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Abstract 

Introduction Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated 
to β-amyloid (Aβ) and tau pathology in Alzheimer’s disease (AD) brain and cerebrospinal fluid (CSF). However, 
it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic 
approaches.

Methods We employed heparin-affinity chromatography, followed by off-line fractionation and tandem mass tag 
mass spectrometry (TMT-MS), to enrich HBPs from plasma obtained from AD (n = 62) and control (n = 47) samples. 
These profiles were then correlated to Aβ, tau and phosphorylated tau (pTau) CSF biomarkers and plasma pTau181 
from the same individuals, as well as a consensus brain proteome network to assess the overlap with AD brain 
pathophysiology.

Results Heparin enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and throm-
bin, and depleted high-abundant proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude 
in abundance, were measured across 109 samples. Compared to the consensus AD brain protein co-expression net-
work, we observed that specific plasma proteins exhibited consistent direction of change in both brain and plasma, 
whereas others displayed divergent changes, highlighting the complex interplay between the two compartments. 
Elevated proteins in AD plasma, when compared to controls, included members of the matrisome module in brain 
that accumulate with Aβ deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and the APOE4 pro-
teoform. Additionally, heparin-enriched proteins in plasma demonstrated significant correlations with conventional 
AD CSF biomarkers, including Aβ, total tau, pTau, and plasma pTau181. A panel of five plasma proteins classified AD 
from control individuals with an area under the curve (AUC) of 0.85. When combined with plasma pTau181, the panel 
significantly improved the classification performance of pTau181 alone, increasing the AUC from 0.93 to 0.98. This sug-
gests that the heparin-enriched plasma proteome captures additional variance in cognitive dementia beyond what 
is explained by pTau181.
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Conclusion These findings support the utility of a heparin-affinity approach coupled with TMT-MS for enriching 
amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes 
in the AD brain.

Keywords Alzheimer’s disease, Amyloid, Biomarkers, Cerebrospinal fluid, Heparin, Heparan sulfate proteoglycans, 
Proteomics, Plasma

Background
Alzheimer’s disease (AD) is an age driven neurodegen-
erative disease characterized by the accumulation of 
two core pathologies, amyloid beta (Aβ) plaques and 
phosphorylated tau neurofibrillary tangles (NFTs) in 
the brain, ultimately leading to dementia [1–3]. Nota-
bly, both pathologies accumulate over a decade prior to 
clinical symptoms in a latent preclinical phase of disease, 
which provides an opportunity for early detection using 
biomarkers [4]. To this end, progress towards early accu-
rate diagnosis and effective treatments for AD has been 
mainly focused on the two hallmark pathologies with 
recent advances in developing assays for Aβ, tau and 
phosphorylated tau (pTau) species in cerebrospinal fluid 
(CSF) and plasma [5–7]. Specifically, phosphorylated 
tau on threonine-181 (pTau181) and on threonine-217 
(pTau217) have recently emerged as promising plasma 
biomarkers for AD, reflecting Aβ deposition as well as 
subsequent tau aggregation in the brain [5–7]. However, 
it has been demonstrated that combining multiple pro-
teins in CSF enhances the accuracy and discriminative 
capability of both pTau and Aβ for dementia [8], which 
could apply to plasma as well.

Emerging evidence has suggested that Aβ and tau, rep-
resent only a fraction of the complex and heterogeneous 
biology of AD [9, 10]. For example, large-scale bulk RNA-
seq and proteomics studies link AD to diverse biological 
mechanisms beyond Aβ and tau, involving various bio-
chemical pathways and cell types in brain [11–13]. These 
studies revealed pathophysiological mechanisms such as 
synapse loss and neuroinflammation linked to immune, 
vascular, metabolic and extracellular matrix (ECM) dys-
function. Furthermore, integrated analyses across brain 
and biofluids demonstrated a significant overlap between 
changes of brain and CSF proteomes in AD, enabling 
early disease prediction even in the preclinical phase of 
AD [12, 14–16]. For example, CSF proteomic measure-
ments in autosomal-dominant AD (ADAD) that overlap 
with brain protein co-expression modules were recently 
used to define the evolution of AD pathology over a time-
scale spanning six decades [17]. SMOC1 and SPON1, 
ECM proteins associated with Aβ plaques, showed ele-
vated levels in CSF almost three decades before symptom 
onset. Subsequent alterations were observed in synaptic, 
metabolic, axonal, inflammatory proteins, and finally, 

reductions in neurosecretory proteins [17]. Similar 
trends in these biomarkers were observed in late-onset 
AD (LOAD), where a targeted CSF proteomic panel 
reflecting diverse brain-based pathophysiology enhanced 
the ability of Aβ, tau, and pTau in predicting clinical diag-
nosis, FDG PET, hippocampal volume, and measures of 
cognitive severity [8]. Notably, in  vivo measurements 
of fibrillary amyloid plaques in the brain of AD patients 
using the PET ligand florbetapir (AV45) was most 
strongly associated with SMOC1, further supporting its 
role as an important surrogate marker of underlying Aβ 
pathology in brain [8].

In a consensus human brain proteome network, both 
SMOC1 and SPON1 are hub proteins within module 42 
(M42), which was assigned the term ‘matrisome’, given 
the collection of ECM-associated proteins and strong 
enrichment of glycosaminoglycan-binding proteins [11, 
18]. This module is most strongly associated with AD 
neuropathology and cognition within brain network [11], 
and contained several additional proteins that have pre-
viously been identified to be correlated with or directly 
bind to Aβ [11, 19–21]. This includes amyloid precursor 
protein (APP), a proteomic surrogate for Aβ deposition 
in brain, and apolipoprotein E (APOE), the protein prod-
uct of the AD genetic risk factor APOE [22]. Interestingly, 
levels of the M42 matrisome module were increased in 
individuals carrying the APOE ε4 allele, the strongest 
genetic risk factor for late-onset AD [11]. Furthermore, 
most M42 proteins are heparan sulfate (HS) or heparin 
binding proteins (HBPs), including SMOC1, SPON1, 
MDK, and APOE among others [23–25]. Notably, hepa-
rin and HS accelerate the formation of Aβ fibrils [26–28] 
and matrisome signaling has been associated with APOE 
ε4 in mixed cortical cultures [29]. Taken together, these 
discoveries indicate that HBPs within M42, exhibit-
ing associations with amyloid plaques, are linked to the 
APOE ε4 allele, and function as early indicators of AD 
risk in CSF. Hence, if readily detectable in plasma, mem-
bers of M42 hold significant potential as biomarkers for 
amyloid pathology in AD.

Although SMOC1 and SPON1 have been reported 
to change in AD plasma using antibody- or aptamer-
based proteomic technologies [30], members of M42 
have been extremely difficult to identify and quan-
tify using mass spectrometry (MS)-based proteomic 
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approaches in plasma. Much like CSF, human plasma 
is characterized by a large dynamic range of protein 
abundance, estimated at 12–13 orders of magnitude 
[31], in which albumin and other high-abundant pro-
teins can prevent the detection of proteins of inter-
est. However, the concentration of albumin in plasma 
(~ 640 μM) is about 200-fold higher than in CSF (~ 3 
μM), which means fractionation methods such as the 
immunodepletion of albumin and other high-abundant 
proteins are typically required to enhance the depth 
[32]. However, our attempts using these approaches 
have only partially enriched members of M42 in 
plasma [30]. Therefore, given the shared heparin-bind-
ing properties of M42 members, we aimed to capture 
and quantify M42 matrisome members from plasma 
using heparin-affinity chromatography followed by 
MS-based proteomic analysis to enhance the coverage 
and quantification of these proteins and assess their 
changes in AD.

Here we describe a heparin-affinity chromatogra-
phy approach to capture and enrich HBPs from human 
plasma across normal controls and individuals clinically 
diagnosed with AD. Collectively we identified over 2800 
proteins in the heparin-enriched proteome, spanning 10 
orders of magnitude in protein abundance in plasma. We 
further show that members of M42, including SMOC1 
and SPON1, were significantly increased in AD plasma 
and correlated to CSF levels of amyloid, tau and pTau 
as well as plasma pTau, suggesting that these proteins 
are related to AD pathophysiology in both brain and 
plasma. Finally, we leveraged the consensus brain protein 
co-expression network and examined the relationship 
between plasma and brain proteomes. Plasma proteins 
within certain network modules showed consistent 
increases or decreases in both the AD brain and plasma, 
while others displayed a divergent change. In summary, 
these findings provide strong support for the integration 
of a heparin enrichment method with MS-based prot-
eomic analysis for identifying a wide spectrum of plasma 
biomarkers that mirror pathological changes in the AD 
brain.

