dis-
orders in our UPenn network demonstrated dramatic, 
several-fold decreases in SLC5A7, a protein necessary 
for presynaptic choline uptake and ACh synthesis [42]. 
Of note, though much of its activity is localized to the 
presynaptic terminal, SLC5A7 expression most closely 
aligned with postsynaptic P-M8. Thus, despite their pre-
dominant ontologies, it is important to note that all our 
neuronal modules likely harbor some mixture of proteins 
that function in both the presynaptic and postsynaptic 
spaces. Nevertheless, these cholinergic trends further 
showcased the diversity of alterations within LBD synap-
tic pathways, highlighting those proteins with preserved 
to increased levels in disease that may respond well to 
therapeutic agonists.

Synaptic pathways were not the only ones distinctly 
altered in LBD. In both the UPenn and Emory LBD net-
works, proteins involved in protein targeting, folding, and 
ER function were also co-expressed with elevated presyn-
aptic LBD markers. P-M26 best reflected this co-expres-
sion of synaptic and protein processing molecules in the 
UPenn network, while E-M24 of the Emory network 
mapped strongly to both synaptic and ER ontologies. 
These network associations likely reflect the well-estab-
lished functional relationships between ER and synaptic 
regulation [58–60]. Many have also linked SNCA itself to 
ER stress and aberrant protein processing. For instance, 
Colla et al. found oligomeric species of SNCA in the ER 
of both animal and human brains with synucleinopathy 
[80], suggesting an ER-mediated stress response may play 
an integral role in disease pathophysiology. Others have 
also reported colocalization of ER stress markers with 

synuclein inclusions in diseased brain tissue [81, 82]. 
Furthermore, LB disease has been linked to various dis-
ruptions in protein processing, such as neddylation [83]. 
NEDD8, a ubiquitin-like protein involved prominently in 
neddylation, was among the synapse-associated modules 
in our UPenn and Emory networks that demonstrated 
strong increases in LBD and marked decreases in AD. 
Dysfunction of this protein has been previously linked to 
multiple neurodegenerative diseases with ubiquitinated 
inclusions [83–85]. However, our results suggest the 
pathophysiological mechanism underlying this dysfunc-
tion may differ between LBD and AD.

These divergent network changes could eventually yield 
much needed diagnostic and therapeutic markers of LBD. 
The observation in our ROSMAP cases that these pre-
synaptic proteins are elevated in asymptomatic disease 
further supports their potential clinical utility as early 
targets. In addition, tools that help identify overlapping 
LBD and AD co-pathology are also useful. Studies have 
shown that the burden and distribution of AD pathology 
can have a significant impact on LBD presentation and 
progression [86, 87]. Our network analysis revealed that 
proteins associated with the extracellular matrix (ECM) 
were best at distinguishing LBD cases with low versus 
high levels of amyloid co-pathology. This supports grow-
ing evidence that these proteins associate strongly with 
amyloid plaques [72]. Furthermore, these results under-
scored our prior AD brain network analyses, which have 
established many of these matrisome proteins (SMOC1, 
NTN1, MDK) as hubs of a highly preserved glia-associ-
ated module consistently elevated in both AsymAD and 
AD [16–18]. Our current LBD data provides an addi-
tional role for these emerging biomarkers as early indica-
tors of AD co-pathology in LB populations, which could 
help guide clinical management throughout the course 
of disease. In addition, their elevation in such a sizeable 
portion of LBD patients suggests these markers could 
provide another avenue independent of SNCA for thera-
peutic targeting.

Prior integrative proteomic studies from our group and 
others have demonstrated the translation potential of 
brain network analysis into promising biofluid markers of 
disease [16, 18, 23, 72, 88]. We have previously demon-
strated up to 70% overlap between the brain and CSF pro-
teomes using TMT-MS. This has allowed us to identify 
panels of CSF biomarkers in AD reflecting a diverse range 
of pathophysiology and further validate these markers in 
cross-sectional and longitudinal AD cohorts [16, 18, 23, 
24, 88]. In a recent manuscript, we showed that a panel 
of 48 CSF AD markers, originally identified in brain net-
work analyses, improved early diagnostic and predictive 
assessments of sporadic AD [23]. A separate study dem-
onstrated that CSF levels of matrisome markers SMOC1 
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and SPON1 were elevated nearly 30  years prior to the 
onset of symptoms in an autosomal dominant AD popu-
lation [24]. Thus, future directions include integrating the 
LBD brain network proteome with the CSF and plasma 
proteomes of diseased patients to similarly identify 
molecularly diverse biofluid panels that could advance 
the diagnostic and predictive accuracy of LBD.