Methods
Materials
Primary antibodies used included a mouse monoclonal 
anti-thrombin antibody (Catalog No. ab17199, Abcam) 
and a goat polyclonal anti-ApoE antibody (Catalog No. 
K74180B, Meridian Life Science). Secondary antibod-
ies used were conjugated with either Alexa Fluor 680 
(Invitrogen) or IRDye  800 (Rockland) fluorophores for 
enhanced detection and visualization. Heparin-sepharose 

(Cytiva, lot#17099801 for Set 1 and lot#17099803 for Set 
2) was used to enrich HBPs from plasma samples.

Plasma and CSF samples
All participants providing plasma and CSF samples 
gave their informed consent following the protocols 
approved by the Institutional Review Board at Emory 
University. Comprehensive cognitive assessments, 
including the Montreal Cognitive Assessment (MoCA), 
were administered to all patients as part of their evalu-
ation at the Emory Cognitive Neurology Clinic and 
the Emory Goizueta Alzheimer’s Disease Research 
Center (ADRC). Diagnostic data were sourced from 
the ADRC (LBC) and the Emory Cognitive Neurology 
Program (CRIN-NeuCog). Despite the participants 
being recruited from two studies, the same clinicians 
classified case–control status in both settings based on 
clinical criteria, detailed cognitive measures accord-
ing to National Alzheimer Coordination Center cod-
ing guidelines, imaging findings, and CSF biomarker 
results. Plasma and CSF samples were collected from 
participants on the same day using standard proce-
dures. These samples were processed and stored in 
accordance with the 2014 ADC/NIA best practices 
guidelines. For participants recruited through the 
Emory Cognitive Neurology Clinic, CSF samples were 
sent to Athena Diagnostics and assayed for CSF AD 
biomarkers, including Aβ1-42, tTau, and pTau181, uti-
lizing the INNOTEST assay platform. CSF samples 
collected from research participants in the ADRC were 
assayed using the INNO-BIA AlzBio3 Luminex assay. 
To analyze plasma pTau181 concentrations, EDTA 
plasma samples were prepared according to manufac-
turer’s instructions from the pTau181 kit v2 (Quanterix 
Billerica, Massachusetts, USA). Samples were run in a 
single batch. Plasma was thawed at room temperature 
for 45 min and then centrifuged at 5000 × g for 10 min. 
The plasma samples were then diluted four times and 
measured on the Simoa HDX platform. Mean intra-
assay coefficient of variation (CV) were below 10%. 
In total, a pooled plasma sample and two sets of indi-
vidual plasma samples were used in the study. Our 
discovery Set 1 comprised plasma samples from 18 
cognitively assessed normal controls and 18 individu-
als with mild cognitive impairment or AD, whereas 
replicate Set 2 included plasma samples obtained from 
36 cognitively assessed normal controls and 49 indi-
viduals with mild cognitive impairment or AD. Out of 
the 121 samples, 13 overlapped between the two sets, 
resulting in a total of 108 unique individuals. Further 
details about demographics, cognitive scores, CSF 
biomarkers, and pTau181 plasma biomarker levels 
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for individuals in both sets of samples are available in 
Table 1 and Supplemental Tables 4 and 15.

Heparin binding protein enrichment from plasma
The principal experiment of heparin enrichment was 
conducted in technical triplicates, using 40 µl of pooled 
neat human plasma per replicate. Initially, 100  µl of 
heparin-sepharose bead slurry (1:1 w/v) was prepared 
with 50 µl of beads for each replicate (n = 3) and binding 
buffer (50 mM sodium phosphate, pH 7.4). Each slurry 
was then washed twice with 1  ml of binding buffer. 
Subsequently, each replicate of neat plasma (40 µl) was 
diluted with 1 ml of binding buffer to generate diluted 
plasma (DP) as input and mixed with the heparin-
sepharose beads prepared above. The incubation was 
performed at room temperature for 10  min coupled 
with rotation. Following the enrichment step, the beads 
were spun down at 500 × g for 2 min and the superna-
tant was collected as the heparin-depleted flowthrough 

(Hp-depleted FT) fraction. The heparin-sepharose 
beads were then washed twice with 1  ml of binding 
buffer and resuspended in 1 ml of binding buffer (Hp-
enriched fraction). The Hp-enriched fraction was then 
split into 650 µl for digestion and 350 µl for SDS-PAGE 
and western blotting. The supernatant was removed 
before further processing. For Set 1 (n = 36) and Set 2 
(n = 85) samples, a global pooled standard (GPS) was 
prepared for each set before enrichment as internal 
control for enrichment by pooling equal amount of 
each sample within each set. A nearly identical proto-
col as described for the pooled plasma was followed for 
subsequent enrichment of Set 1 and Set 2, using 50 µl 
of beads (Set 1) and 200 µl of beads (Set 2) correspond-
ingly for each set.

Gel electrophoresis and western blot analysis
Western blotting and Coomassie Blue staining were per-
formed on all three fractions from pooled plasma sam-
ple (DP input, n = 3; Hp-depleted FT, n = 3; Hp-enriched 

Table 1 Characteristics of human subjects used in this study

AD Alzheimer’s disease, SD Standard Deviation, pTau181 tau phosphorylated at threonine 181, tTau total tau
* Analyses of group differences included Chi-squared test for categorical variables and Student’s t-test for continuous variables
# CSF and plasma biomarker values are in pg/ml

 Set1, n=36   Set2, n=85

Control, n=18   AD, n=18 p-value*  Control, n=36   AD, n=49 p-value* 

Age, mean years (SD) 68.6 (9.2) 65.2 (12.1) 0.3492 70.4 (8.9) 66.1 (6.6) 0.0125

Sex, n (%) 0.7354 0.0884

 Male 11 (61.1) 11 (61.1) 11 (30.6) 24 (49.0)

 Female 11 (61.1) 8 (44.4) 25 (69.4) 24 (49.0)

Race, n (%) 0.5023 0.0034

  White  11 (61.1)  12 (66.7)  24 (66.7)  45 (91.8)

 Black 7 (38.9) 5 (27.8) 12 (33.3) 4 (8.2)

 American Indian or Alaska Native 0 (0.0) 1 (5.5) 0 (0.0) 0 (0.0)

Cognition
 MoCA 27.1 (1.6) 13.1 (7.2) 6.28E-09 26.9 (2.0) 16.5 (6.7) 9.19E-14

ApoE Status, n (%) 0.029 0.057

 APOE 2/2 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0)

 APOE 2/3 2 (11.1) 0 (0.0) 5 (13.9) 1 (2.0)

 APOE 2/4 1 (5.6) 0 (0.0) 2 (5.5) 1 (2.0)

 APOE 3/3 11 (61.1) 6 (33.3) 18 (50.0) 21 (42.9)

 APOE 3/4 4 (22.2) 4(22.2) 10 (27.8) 14 (28.6)

 APOE 4/4 0 (0.0) 8 (44.5) 1 (2.8) 11 (22.4)

Biomarkers, mean (SD)#
 CSF Aβ1-42 552.1 (95.0) 223.9 (75.0) 2.86E-13 499.8 (137.7) 313.7 (145.6) 6.02E-08

 CSF tTau CSF 41.8 (18.3) 148.5 (70.0) 3.9E-07 54.9 (26.5) 108.6 (43.3) 4.02E-09

 pTau181 25.4 (9.0) 58.7 (18.2) 4.99E-08 54.9 (26.5) 61.6 (25.6) 6.72E-10

 Plasma pTau181 1.7 (0.7) 4.8 (2.0) 2.94E-06 2.4 (1.0) 3.8 (1.2) 4.48E-07
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fraction, n = 3) as previously described [33–35]. For 
Coomassie Blue staining, samples were boiled with 
4 × Laemmli sample buffer, and an equal volume to 0.2 
µl of the neat plasma was loaded from DP inputs and 
FT fractions onto an SDS-PAGE gel (Invitrogen). To 
enhance protein visualization, the Hp-enriched frac-
tions were loaded at a fivefold higher amount (equal to 
1 µl of the neat plasma) than the input and FT. For the 
western blotting, an equal volume to 0.25 µl of the neat 
plasma was loaded from all three fractions. The gels were 
either stained with Coomassie Blue G250 overnight or 
semi-dry transferred to nitrocellulose membranes (Inv-
itrogen) using the iBlot2 system (Life Technologies). 
Subsequently, the membranes were blocked with casein 
blocking buffer (Sigma B6429) for 30 min at room tem-
perature. They were then probed with two primary 
antibodies (mouse monoclonal anti-thrombin and goat 
polyclonal anti-ApoE) at a 1:1000 dilution overnight at 4 
°C. On the following day, the membranes were rinsed and 
incubated with secondary antibodies conjugated to the 
Alexa Fluor 680 fluorophore (Invitrogen) at a 1:10,000 
dilution for one hour at room temperature. After another 
round of rinsing, the membranes were once again incu-
bated with secondary antibodies conjugated to a second 
IRDye 800 fluorophore at a 1:10,000 dilution for one hour 
at room temperature. For Set 1 samples (n = 36), western 
blotting was performed on all three fractions from each 
of the samples as well as GPS as described above. For Set 
2 samples (n = 85), western blotting was performed on all 
three fractions from only the GPS in triplicates.

Heparin‑enriched plasma protein digestion
Sample digestion was carried out on all three frac-
tions for pooled plasma sample (DP input, n = 3; Hp-
depleted FT, n = 3; Hp-enriched fraction, n = 3), and 
only Hp-enriched fraction for Set 1 (n = 36) and Set 2 
(n = 85) samples. For DP inputs and FT fractions from 
pooled plasma sample, 25 µl was digested as previously 
described [36]. For the Hp-enriched fractions, digestion 
was performed on beads. The supernatant was removed 
before adding 40 µl of 0.4 M CAA and 8 µl of 0.5 M 
TCEP with 400 µl of 50 mM ammonium carbonate for 
reduction and alkylation. Following the same steps as 
input and FT above [36], 25 mAU of LysC was used for 
LysC digestion at 37 °C with shaking at 1000 rpm. 10 µg 
of trypsin was then added the following day for overnight 
digestion. After trypsin digestion, the digested peptides 
were acidified and desalted as previously described [36]. 
Global internal standard (GIS) was prepared for Set 
1 and Set 2 separately by pooling 100 µl of the elution 
from all samples within each set and divided into 900 µl 
per aliquot. The elution was then dried to completeness 
via speed vacuum (Labconco).

Label‑free mass spectrometry to assess heparin 
enrichment
Dried peptides from three fractions of pooled plasma 
sample were reconstituted in peptide loading buffer (0.1% 
FA, 0.03% TFA, 1% ACN). Using an RSLCnano liquid 
chromatography (LC) system, approximately 1 µg of pep-
tide was loaded onto an in-house made column (75 µm 
internal diameter and 50  cm length) packed with 1.9-
μm ReproSil-Pur C18-AQ resin (Maisch, Germany) and 
eluted over a 120-min gradient. Elution was performed 
at a rate of 300 nl/min with buffer B/buffer (A + B) ratio 
ranging from 1 to 99% (buffer A, 0.1% FA in water; buffer 
B, 0.1% FA in 80% ACN). Mass spectrometry was per-
formed with a high-field asymmetric waveform ion 
mobility spectrometry (FAIMS) Pro-equipped Eclipse 
Orbitrap mass spectrometer (ThermoFisher) in positive 
ion mode using data-dependent acquisition (DDA) with 
3 × 1-s top speed cycles and 3 compensation voltages (-40, 
-60 and -80). Each compensation voltage (CV) top speed 
cycle consisted of one full MS scan with as many MS/MS 
events that could fit in the 1-s cycle time. Full MS scans 
were collected at a resolution of 120 k [350 to 1500 mass/
charge ratio (m/z) range, 4 ×  10–5 automatic gain control 
(AGC) target, and 50-ms maximum ion injection time]. 
All higher-energy collision-induced dissociation (HCD) 
MS/MS spectra were acquired in the ion trap (1.6  m/z 
isolation width, 35% collision energy, 1 ×  10–4 AGC tar-
get, and 35-ms maximum ion time). Dynamic exclusion 
was set to exclude previously sequenced peaks for 60  s 
within a 10-ppm (parts per million) isolation window. 
Only precursor ions with charge states between 2 and 7 
were selected for fragmentation.

The raw files of all three fractions from pooled plasma 
sample (n = 9) were searched using FragPipe (FP, ver-
sion 20.0). The FP pipeline for label-free quantification 
(LFQ) relies on MSFragger [37, 38] (version 3.8) for pep-
tide identification. The peptide search was done against 
all canonical human proteins downloaded from Uniprot 
(20,402 total sequencese; accessed 02/11/2019), as well 
as 51 common contaminants, and all 20,453 reverse 
sequences (decoys). The prescribed LFQ-MBR work-
flow in FP was used with parameters specified as follows: 
precursor mass tolerance was -20 to 20 ppm, fragment 
mass tolerance of 0.7 Da, mass calibration and param-
eter optimization were selected, and isotope error was 
set to 0/1/2. Cleavage type was set to semi-enzymatic. 
Enzyme specificity was set to strict-trypsin and up to two 
missing trypsin cleavages were allowed. Peptide length 
was allowed to range from 7 to 50 and peptide mass 
from 200 to 5,000 Da. Variable modifications that were 
allowed in our search included: oxidation on methionine, 
and N-terminal acetylation on protein. Static modifi-
cations included: carbamidomethylation on cysteine. 
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Peptide-spectrum match (PSM) were validated using 
Percolator [39]. The false discovery rate (FDR) threshold 
was set to 1% using Philosopher [40] (version 5.0.0). The 
peptide and UniprotID-identified protein abundances 
were quantified using IonQuant [41] (version 1.9.8) for 
downstream analysis. All raw files, the database, and the 
FP search parameter settings are provided on https:// 
www. synap se. org/# !Synap se: syn52 525880/ files/.

To enable protein overlap analysis across the three frac-
tions and conduct gene ontology (GO) analysis for pro-
teins within each fraction, proteins that were detected 
in at least 2 out of 3 replicates within each fraction were 
selected. Before performing differential abundance anal-
ysis, the data from all nine samples were merged and 
protein levels were first scaled by dividing each protein 
intensity by intensity sum of all proteins in each sample 
followed by multiplying by the maximum protein inten-
sity sum across all nine samples. Instances where the 
intensity was ’0’ were treated as ’missing values’. Subse-
quently, Perseus-style imputation was applied to these 
missing values for further analysis [42].

Tandem mass tag (TMT) labeling of peptides
TMT labeling of digested Set 1 and Set 2 samples was 
performed as previously described [36]. The discovery 
dataset (Set 1) was comprised of 36 individual samples 
and 3 GIS randomized based on age, sex and diagno-
sis into three batches and the replication dataset (Set 2) 
was comprised of 85 individual samples and 5 GIS ran-
domized into five batches. Supplemental Table 4 and 15 
provides the sample-to-batch arrangement for each of 
these samples. These samples were then labeled using 
TMTpro kits (Thermo Fisher Scientific, A44520, Lot 
number: VH3111511 for Set 1; UK297033 for Set 2 with 
XB338618 for channels 134C and 135). First, each pep-
tide digest was resuspended in 75 ml of 100 mM trieth-
ylammonium bicarbonate (TEAB) buffer, and 5 mg of 
TMT reagent was dissolved into 200 ml of anhydrous 
acetonitrile (ACN). After that, 15 ml of TMT reagent 
solution was subsequently added to the resuspended 
peptide digest and incubated for 1 h at room tempera-
ture. Following that, the reaction was quenched with 4 ml 
of 5% hydroxylamine (Thermo Fisher Scientific, 90,115) 
for 15 min. Then, the peptide solutions were combined 
according to the batch arrangement. Finally, each TMT 
batch was desalted with 60 mg HLB columns (Waters) 
and dried via speed vacuum (Labconco).