Our focus on the DLPFC could be viewed as a limita-
tion in this study. This region was chosen because it is 
commonly affected in diffuse neocortical LBD and rou-
tinely scored in its neuropathological diagnosis. In addi-
tion, frontal executive deficits are commonly among the 
first symptoms observed in LBD [26], indicating this 
region could provide a valuable map of early pathophysio-
logical changes in the evolution of LB-mediated cognitive 
changes. The robust differential expression we observed 
even in non-demented PD cases further suggests this 
region is affected early in the brainstem-to-corticolimbic 
disease evolution thought to eventually provoke PDD. 
Yet, it is possible other heavily affected regions in LBD, 
including the inferior temporal and parietal lobes, may 
yield different network findings and additional insights. 
Among other limitations, we also regressed our prot-
eomic data for alterations related to age and sex. While 
this prioritized alterations most associated with disease, 
it also resulted in an incomplete examination of these 
demographic effects on protein levels. In our prior net-
work studies of the AD brain proteome, we have found 
that both age and sex have a very limited impact on 
disease-associated module trends [18]. Yet, it will be 
important in future studies, particularly when examining 
these markers in biofluids, to utilize large, more diverse 
cohorts to define the impact of age, sex, race, and other 
demographic variables on LBD protein signatures.

In summary, our study offers a network-level map of 
the LBD brain proteome, which revealed disease-asso-
ciated alterations in a diverse range of protein systems. 
Using this network, we were able to identify key overlap-
ping and divergent protein signatures in LBD and AD tis-
sues and correlate these disease-associated alterations to 
core neuropathologies. These results can serve as a strong 
systems-based framework for future integrative studies 
focused on identifying protein biofluid markers relevant 
to corticolimbic pathophysiology in the LBD brain.

Methods
UPenn and Emory brain tissues
Human postmortem DLPFC (BA 9) brain tissues were 
acquired by the UPenn and Emory ADRCs in accordance 
with their respective Institutional Review Board (IRB) 
protocols. Disease classification reflected neuropatho-
logical diagnoses provided by expert pathologists at each 
institution. These diagnoses were made in accordance 

with established criteria and guidelines [26, 89]. In both 
cohorts, neuritic plaque distribution was scored accord-
ing to the Consortium to Establish a Registry for Alzhei-
mer’s Disease (CERAD) criteria [29], and the extent of 
neurofibrillary tangle pathology was assessed with the 
Braak staging system [28]. The frequency of LB deposi-
tion in the frontal cortex was scored in the UPenn and 
Emory cases using similar semi-quantitative scales. The 
UPenn scale included scores of 0 (absent), 1 (sparse), 2 
(moderate), and 3 (frequent), while the Emory scale com-
prised scores of 0 (absent), 1 (sparse to moderate), and 
2 (frequent). Mini-Mental Status Examination (MMSE) 
scores were available for a subset of UPenn tissues. All 
sample metadata are provided in https:// www. synap 
se. org/# !Synap se: syn53 177242. The subsequent Meth-
ods sections outline the processing, TMT labeling, and 
MS analysis of these tissue cohorts, which were newly 
analyzed for this study. All procedures were performed 
within the Emory University Center for Neurodegen-
erative Disease and remained largely consistent across 
cohorts with minor differences where indicated. A total 
of 354 UPenn samples with a variety of neurological 
diagnoses were processed and MS quantified, only diag-
noses of interest (i.e., control, PD, PDD, DLB, AD) were 
included in the current analyses. For the Emory replica-
tion analyses, only control, PDD, and DLB cases were 
available.