Mass spectrometry analysis for TMT labeled samples
High-pH off-line fractionation was performed on TMT 
labeled dried peptides as previously described [36]. A 
total of 96 individual equal volume fractions were col-
lected across the gradient per TMT batch and dried via 

speed vacuum (Labconco). An equal volume of each 
high-pH peptide fraction was initially resuspended in 
loading buffer (0.1% FA, 0.03% TFA, and 1% ACN) and 
was loaded and separated using an EASY-nanoLC system 
on a self-made 15-cm-long, 150-μM internal diameter 
(ID) fused silica column packed with 1.9-μm ReproSil-
Pur C18-AQ resin from Maisch, Germany. Elution was 
carried out over a 20-min gradient at a flow rate of 1200 
nL/min, with buffer B/buffer (A + B) ratio ranging from 1 
to 99%. For Set 1, mass spectrometry was performed on a 
high-field asymmetric waveform ion mobility spectrom-
etry (FAIMS) Pro-equipped Orbitrap Lumos (Thermo) in 
positive ion mode. DDA was used with 2 × 1-s top speed 
cycles and 2 compensation voltages (-45 and -65). Each 
top speed cycle included one full MS scan with as many 
MS/MS events as possible within the 1-s cycle time. 
Full MS scans were acquired at a resolution of 120,000 
over a m/z range of 410 to 1600, with an AGC target of 
4 ×  10–5 and a maximum ion injection time of 50 ms. 
All HCD MS/MS spectra were obtained at a resolution 
of 50,000, with a 0.7 m/z isolation width, 35% collision 
energy, 1 ×  10–5 AGC target, and a maximum ion time of 
86 ms. Dynamic exclusion was set to exclude previously 
sequenced peaks for 20 s within a 10-ppm (parts per mil-
lion) isolation window. Only precursor ions with charge 
states between 2 and 6 were selected for fragmentation. 
For Set 2, elution was performed over a 30-min gradient 
at a flow rate of 1250 nl/min, with buffer B/buffer (A + B) 
ratio ranging from 1 to 99% (buffer A: 0.1% FA in water; 
buffer B: 0.1% FA in 80% ACN). Mass spectrometry was 
conducted on a high-field asymmetric waveform ion 
mobility spectrometry (FAIMS) Pro-equipped Orbitrap 
Eclipse (Thermo) in positive ion mode. DDA employed 
2 × 1.5-s top speed cycles and 2 compensation voltages 
(-45 and -65). Each top speed cycle comprised one full 
MS scan with as many MS/MS events as possible within 
the 1.5-s cycle time. Full MS scans were acquired at a 
resolution of 60,000 over an m/z range of 410 to 1600, 
with an AGC target of 4 ×  10–5 and a maximum ion injec-
tion time of 50 ms. All HCD MS/MS spectra were col-
lected at a resolution of 30,000, with TurboTMT on, a 
0.7 m/z isolation width, 35% collision energy, 250% nor-
malized AGC target, and a maximum ion time of 54 ms. 
Dynamic exclusion was configured to exclude previously 
sequenced peaks for 20 s within a 10-ppm isolation win-
dow. Precursor ions with charge states between 2 and 6 
were selectively chosen for fragmentation.

Database search parameters for TMT labeled samples
FP (version 18.0) was used to search both the discov-
ery (Set 1) and replication (Set 2) datasets as essentially 
described [37, 43]. First, mzML files were generated 
from the original MS.raw files (96 raw files/fractions 

https://www.synapse.org/#!Synapse:syn52525880/files/
https://www.synapse.org/#!Synapse:syn52525880/files/
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per batch) of both Set 1 (3 TMT16 batches) and Set 2 
(5 TMT18 batches) using the ProteoWizard MSCon-
vert tool (version 3.0) with options including: ‘Write 
index’, ‘TPP compatibility’, and ‘Use zlib compression’, 
as well as “peakPicking” filter setting. Then all 96 × 8 
mzML files from both sets were searched together 
using MSFragger (version 3.5). The human proteome 
database used comprised of 20,402 sequences (Swiss-
Prot, downloaded 2/11/2019) and their correspond-
ing decoys, including common contaminants. We 
also included the APOE2 and APOE4 coding vari-
ant: CLAVYQAGAR (APOE2), and LGADMEDVR 
(APOE4). Briefly, search settings included: Precursor 
mass tolerance was -20 to 20 ppm, the fragment mass 
tolerance was set to 20 ppm, mass calibration and 
parameter optimization were selected, and the isotope 
error was set to -1/0/1/2/3. The enzyme specificity 
was set to strict-trypsin and up to two missed cleav-
ages allowed. Cleavage type was set to semi-enzymatic. 
Peptide length was allowed in the range from 7 to 35 
and peptide mass from 200 to 5,000 Da. Variable modi-
fications that were allowed in our search included: 
oxidation on methionine, N-terminal acetylation on 
protein, TMTpro modifications on serine, threonine 
and histidine as described [44], with a maximum of 3 
variable modifications per peptide. Static modifications 
included: isobaric TMTpro (TMT16) modifications on 
lysine and the peptide N-termini as well as carbamido-
methylationon of cysteine. MSFragger search results 
were processed using Percolator [39] for PSM valida-
tion, followed by Philosopher [40] for protein infer-
ence (using ProteinProphet [45]) and FDR filtering. The 
reports of the quantified peptides and UniprotID-iden-
tified proteins with FDR < 1% were generated.

All raw files from the consensus brain dataset [11], 
including 1080 raw files generated from 45 TMT 
10-plexes for the Religious Orders Study and Mem-
ory and Aging Project (ROSMAP) BA9 tissues; 624 
raw files generated from 26 TMT 11-plexes for ROS-
MAP BA6/BA37 tissues; 528 raw files generated from 
22 TMT 11-plexes for the Banner Sun Health Research 
Institute (Banner) tissues; and 760 raw files generated 
from 20 TMT 11-plexes for Mount Sinai tissues, were 
re-searched using FragPipe (version 20.0) on the same 
Uniprot database as described above with slight modifi-
cations. This mainly included use of the first generation 
“TMT10” workflow rather than the newer generation 
TMTpro workflow and the cleavage type was set to enzy-
matic. Peptide length was allowed to range from 7 to 50. 
Variable modifications that were allowed in our search 
included: oxidation on methionine, N-terminal acetyla-
tion on protein, TMT10 modifications on serine, with a 

maximum of 3 variable modifications per peptide. Static 
modifications included: isobaric TMT10 modifications 
on lysine and peptide N-termini as well as carbamido-
methylation on cysteine. All raw files, the database, the 
sample to TMT channel information, and the FP search 
parameter settings are provided on https:// www. synap se. 
org/# !Synap se: syn52 525880/ files/.

Data normalization and variance correction for TMT 
labeled samples
The FP outputs of 8 batches from Set 1 and Set 2 or 113 
batches from the consensus brain were integrated to get 
a combined raw abundance file. Protein levels were first 
scaled by dividing each protein intensity by the sum 
of all the reporter ion intensities of the TMT channel 
(each sample) followed by multiplying by the maximum 
channel-specific protein intensity sum. Proteins with 
more than 50% of missing values in each analysis were 
removed from the matrix prior to the further process (no 
imputation of missing values was performed). A tunable 
median polish approach (TAMPOR) was used to adjust 
technical batch variance within each dataset as previ-
ously described [46]. The algorithm is fully documented 
and available as an R function, which can be downloaded 
from https:// github. com/ edamm er/ TAMPOR. Follow-
ing this, non-parametric bootstrap regression for batch 
only or for age, sex, race and batch,  within each data-
set was performed for Set 1 and Set 2. For reprocessed 
brain dataset, we restricted our analysis to 456 samples of 
control, asymptomatic AD (AsymAD) and AD from the 
Banner (control = 26, AsymAD = 57, AD = 77, 22 TMT11 
batches) and the ROSMAP (control = 75, AsymAD = 127, 
AD = 94, 36 TMT10 batches), and regressed for age, sex, 
postmortem interval (PMI) and batch.

Depletion of high‑abundant proteins from plasma
Other than heparin enrichment, depletion of high-
abundant proteins was also performed on Set 1 samples 
(n = 36) prior to digestion, using the High Select Top14 
Abundant Protein Depletion Resin (Thermo Fisher Sci-
entific, A36372BR). The resin slurry was equilibrated to 
room temperature, and 500 μl of resin was aliquoted into 
each well of a filter plate (Nunc, 278011), with the bot-
tom sealed using a silicone sealing mat (AXYGEN, AM-
96-PCR-RD). Once the resin settled at the bottom of the 
spin column, 8 μl of each sample was added, and deple-
tion was performed by gentle rotation for 15 min at room 
temperature. After incubation, the seal was removed, fol-
lowed by centrifugation at 1000 × g for 2 min. The sam-
ple flow-through was collected in a 1 ml deep-well plate, 
resulting in approximately 350  μl of each immunode-
pleted sample. Protein digestion, TMT labeling (Thermo 
Fisher Scientific, A44520, Lot number: YA357799), MS 

https://www.synapse.org/#!Synapse:syn52525880/files/
https://www.synapse.org/#!Synapse:syn52525880/files/
https://github.com/edammer/TAMPOR
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analysis, database searching, and data normalization 
were performed in the same way as the Hp-enriched Set 
1 described above.