ROSMAP brain tissues
The ROSMAP analyses in this manuscript were per-
formed using a previously published dataset com-
prising a total of 610 DLPFC (BA 9) samples [64]. All 
ROSMAP participants signed informed and repository 
consents and an Anatomic Gift Act. The available traits 
for these cases have been previously described [64]. LB 
deposition was scored using a global regional scale that 
indicated whether these inclusions were absent, nigral-
predominant, limbic-type, or neocortical-type. Clinical 
consensus cognitive diagnoses were also provided for 
ROSMAP cases based on detailed neuropsychological 
testing, which indicated whether an individual had no 
cognitive impairment (NCI), mild cognitive impair-
ment (MCI), or dementia at death. For the current 
manuscript, disease classification of control, AsymLB, 
and LBD were determined using a combination of 
available clinical and pathological traits. Controls 
included those with NCI, absent corticolimbic LBs, and 
minimal neuritic plaque and NFT deposition (CERAD 
0–1, Braak NFT 0-II). AsymLB cases were those with 
NCI, present corticolimbic LBs, and mild to moderate 
NFT deposition (Braak NFT 0-IV), while those with 
LBD featured dementia at death, present corticolim-
bic LBs, and mild to moderate NFT deposition (Braak 

https://www.synapse.org/#!Synapse:syn53177242
https://www.synapse.org/#!Synapse:syn53177242
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NFT 0-IV). These criteria surrounding tau levels helped 
ensure a high likelihood that LB deposition, as opposed 
to AD pathology, was the primary contributor to cog-
nitive decline in our LBD cases [26]. These diagnostic 
classifications encompassed 103 of the 610 cases in 
the original cohort. All sample metadata are provided 
in https:// www. synap se. org/# !Synap se: syn53 177242. 
Detailed methods have been published for the process-
ing and MS analysis of the ROSMAP cohort [64], which 
we refer to in subsequent sections when appropriate.

Brain tissue homogenization and protein digestion
Tissue homogenization of all cases was performed essen-
tially as described [20, 90]. Approximately 100  mg (wet 
weight) of each tissue sample was homogenized in 500 μL 
of 8 M urea lysis buffer (8 M urea, 10 mM Tris, 100 mM 
NaH2PO4, pH 8.5) with HALT protease and phosphatase 
inhibitor cocktail (ThermoFisher). Tissues were added to 
the lysis buffer immediately after excision in Rino sam-
ple tubes (NextAdvance) supplemented with ~ 100 μL of 
stainless-steel beads (0.9 to 2.0 mm blend, NextAdvance). 
Using a Bullet Blender (NextAdvance), tissues were 
then homogenized at 4  °C with 2 full 5 min cycles. The 
lysates were transferred to new Eppendorf Lobind tubes 
and sonicated for 3 cycles, each lasting 5 s at 30% ampli-
tude. Sample lysates were then centrifuged for 5  min at 
15,000 × g and the supernatant transferred to new tubes. 
Protein concentration was determined by bicinchoninic 
acid (BCA) assay (Pierce). For protein digestion, 100 μg of 
each sample was aliquoted and volumes normalized with 
additional lysis buffer. Samples were reduced with 1 mM 
dithiothreitol (DTT) at room temperature for 30 min fol-
lowed by 5  mM iodoacetamide (IAA) alkylation in the 
dark for another 30  min. Lysyl endopeptidase (Wako) 
at 1:100 (w/w) was added, and digestion allowed to pro-
ceed overnight. Samples were then sevenfold diluted with 
50 mM ammonium bicarbonate. Trypsin (Promega) was 
added at 1:50 (w/w) and digestion was carried out for 
another 16  h. The peptide solutions were acidified to a 
final concentration of 1% (vol/vol) formic acid (FA) and 
0.1% (vol/vol) trifluoroacetic acid (TFA) before desalting 
with a 30 mg HLB column (Oasis). Prior to sample load-
ing, each HLB column was rinsed with 1 mL of metha-
nol, washed with 1 mL 50% (vol/vol) acetonitrile (ACN), 
and equilibrated with 2 × 1 mL 0.1% (vol/vol) TFA. Sam-
ples were then loaded onto the column and washed with 
2 × 1  mL 0.1% (vol/vol) TFA. Elution was performed 
with 2 volumes of 0.5 mL 50% (vol/vol) ACN. An equal 
amount of peptide from each sample was aliquoted and 
pooled as the global internal standard (GIS), a fraction 
of which was TMT labeled and included in each batch as 
described below.

Isobaric Tandem Mass Tag (TMT) peptide labeling
TMT peptide labeling was performed as previously 
described [20, 90]. Prior to labeling, the 354 UPenn cases 
were randomized into 24 batches by age, sex, and diag-
nosis. Labeling was performed using TMTpro 16-plex 
kits (ThermoFisher 44,520). Each batch included one 
TMT channel with a labeled GIS standard. Labeling of 
sample peptides was performed as previously described 
[19, 90, 91]. Briefly, each sample (100 μg of peptides) was 
re-suspended in 100 mM triethylammonium bicarbonate 
(TEAB) buffer (100 μL). TMT labeling reagents (5  mg) 
were equilibrated to room temperature. Anhydrous ACN 
(256 μL) was added to each reagent channel. Each chan-
nel was then gently vortexed for 5 min. A volume of 41 μL 
from each TMT channel was transferred to each peptide 
solution and allowed to incubate for 1  h at room tem-
perature. The reaction was quenched with 5% (vol/vol) 
hydroxylamine (8 μL) (Pierce). All channels were then 
dried by SpeedVac (LabConco) to approximately 150 μL, 
diluted with 1 mL of 0.1% (vol/vol) TFA, and acidified to 
a final concentration of 1% (vol/vol) FA and 0.1% (vol/
vol) TFA. Labeled peptides were desalted with a 200 mg 
C18 Sep-Pak column (Waters). Prior to sample loading, 
each Sep-Pak column was activated with 3 mL of metha-
nol, washed with 3 mL of 50% (vol/vol) ACN, and equili-
brated with 2 × 3 mL of 0.1% TFA. After sample loading, 
each column was washed with 2 × 3  mL 0.1% (vol/vol) 
TFA followed by 2  mL of 1% (vol/vol) FA. Elution was 
performed with 2 volumes of 1.5 mL 50% (vol/vol) ACN. 
The eluates were then dried to completeness by Speed-
Vac. The 44 Emory samples were randomized by age 
and diagnosis into 3 batches and labeled using TMTpro 
16-plex kits (ThermoFisher 44520). Each batch included 
one TMT channel with a labeled GIS standard. Labeling 
of these sample peptides then proceeded according to 
the protocols above. Randomization and multiplex labe-
ling of ROSMAP cases were performed according to very 
similar protocols, as previously described in detail [64].

High‑pH off‑line fractionation
High pH fractionation of all cases was performed essen-
tially as described [90, 92] with slight modifications. 
Dried samples were resuspended in high pH loading 
buffer comprising 0.07% (vol/vol) NH4OH, 0.045% (vol/
vol) FA, and 2% (vol/vol) ACN. Resuspended samples 
were then loaded onto a Water’s Ethylene Bridged Hybrid 
(BEH) column (1.7 um, 2.1  mm × 150  mm). A Thermo 
Vanquish high-performance liquid chromatography 
(HPLC) system was used to carry out the fractiona-
tion. Solvent A consisted of 0.0175% (vol/vol) NH4OH, 
0.01125% (vol/vol) FA, and 2% (vol/vol) CAN. Solvent 
B comprised 0.0175% (vol/vol) NH4OH, 0.01125% (vol/

https://www.synapse.org/#!Synapse:syn53177242
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vol) FA, and 90% (vol/vol) ACN. The sample elution was 
performed over a 25  min gradient with a flow rate of 
0.6 mL/min. A total of 192 individual equal volume frac-
tions were collected across the gradient and subsequently 
pooled by concatenation into 96 fractions [92]. The frac-
tions were then dried to completeness using a SpeedVac.