Proteome coverage overlap and gene ontology (GO) 
enrichment analysis
All proteome overlap was visualized using the venneu-
ler R package (v1.1–3) venneuler function. All functional 
enrichment was determined using the GOparallel func-
tion as documented on https:// github. com/ edamm er/ 
GOpar allel. The Bader lab monthly updated.GMT for-
matted ontology gene lists [47] were used for retrieving 
GO annotation. Z-score and p-value from the one-tailed 
Fisher’s exact test (FET) followed by Benjamini-Hoch-
berg (BH) false discovery rate (FDR) correction was used 
to assess the significance. A cutoff of Z-score > 1.96 (BH 
FDR corrected p < 0.05 and a minimum of five genes 
per ontology) was used as filter prior to pruning the 
ontologies.

Protein differential abundance and hierarchical clustering
All differential abundance was presented as volcano 
plots that were generated with the ggplot2 package in 
R v4.2.1. Pairwise differentially abundant proteins were 
identified using Student’s t-test, followed by Benjamini-
Hochberg (BH) false discovery rate (FDR) correction. 
Supervised clustering analysis on differentially abundant 
Hp-enriched plasma proteins was performed with the R 
NMF package [48] in R v4.2.1. A cutoff of BH FDR-cor-
rected p < 0.0005 was used to obtain 82 highly significant 
proteins and clustered with euclidian distance metric, 
complete linkage method using the hclust function is 
called from the NMF package aheatmap function.

Correlation across platforms and replicate datasets
To evaluate the consistency across different platforms, 
we compared the heparin-enriched TMT-MS-analyzed 
(Heparin-MS) data with plasma measurements obtained 
using immunodepletion, SomaScan® aptamer-based 
technology from SomaLogic (located in Colorado, USA) 
and proximity extension assay (PEA) technology from 
Olink® (based in Uppsala, Sweden). Immunodeple-
tion was performed on the same 36 samples in Set 1 as 
described above. Data from SomaScan and PEA (referred 
to as "Olink" henceforth) were obtained for 35 (con-
trol = 18, AD = 17) out of the 36 individuals in Set 1 pre-
viously assessed using the Heparin-MS method. These 
data are accessible from a prior publication [30] and 
were subjected to cross-platform analysis using median-
centered normalization [46]. Additionally, we performed 
correlation analyses between the two Heparin-MS sets 
(Set 1 and Set 2) using the  log2 fold-change (AD vs Con-
trol) values. These correlation analyses were carried out 

and visualized employing the verboseScatterplot function 
from the R WGCNA package, utilizing the Pearson cor-
relation coefficient and Student’s p-value to determine 
the statistical significance of these correlations.

Meta‑analysis and correlation assessment of protein 
abundance with AD‑related traits
For the (Set 1 + Set 2) meta-analysis, 12 non-overlapping 
cases that did not meet our enforced CSF biomarker cri-
teria (tTau/Aβ1-42 ratio > 0.226 for AD) or MoCA cutoffs 
(AD ≤ 24, Control ≥ 24) [49] at the time of lumbar punc-
ture were removed, resulting in 109 samples (96 unique 
cases). Meta-analysis of significance on the combined 
selected samples (n = 109) was performed on 2865 pro-
teins using the R survcomp package combine.test func-
tion to calculate meta p-value. Average  log2 fold-change 
(AD vs Control) between the two sets was used for the 
x-axis. All proteins along with corresponding meta 
p-value and fold-change were listed in Supplemen-
tal Table  21. Variance-corrected protein abundance of 
all samples was then Z-transformed by subtracting the 
mean across 109 samples followed by dividing by stand-
ard deviation. Correlations and the Student’s p-value 
for their significance between Z-scores and immunoas-
say measures of AD-related traits, including cognition 
(MoCA score), CSF Aβ1-42, CSF tTau, CSF pTau181, CSF 
tTau/Aβ1-42 ratio and plasma pTau181, were calculated 
using the R WGCNA package corAndPvalue function. 
Same correlations performed for SomaScan (n = 35 sam-
ples) and Olink (n = 35 samples) were listed in Supple-
mental Table 24–25.

ROC analysis of plasma ptau181 and hp‑enriched plasma 
proteins for AD classification
Receiver-operating characteristic (ROC) analysis was 
performed on plasma pTau181 and 536 significant Hp-
enriched plasma proteins (meta p-value < 0.0001) with 
no missing values across 34 control (CSF tTau/Aβ1-

42 < 0.226) and 61 AD (CSF tTau/Aβ1-42 > 0.226) individu-
als (duplicate controls were removed from the analysis). 
The algorithm was run in R (version 4.3.1) with a general-
ized linear model binomial fit of selected protein meas-
urements (individual protein or muti-protein panels) to 
the binary classification (AD vs Control), using the pROC 
package implementing ROC curve plots, calculations 
of AUC and DeLong 95% confidence interval [50]. The 
significance of difference between two correlated AUCs 
were calculated with DeLong’s test within pROC pack-
age [51]. Additional ROC curve characteristics including 
sensitivity, specificity, and accuracy were calculated with 
the reportROC R package and listed in Supplemental 
Table 27.

https://github.com/edammer/GOparallel
https://github.com/edammer/GOparallel
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Protein re‑assignment to consensus AD brain network 
modules
We reprocessed 456 of the Banner and ROSMAP brain 
samples used in our previously published WGCNA con-
sensus brain network from 2022 [11], which underwent 
re-analysis with Fragpipe (FP) as outlined above. 8956 
proteins were identified and the biweight midcorrelation 
(bicor) of each was calculated to the 44 eigenproteins of 
the original network, and a module assignment was made 
for the FP output proteins to the module with the highest 
positive correlation, if greater than or equal to 0.30, oth-
erwise being assigned as “grey” [52]. As described pre-
viously, a module eigenprotein represents the principal 
component of all proteins within a module. Moreover, 
we conducted bicor correlations and Student’s p-value 
for their significance to assess the association of module 
eigenproteins with Consortium to Establish a Registry for 
Alzheimer’s Disease (CERAD), Braak staging, and Mini-
mental state examination (MMSE), using the bicorAnd-
Pvalue function from the R WGCNA package.

Cell type enrichment analysis
As outlined previously, cell type enrichment for each 
module was performed by cross-referencing the corre-
sponding gene symbols of each module with cell-type–
specific gene lists derived from previously published 
RNA-seq data [11, 53]. Significance of cell type enrich-
ment within each module was then determined using a 
one-tailed FET and corrected for multiple comparisons 
by the BH FDR method. The algorithm is fully docu-
mented and available as an R function, which can be 
downloaded from https:// www. github. com/ edamm er/ 
CellT ypeFET.

Over‑representation analysis of differentially abundant 
plasma proteins in brain network
Hp-enriched plasma proteins that overlap with brain pro-
teome and significantly altered in AD plasma compared 
to controls (Student’s p < 0.05) were assessed for over-
representation in brain proteome using a one-tailed FET, 
and those modules with Benjamini-Hochberg (BH) false 
discovery rate (FDR)-corrected p < 0.05 were considered 
significant. The background for this overrepresentation 
analysis comprised 8956 UniprotID-identified proteins 
from consensus brain [11] which was re-searched by FP 
as described above.

Results
Heparin binding protein enrichment enhances plasma 
proteome coverage
To assess the feasibility and efficacy of a heparin enrich-
ment strategy from plasma, an equal volume (40 µl) of 
pooled human plasma, diluted into binding buffer, was 

introduced to heparin-sepharose resin in technical trip-
licates as described in our workflow (Fig. 1A). Before per-
forming MS analyses, fractions including diluted plasma 
(DP) inputs, the heparin-depleted flow-through (Hp-
depleted FT), and the heparin-enriched (Hp-enriched) 
fraction underwent gel electrophoresis and Coomassie 
Blue staining to visualize the proteins. These fractions 
were also prepared for immunoblotting to detect known 
HBPs, thrombin and APOE (Fig.  1B). Immunoblotting 
demonstrated that heparin-affinity chromatography was 
effective at enriching APOE and thrombin, which exhib-
ited increased levels in the Hp-enriched fractions com-
pared to the inputs and FT. Moreover, by Coomassie Blue 
staining we observed a reduction in the amount of albu-
min (ALB, ~ 66 kDa) in the Hp-enriched fractions com-
pared to the inputs and FT. In support of these findings, 
single-shot label-free MS proteomic analyses revealed a 
notable disparity in the base peak chromatogram among 
the inputs, FT, and Hp-enriched fractions (Fig.  1C). In 
the chromatogram spanning the 120-min time window, 
the pattern of precursor peptide ion peak intensities in 
the input and FT fractions remained remarkably con-
sistent, primarily dominated by a few prominent feature 
peaks, which is consistent with the presence of highly 
abundant proteins such as albumin. However, the base 
peak chromatogram for the Hp-enriched fractions exhib-
ited much greater complexity, suggesting the presence of 
additional peptide species in the sample and a decrease 
in the dominance of the albumin peptides as compared 
to those observed in the input and FT fractions. Con-
sistently, following database search, we observed a sig-
nificant reduction (~ 2.6 fold) in the number of peptide 
spectral counts, a semi-quantitative measure of pro-
tein abundance, for albumin in the Hp-enriched frac-
tions compared to the inputs and FT. Reciprocally, we 
observed a significant increase in the number of pep-
tide spectral counts for thrombin (~ 3.3 fold) and APOE 
(~ 3.4 fold) in the Hp-enriched fractions compared to 
the inputs and FT, confirming our immunoblot findings 
(Fig.  1D). Collectively, these observations suggest that 
the heparin-affinity method not only enhanced the con-
centration of the HBPs, but also concurrently reduced 
the presence of highly abundant proteins like albumin 
in the Hp-enriched fraction. To assess the consistency 
of the Hp-enriched MS proteomic approach, measure-
ments of proteins with no missing values across all three 
replicates within each fraction were listed in Supplemen-
tal Table 1 along with their coefficient of variation (CV). 
All three fractions show an average CV of ~ 25%, which 
is consistent with the technical CVs reported for label-
free proteomic assays [54, 55]. To evaluate the depth of 
protein identification across the fractions, we assessed 
the overlap of proteins that were detected in at least 

https://www.github.com/edammer/CellTypeFET
https://www.github.com/edammer/CellTypeFET
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Fig. 1 Heparin enrichment of the plasma proteome. A Step-by-step process of heparin enrichment and subsequent mass spectrometry 
(MS) analysis. Plasma samples were subjected to heparin enrichment, yielding three distinct fractions: DP input (n = 3), Hp-depleted FT (n = 3), 
and Hp-enriched fraction (n = 3). Each fraction underwent either Coomassie Blue staining, western blotting, or trypsin digestion before subsequent 
label-free MS analysis utilizing an Orbitrap Eclipse mass spectrometer. B Coomassie Blue staining and western blotting was performed in triplicates 
for all fractions. A reduction of the amount of albumin (~ 66 kDa) in the Hp-enriched fraction compared to the DP input and FT was illustrated 
by Coomassie Blue staining. Enrichment was also determined by western blotting for thrombin (~ 75 kDa) and APOE (~ 34 kDa) in the Hp-enriched 
fraction. C MS base peak chromatograms of each fraction reveal the variation in sample complexity. The Hp-enriched fraction exhibits a notable 
increase in sample complexity compared to the DP input and Hp-depleted FT fractions, reflecting successful enrichment of low-abundant proteins 
in the Hp-enriched fraction. D Total number of peptide spectral counts (reported as the maximum percentage) for albumin, thrombin, and APOE 
in each fraction. Actual spectral counts are labeled within columns. Albumin is significantly depleted from the Hp-enriched fraction compared 
to the DP input and FT. Conversely, thrombin and APOE are significantly enriched in this fraction. ANOVA with Tukey post-hoc correction was used 
to determine the p-values (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). E The number of proteins identified in each fraction: DP input 
(N = 611), Hp-depleted FT (N = 527), and Hp-enriched fraction (N = 771), and the degree of protein overlaps among them. F) GO terms for proteins 
detected in each fraction, using 841 total proteins measured in at least 2 out 3 replicates within each fraction as background, highlighting 
the enrichment of proteins associated with the "Heparin binding" molecular function in the Hp-enriched fraction. Z-score > 1.3 (p < 0.05) 
is significant. WB, western blotting; LC–MS, liquid chromatography-mass spectrometry
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two out of three replicates of each fraction (Fig. 1E and 
Supplemental Table  2). Notably, the Hp-enriched frac-
tion identified the greatest number of proteins (N = 771) 
compared to the input (N = 611) and FT (N = 527). 
Approximately 29% (221 out of 771) of the proteins in 
the Hp-enriched fraction were unique to this fraction. 
Gene ontology (GO) analysis conducted for the proteins 
identified in each fraction showed significant enrichment 
(Z-score > 1.3) of the term associated with ‘Heparin bind-
ing’ in the Hp-enriched fraction compared to those in the 
FT and inputs (Fig. 1F).

To comprehensively evaluate the extent of heparin 
enrichment, we utilized the protein abundance values 
based on protein signal intensities from both the DP 
inputs (n = 3) and the Hp-enriched fractions (n = 3), 
where we applied a significance threshold of p < 0.05 
and a fold-change threshold of > 2 across 821 proteins. 
In total, 518 proteins exhibited significant changes in 
their abundance levels across the two fractions (Sup-
plemental Fig. 1A and Supplemental Table 3), with 338 
increased and 180 decreased. Among these, we con-
sistently observed the enrichment of key HBPs, such 
as thrombin (F2), APOE, and APP, which possess a 
heparin binding domain [56]. Additionally, other neu-
rodegeneration related proteins, such as neurogranin 
(NRGN) and valosin-containing protein (VCP), also 
exhibited significant enrichment in the Hp-enriched 
fractions. As expected, albumin (ALB) was significantly 
decreased in the Hp-enriched fractions in addition to 
other highly abundant proteins decreased, including 
transferrin (TF), A2M, ORM, SERPINA1, and APOA1. 
Notably, APOE has three genetic alleles (ε 2, ε 3, ε 4) 
associated with AD risk: APOE4 has the highest risk, 
APOE2 the lowest risk, and APOE3 the intermediate 
risk [22]. APOE4 and APOE2 allelic variants can be 
identified through coding changes that result in vari-
ant specific peptides following trypsin digestion [57]. 
In the pooled human plasma sample used here, all 

three APOE protein variants were detected and quan-
tified. Interestingly, APOE4 showed the most enrich-
ment in Hp-enriched fractions (15.5-fold, p = 0.0003), 
followed by APOE3 (14.7-fold, p = 0.0004), which was 
inferred due to a lack of variant specific peptides, and 
APOE2 (7.4-fold, p = 0.006) (Supplemental Fig.  1B). 
This aligns with prior research, highlighting differ-
ences in APOE heparin affinity among the variant 
isoforms (APOE4 > APOE3 > APOE2) [58], suggest-
ing that the genetic susceptibility to AD attributed to 
APOE may be related to biological differences in bind-
ing to HS. Collectively, our findings support successful 
enrichment of not only APOE, but other HBPs from 
human plasma.

The heparin‑enriched plasma proteome is significantly 
altered in AD
After successfully demonstrating enrichment of HBPs 
from human plasma, we aimed to both enhance the depth 
and determine the differences in the plasma proteome 
between AD (n = 18) and control (n = 18) individuals 
using discovery Set 1 (Supplemental Table  4). Follow-
ing heparin-affinity enrichment, we employed tandem 
mass tag mass spectrometry (TMT-MS) in conjunction 
with high-pH off-line fractionation to identify a total of 
3284 proteins (Fig.  2A and Supplemental Table  5). AD 
diagnoses were established based on notable cognitive 
impairment as determined by the Montreal Cognitive 
Assessment (MoCA), with scores averaging 13.1 ± 7.2 
for AD and 27.1 ± 1.6 for controls (Table  1). These diag-
noses were further supported by the presence of low Aβ 
levels and elevated tTau and pTau levels detected in the 
CSF immunoassays for AD and normal levels of these bio-
markers in controls (Table 1). Furthermore, we measured 
pTau181 in the plasma samples which showed significant 
differences between control and AD cases (Fig. 2B). Prior 
to subjecting the samples to TMT-MS, we confirmed 
the heparin enrichment of APOE and thrombin via 