Mass spectrometry analysis of UPenn samples
MS analysis was performed on the fractionated UPenn 
samples as previously described with modifications [17, 
18, 20, 90]. Briefly, fractions were resuspended in an equal 
volume of loading buffer (0.1% FA, 0.03% TFA, 1% ACN) 
and analyzed by liquid chromatography coupled to tan-
dem mass spectrometry (LC–MS/MS). Peptide eluents 
were separated on a custom in-house packed Charged 
Surface Hybrid (CSH) column (1.7 um, 15 cm × 150 μM 
internal diameter) by a Dionex RSLCnano ultra-perfor-
mance liquid chromatography (UPLC) system (Ther-
moFisher Scientific). Buffer A comprised water with 0.1% 
(vol/vol) FA, and buffer B comprised 80% (vol/vol) ACN 
in water with 0.1% (vol/vol) FA. Elution was performed 
over a 30 min gradient with a flow rate of 1500 nL/min. 
The gradient ranged from 1 to 99% solvent B. Peptides 
were monitored on a Orbitrap Eclipse mass spectrometer 
with high-field asymmetric waveform ion mobility spec-
trometry (FAIMS) (FAIMS Pro Interface, ThermoFisher 
Scientific). Two compensation voltages were chosen for 
FAIMS. For each voltage (-45 and -65) top speed cycle 
of 1.5 s, the full scan (MS1) was performed with an m/z 
range of 410–1600 and 60,000 resolution at standard 
settings. The higher energy collision-induced dissocia-
tion (HCD) tandem scans were collected at 35% collision 
energy with an isolation of 0.7 m/z, resolution of 30,000 
with TurboTMT, AGC setting of 250% normalized AGC 
target, and a maximum injection time of 54  ms. For all 
batches, dynamic exclusion was set to exclude previ-
ously sequenced peaks for 20 s within a 10-ppm isolation 
window.

Mass spectrometry analysis of Emory samples
MS analysis on the fractionated Emory samples was per-
formed similarly to the UPenn samples with modifica-
tions. Fractions were resuspended in an equal volume of 
loading buffer (0.1% FA, 0.03% TFA, 1% ACN) prior to 
LC–MS/MS analysis. Peptide eluents were separated on a 
custom in-house packed Charged Surface Hybrid (CSH) 
column (1.7 um, 15 cm × 150 μM internal diameter) by a 
Dionex RSLCnano running capillary flow UPLC (Ther-
moFisher Scientific). Buffer A comprised water with 0.1% 
(vol/vol) FA, and buffer B comprised 80% (vol/vol) ACN 
in water with 0.1% (vol/vol) FA. Elution was performed 
over a 40  min gradient with flow rate of 7 uL/min. The 
gradient ranged from 1 to 99% solvent B. Peptides were 

monitored on a Orbitrap Exploris 240 mass spectrom-
eter at 2 s top speed cycle. Each cycle comprised of a full 
scan (MS1) with an m/z range of 410–1600 and 120,000 
resolution at standard settings. The HCD tandem scans 
were collected at 36% collision energy with an isolation 
of 0.7  m/z, resolution of 45,000, AGC setting of 250% 
normalized AGC target, and 100  ms maximum injec-
tion time. For all batches, dynamic exclusion was set to 
exclude previously sequenced peaks for 20  s within a 
10-ppm isolation window.

Mass spectrometry of ROSMAP samples
MS analysis of fractionated ROSMAP samples was per-
formed in two separate sets as previously described [64].

Database searches and protein quantification
All RAW files acquired from TMT-MS of all cases were 
searched against a human reference protein database 
using the Proteome Discoverer suite (version 2.4, Ther-
moFisher Scientific). MS2 spectra were searched against 
the UniProtKB human proteome database containing 
Swiss-Prot human reference protein sequences (20,338 
target proteins downloaded in 2019). Searches were per-
formed using previously published protocols [17, 18, 90]. 
Percolator was used to filter peptide spectral matches 
(PSMs) and peptides to a false discovery rate (FDR) of 
less than 1%. Following spectral assignment, peptides 
were assembled into proteins and were further filtered 
based on the combined probabilities of their constitu-
ent peptides to a final FDR of 1%. A multi-consensus in 
Proteome Discoverer was then performed to achieve par-
simonious protein grouping across both sets of samples. 
In cases of redundancy, shared peptides were assigned to 
the protein sequence in adherence with the principles of 
parsimony. As default, the top matching protein or “mas-
ter protein” was the protein with the largest number of 
unique peptides and smallest value in the percent peptide 
coverage (i.e., the longest protein). Reporter ions were 
quantified using an integration tolerance of 20 ppm with 
the most confident centroid setting. Only parsimonious 
peptides were considered for quantification.