Fig. 2 Heparin-enriched plasma proteome is significantly altered in AD. A Plasma samples were collected from both the control group 
(n = 18) and individuals with AD (n = 18). These samples underwent heparin-sepharose enrichment, followed by trypsin digestion and TMT 
labeling. Subsequently, high-pH off-line fractionation and LC–MS/MS analysis were conducted using an Orbitrap Lumos mass spectrometer. B 
Measurements of pTau181 across all 36 samples were displayed. Statistical significance was determined by Student’s t-test (p = 2.94 ×  10–6). C The 
volcano plot illustrates the differential abundance of 2,077 proteins between the control and AD groups. The x-axis represents the  log2 fold-change 
(AD vs CTL), while the y-axis represents the Student’s t-statistic (-log10 p-value) calculated for all proteins in the pairwise group. Proteins significantly 
increased in AD (N = 579) are highlighted in red (p < 0.05), whereas those significantly decreased in AD (N = 661) are depicted in blue. Grey dots 
represent proteins with insignificant changes. D Top GO terms of the 579 increased (red) or 661 decreased (blue) proteins in AD measured in Set 1 
considering the background of 2077 proteins in the plasma proteome. Three GO terms with the highest Z-scores within the domains of biological 
process, molecular function, and cellular components are presented. E A supervised cluster analysis was conducted across the control and AD 
plasma of discovery samples (Set 1), employing the 82 most significantly altered proteins in the dataset (BH FDR-corrected p < 0.0005). Other 
AD-related traits for each sample are also presented by color scale on the top. pTau, phospho-tau; tTau, total tau; CTL, control; LC–MS, liquid 
chromatography-mass spectrometry

(See figure on next page.)
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immunoblotting of the input, FT, and Hp-enriched frac-
tions (Supplemental Fig.  2). To enhance data complete-
ness, we considered only those proteins quantified in at 

least 50% of the samples for subsequent analyses, culmi-
nating in the final quantification of 2077 proteins (Sup-
plemental Table  6). To identify differentially abundant 

Fig. 2 (See legend on previous page.)
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proteins in the AD plasma proteome, we generated a vol-
cano plot for pairwise comparisons of AD versus control 
individuals (Fig.  2C). Proteins with significant changes 
in abundance in the AD group were determined using a 
Student’s t-test (p < 0.05). The complete list of differen-
tially abundant proteins is provided in Supplementary 
Table  7. We identified 579 proteins with significantly 
increased abundance and 661 proteins with significantly 
decreased abundance in AD cases. Notably, our findings 
support an increase of M42 matrisome-associated pro-
teins in AD plasma, which is the most significant module 
correlated with neuropathology and cognition in AD brain 
[11]. This includes SMOC1 (p = 2.26 ×  10–6), OLFML3 
(p = 1.06 ×  10–6), APOE (p = 0.028611), MDK (p = 0.000367), 
SPON1 (p = 3.07 ×  10–5), GPNMB (p = 0.000935), and 
FRZB (p = 0.000555) [11, 30]. Particularly noteworthy is 
the identification of SMOC1, MDK, GPNMB, and FRZB, 
which had not previously been measured in plasma using 
MS-based technology [30]. Additionally, we discovered 
other highly significant proteins, including SMOC2 
(p  =  4 .15  ×   10 –6) ,  AP OE4 (p  =  0 .000698) ,  B GN 
(p  =  1 .68  ×   10 –7) ,  ESM1 (p  =  1 .40  ×   10 –7) ,  CSF1 
(p  =  7 .52  ×   10 –6) ,  PL A2G7 (p  =  0 .004595) ,  G CG 
(p = 0 .004995) ,  and PODN (p  =  2 .25 ×   10 –8) .  As 
expected, levels of APOE4 were more increased in 
the AD group compared to the control group, con-
sistent with the higher frequency of APOE4 carriers in the 
AD group. GO analysis of the 579 significantly increased 
proteins in AD indicated that ‘Heparin binding’ was a major 
altered pathway (Fig. 2D), which aligns with the strong cor-
relation observed between M42 members and HBPs in AD 
brain [11]. Conversely, the 661 significantly decreased pro-
teins were strongly linked to ‘ATP binding’ and ‘Mitotic cell 
cycle’ processes among others. To investigate protein dif-
ferential abundance at the individual sample level, we used 
proteins with Benjamini-Hochberg (BH) false discovery rate 
(FDR)-corrected p < 0.0005 to perform supervised cluster 
analysis across all 36 samples. As illustrated in Fig. 2E, the 
expression profiles of 82 highly significant proteins in Hp-
enriched plasma correctly distinguished AD from control 
cases, with only minor exceptions. Among these 82 pro-
teins, 48 were increased in AD, while 34 were decreased.

To assess any biases that heparin enrichment may have 
caused, and to compare the differences in proteome cov-
erage to traditional immunodepletion methods [59, 60], 
we benchmarked the Hp-enriched proteome against the 
immunodepleted proteome from the same 36 samples 
in Set 1 (Supplemental Fig.  3A). A total of 1,129 pro-
teins were identified (< 50% missing values) after immu-
nodepletion across control and AD samples, nearly 
half as many identified by heparin enrichment. Among 
these, 432 proteins were increased in AD and 383 were 

decreased (Supplemental Fig.  3B and Supplemental 
Table  8). We found that 804 out of the 1,129 proteins 
(71%) in the immunodepletion dataset overlapped with 
the Hp-enriched dataset, with 325 proteins not detected 
by heparin enrichment (Supplemental Fig.  3C and Sup-
plemental Table 9). However, the Hp-enriched proteome 
identified nearly four  fold as many additional proteins 
(N = 1,273) that were not detected by the immunode-
pletion approach, suggesting that the heparin enrich-
ment method captures a broader spectrum of the plasma 
proteome compared to the traditional immunodeple-
tion method. These include many members of the M42 
matrisome module, such as SMOC1, SMOC2, OLFML3, 
SPON1, FRZB, and MDK (Supplemental Fig. 3D). Addi-
tionally, significant protein levels (AD vs. Control) 
measured following either heparin enrichment or immu-
nodepletion exhibited a strong correlation regarding the 
directional changes observed in AD plasma (Supplemen-
tal Fig.  3E). There was only approximately 1% discord-
ance in the overlapping proteins with a p-value < 0.05, 
and when restricted to a p-value < 0.01, all proteins 
showed the same direction of change in AD. This indi-
cates that the heparin enrichment does not significantly 
bias the direction of change in the AD plasma proteome 
compared to immunodepletion approaches. In summary, 
these results reveal hundreds of differentially abundant 
plasma proteins that are altered in AD and are not cap-
tured by immunodepletion approaches.

Directional changes in the AD plasma proteome 
across different proteomic platforms
To assess the consistency of the direction of change in 
AD plasma proteome measured by our heparin enrich-
ment approach coupled with TMT-MS (Heparin-MS), 
we utilized protein measurements, previously obtained 
through either the SomaScan® aptamer-based tech-
nology or the proximity extension assay (PEA) tech-
nology from Olink®, from 35 overlapping samples in 
our discovery set (Set 1) of control (n = 18) and AD 
(n = 17) plasma samples (Fig.  3). The protein meas-
ures were obtained from these two platforms follow-
ing cross-platform median-centered normalization as 
previously described [30] and are provided in Supple-
mental Table  10 and 11. As anticipated, the aptamer-
based SomaScan yielded the largest set of protein 
measurements from the plasma samples (N = 7284), 
followed by our Heparin-MS method (N = 2077) and 
Olink (N = 979). We used gene symbols from each out-
put to calculate the number of measurements and their 
overlap across the various platforms (Fig. 3A and Sup-
plemental Table  12). Each platform exhibited its own 
unique group of non-overlapping identified proteins 
(gene products), which we subsequently subjected to 
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GO analyses to assess their associations with biological 
pathways. Notably, the unique gene products identified 
in the Heparin-MS method exhibited significant asso-
ciation with pathways related to ‘Alzheimer’s disease 
and miRNA effects’ and ‘Parkin-ubiquitin proteasomal 
system pathway’ (Fig.  3B), which further underscores 
the value of heparin enrichment in capturing biology 
related to AD and related neurodegenerative diseases. 
To gauge the consistency in the direction of change in 
AD plasma proteome compared to controls across inde-
pendent platforms, we conducted correlation analyses 
of the  log2 fold-change (AD vs Control) for overlapping 
proteins between Heparin-MS and Olink (N = 279 gene 
products, cor = 0.73, p = 1.1e−47) or SomaScan (N = 1183 
gene products, cor = 0.62, p = 1.4e−126). Both com-
parisons revealed strong positive correlations between 
the two platforms (Fig.  3C). However, consistent with 
our previous results [30], we observed a notable bias 
towards decreased protein levels in AD plasma on the 
SomaScan and Olink platform even following median-
centered normalization (Supplemental Fig.  4A-B and 
Supplemental Tables  13–14). This bias was more pro-
nounced in SomaScan, even when restricted to only 
significant proteins (p-value < 0.05) (Supplemental 
Fig.  4C-D). While 95% of the overlapping significant 
proteins (N = 55/58) in Olink and the Heparin-MS 
exhibited the same direction of change in AD, 18% of 
proteins (N = 78/445) were discordant in the direction 
of change between the Heparin-MS and SomaScan 
(i.e., significantly decreased in AD by SomaScan, yet 
significantly increased by Heparin-MS). Given that the 
significant protein levels (p-value < 0.05) measured fol-
lowing either heparin enrichment or immunodepletion 
exhibited strong correlation regarding the directional 
changes observed in AD plasma (Supplemental Fig. 3E), 
this discrepancy may be attributed to the methodology. 
For example, the SomaScan aptamer-based platform 
requires multiple separate dilutions to accommodate 