Controlling for batch‑specific variance
A tunable median polish approach (TAMPOR) [27] was 
used to remove technical batch variance in the proteomic 
data from all three cohorts, as previously described 
[17]. TAMPOR is utilized to remove inter-batch vari-
ance while preserving meaningful biological variance in 
protein abundance values, normalizing to the median of 
selected intra-batch samples and the median samplewise 
abundance, alternately and iteratively in a median polish 
[27]. We have previously applied this batch-correction 
approach to multiple large proteomic datasets [17, 18, 
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64]. This approach is robust to outliers and up to 50% of 
measurements missing. If a protein had more than 50% 
of samples with missing values, it was removed from the 
protein abundance matrix. No imputation of missing val-
ues was performed for any cohort. For the current data, 
TAMPOR leveraged the median protein abundance from 
the pooled GIS TMT channels as the denominators in 
both factors to normalize sample-specific protein abun-
dances across batches.

Regression of covariates
Following TAMPOR batch correction, the protein abun-
dance matrices from all three cohorts were subjected to 
non-parametric bootstrap regression by subtracting the 
covariate of interest multiplied by the median estimated 
coefficient from 1000 iterations of fitting for each protein 
in the  log2(abundance) matrix, as previously described 
[17]. The UPenn and Emory datasets were regressed for 
age, sex, and PMI. The ROSMAP cases were regressed 
for these three covariates, as well as any residual varia-
tion related to batch. Ages at death used for regression 
were uncensored. Case diagnosis was also explicitly mod-
eled and protected in each iteration.

Weighted Gene Co‑expression Network Analysis (WGCNA)
The WGCNA algorithm [52], implemented into the R 
library of the same name, was used to perform co-expres-
sion network analysis on batch-corrected and regressed 
TMT-MS data. A total of four co-expression networks 
were built for this study. For UPenn cases, two separate 
networks were built on the data matrices from 1) an LB 
subset of cases including those with neuropathological 
diagnoses of control, PD, PDD, and DLB and 2) an AD 
subset of cases comprising controls and AD. These subset 
data matrices also included GIS data. Likely due to the 
overwhelming loss of synaptic signatures in AD demen-
tia, we have previously observed that this disease tends to 
drive the module organization and alterations observed 
in multi-disease brain networks and mask changes pre-
sent in non-tauopathies, such as LBD. Thus, building 
the UPenn networks separately by disease allowed us to 
better capture the module structure and changes associ-
ated more specifically with LB pathology. Two additional 
validation networks were also built on the 44 Emory 
and 103 ROSMAP cases. For each build, network con-
nectivity outlier removal was performed as described 
[17, 18, 20], with any samples having a network con-
nectivity Z-score of 3 in either direction being removed. 
The WGCNA::blockwiseModules() function was then 
used to generate each network. The UPenn and Emory 
LBD networks were built using the following WGCNA 
settings: soft threshold power = 11.0, deepSplit = 2, 
minimum module size = 25, merge cut height = 0.07, 

mean topological overlap matrix (TOM) denomina-
tor, a signed network with partitioning about medioids 
(PAM) respecting the dendrogram, and a reassignment 
threshold of p < 0.05 with clustering completed within 
a single block. Soft threshold power was adjusted in the 
UPenn AD and ROSMAP LBD networks to 12.0 and 7.5 
respectively, keeping the other arguments to the block-
wiseModules function consistent across the networks. 
This function generates a correlation matrix across all 
proteins within each network and subsequently clusters 
proteins hierarchically into modules based on protein 
expression pattern similarity across samples. Module 
eigenproteins are also generated, each representing the 
first principal component of the module’s hub proteins. 
The signedkME function of WGCNA then allowed us to 
determine the bicor correlation between each individual 
protein and each module eigenprotein. This measure 
of module membership is defined as kME and was ulti-
mately utilized to determine hub status [52]. To enforce 
a kME table with minimal ambiguity in module assign-
ments, a post-hoc clean-up procedure with iterative 
protein reassignments were performed as previously 
described [17, 20].

Gene ontology and cell type marker enrichment analyses
Gene ontology (GO) annotations were retrieved from the 
Bader Lab’s monthly updated. GMT formatted ontology 
lists as previously described [93]. A Fisher’s exact test 
for enrichment was performed into each module’s pro-
tein membership using an in-house script. Molecular 
function, biological process, and cellular compartment 
assignments for each module were determined using the 
highest ranked GO terms associated with each module. 
Cell type enrichment was also investigated as previously 
described [17, 20] by analyzing module overlap with 
RNA sequencing (RNA-seq) and proteomic reference 
lists of cell type-specific markers [94, 95]. Fisher’s exact 
tests (FET) were performed to measure the extent of cell 
type enrichment in each module and were corrected by 
the Benjamini–Hochberg procedure.

GWAS module association
The enrichment of UPenn LBD modules with GWAS tar-
gets was performed using MAGMA (version 1.08b) [46] 
and disease-specific single nucleotide polymorphism 
(SNP) summary statistics, as previously described [17, 
20]. PD summary statistics were derived from http:// 
www. pdgene. org, while AD summary statistics were 
obtained from Kunkle et al. [96]. These lists were filtered 
for those genes with disease association values of p < 0.05 
prior to enrichment analyses.

http://www.pdgene.org
http://www.pdgene.org
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Betweenness centrality calculations
To determine the bottleneck status of SNCA and other 
proteins in its assigned module (M19) in the UPenn LBD 
network, we calculated the betweenness centrality (g) 
of each of these proteins relative to related presynap-
tic modules, including M7, M17, and M26. Essentially, 
these betweenness values represent the number of short-
est paths passing through a certain protein or node, and 
those nodes with high betweenness are responsible for 
the flow of information in that portion of the network 
[50, 51, 53]. These betweenness measures were calculated 
in NetworkX (v3.1) in Python (v3.11.5) using the topo-
logical overlap matrix (TOM) plot generated by WGCNA 
upon building the UPenn LBD network. A subgraph was 
constructed using the protein members of M19, M7, 
M17, and M26. Edges with weights less than the mean 
edge weight were removed to focus on proteins with the 
most similar expression patterns. The betweenness cen-
trality was calculated for the resultant graph with pro-
tein members of M19 as source nodes and the remaining 
proteins in M7, M17, and M26 as target nodes. After 
betweenness centrality was calculated, proteins in M19 
were ranked.

Network module preservation
The WGCNA::modulePreservation() function was used 
to assess network module preservation across networks, 
as previously described [17, 18, 20]. This function gen-
erated a  Zsummary composite score for each module, 
using one designated network as the template for each 
pairwise network comparison. We also assessed mod-
ule preservation using synthetic eigenproteins as previ-
ously published [17, 18, 20]. Briefly, using one network 
as a template, synthetic modules were assembled in the 
comparison network comprising the top 20th percentile 
of proteins by kME. The WGCNA::moduleEigengenes() 
function was then used to calculate the weighted eigen-
proteins of these synthetic modules, representing the 
variance of all synthetic module members across disease 
cohorts.

Other statistics
Statistical analyses were performed in R (version 3.5.2). 
Correlations were performed using the biweight mid-
correlation function as implemented in the WGCNA R 
package, using only pairwise complete observations for 
the calculations. Comparisons between two groups were 
performed by t test after confirmation that the data was 
normally distributed. Comparisons among three or more 
groups were performed with one-way ANOVA with 
Tukey or Bonferroni post-hoc correction methods for 
specific pairwise comparisons. P values were adjusted for 

multiple comparisons by false discovery rate (FDR) cor-
rection where indicated. The hinges of the box plots rep-
resent the median and the interquartile range between 
the 25th and 75th percentiles, while data points up to 1.5 
times the interquartile range from each box hinge define 
the extent of error bar whiskers. Data points outside this 
range were identified as outliers.
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