the wide dynamic range of plasma protein concentra-
tions, which may impact the affinity-based aptamer 
binding for low-abundant protein measurements [61]. 
Nevertheless, the findings indicate that the observed 
direction of change of Hp-enriched plasma proteins 
measured by TMT-MS in the AD group largely aligns 
with those proteins measured by Olink and SomaS-
can. Notably, increases of several M42 members in AD 
were consistent across at least two platforms, includ-
ing SMOC1, OLFML3, GPNMB, HTRA1, and APOE, 
whereas SPON1, PTN, APP and FRZB showed the same 
direction of change in AD across all three platforms. 
Additional plasma proteins such as ESM1, PLA2G7, 
BGN, CSF1, GCG, VWF, and LPL were also consist-
ently increased in AD across at least two platforms. 
Boxplots for SPON1, WAS, ESM1 and PLA2G7 that 
showed concordant changes in all three platforms are 
provided (Fig.  3D). Thus, with some exceptions, these 
data support an overall positive correlation among the 
three complementary proteomic platforms for shared 
protein measurements in AD plasma.

Reproducibility and depth of the heparin enrichment 
approach coupled with TMT‑MS in plasma
To demonstrate the reproducibility of the Heparin-MS 
approach in plasma, we analyzed a separate set of sam-
ples (Set 2) involving 49 controls and 36 AD individuals 
(Supplemental Table 15), which included 13 overlapping 
controls with the discovery Set 1. These samples under-
went heparin enrichment processing similar to the pro-
cedures applied to Set 1, albeit using a different volume 
and lot of heparin-sepharose beads (Fig.  4A). TMT-MS 
was employed for the analysis of the Hp-enriched frac-
tion, carried out across five batches, resulting in the iden-
tification of 2618 proteins measured in 50% or more of 
the samples. (Supplemental Table  16). Collectively, the 
two datasets identified a total of 3284 unique proteins, 
but only 2866 in 50% or more of the samples across two 

(See figure on next page.)
Fig. 3 Heparin-enriched plasma proteome is largely consistent and complementary to other independent proteomic platforms. A The number 
and overlap of proteins (i.e., unique gene products) quantified in plasma across three platforms, including the TMT-MS approach in Hp-enriched 
samples (Heparin-MS, control = 18, AD = 18), the PEA-based assay (Olink, control = 18, AD = 17), and the aptamer-based method (SomaScan, 
control = 18, AD = 17). The inclusion criterion required at least 18 measurements across all samples. B Wiki-pathway analysis highlighting 
specific pathways from uniquely identified gene products in each of the three platforms. The Heparin-MS method exhibited significant 
association with pathways related to ‘Alzheimer’s disease and miRNA effects’ and ‘Parkin ubiquitin proteasomal system pathway’, underscoring 
the neurodegenerative disease specificity. A total of 5503 platform-unique gene symbols were used as background for GO analysis. C Pearson 
correlation between  log2 fold-change (AD vs CTL) of common gene products measured by the Heparin-MS and Olink (left, N = 279 gene products, 
cor = 0.73, p = 1.1e−47) as well as the Heparin-MS and the SomaScan (right, N = 1183 gene products, cor = 0.62, p = 1.4e−126). The significance 
of Pearson correlation was determined by Student’s p-value. Several M42 members and associated proteins showed concordant directions 
in both comparisons, including SPON1, APP, PTN, FRZB, ESM1, PLA2G7, VWF, GCG, and LPL. D Boxplots display the consistent and statistically 
significant changes in AD observed for SPON1, WAS, ESM1, and PLA2G7 across all three platforms. Significance was determined by Student’s t-test (* 
p < 0.05, ** p < 0.01, *** p < 0.001). CTL, control; cor, Pearson correlation coefficient
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Fig. 3 (See legend on previous page.)
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sets were used for further analysis (Fig. 4B). This number 
is more than twofold greater than the coverage generated 
with immunodepletion method followed by TMT-MS 
(Supplemental Fig. 3C), supporting the depth and sensi-
tivity of the heparin enrichment approach when coupled 
to TMT-MS. Impressively, this encompassed proteins 
across 10 orders of magnitude in concentration within 
the plasma, even extending to those with the lowest con-
centration (1.47 pg/ml), as evidenced by inclusion of pro-
teins such as LAG3 and RNF213 as well as many M42 
matrisome members based on The Human Protein Atlas 
Database (Fig.  4C and Supplemental Table  17). In total, 
1829 out of 2866 (64%) proteins overlapped between the 
two independent TMT-MS datasets (Fig. 4D and Supple-
mental Table  18). Differential expression analyses were 
performed on all 2618 proteins within Set 2, resulting in 
826 proteins being increased and 795 proteins decreased 
in AD (Supplemental Table 19). Notably, significant pro-
tein changes between AD and control samples across 
the two sets were highly reproducible (Fig.  4E). Among 
the 732 overlapping proteins with a BH FDR-corrected 
p-value < 0.05 in both datasets, only 10 (1.4%) exhibited 
discordant changes in AD across the two sets (cor = 0.93, 
p <  1e−200). However, when increasing the significance 
threshold to BH FDR-corrected p-value < 0.01, we 
observed no discordant differences among the 390 over-
lapping proteins across the two sets. Among these highly 
significant proteins, we confirmed several targets out-
side of M42 matrisome members that were consistently 
validated across different proteomic platforms (Fig. 3C), 
including ESM1, PLA2G7, BGN, CSF1, and GCG, fur-
ther reinforcing their changes in AD plasma. Overall, 
our heparin enrichment approach coupled to TMT-MS 
consistently and reliably captured a diverse spectrum of 
plasma proteins, spanning an impressive dynamic range 
of magnitude.

Association of heparin‑enriched plasma proteins with AD 
biomarkers and cognitive measures
CSF biomarkers, including Aβ1-42, tTau, and pTau181, 
have played a pivotal role in identifying individuals who 
are either at risk or already manifesting underlying AD 
pathology, collectively referred to as AT + individuals 
[49]. Furthermore, recent advancements have brought 
plasma pTau species, specifically pTau181, pTau231 and 
pTau217, into focus due to their associations with both 
underlying amyloid and tau pathology [62]. Here, we 
aimed to evaluate proteins across the two sets of Hp-
enriched plasma proteome that are associated with cog-
nition and AT + status by correlating their abundances to 
MoCA scores, CSF AD biomarkers (Aβ1-42, tTau, tTau/
Aβ1-42, pTau181) and plasma pTau181 collected from the 
same patients. To enhance the specificity of our analysis, 
we excluded cases from the initial 121 samples (including 
13 overlapping controls as described above) that did not 
meet strict CSF biomarker criteria (tTau/Aβ1-42 ratio) or 
MoCA cutoffs [49] as described in methods (Supplemen-
tal Fig. 5A). As a result of this selection process, 12 non-
overlapping samples were excluded from Set 2, resulting 
in a total of 109 samples (Set 1 = 36 samples, Set 2 = 73 
samples) for further analysis (Supplemental Table  20). 
Boxplots for each measurement across all unique cases 
(n = 96) were generated to show their separation based 
on disease status (Supplemental Fig.  5B). Subsequently, 
we employed a meta-analysis of Set 1 and Set 2 to gener-
ate a composite meta p-value that considered the signifi-
cance of association and effect size (AD vs Control) for 
2865 proteins, all of which exhibited less than 50% miss-
ing values within each set. This meta-analysis revealed a 
substantial increase in differentially abundant proteins in 
the Hp-enriched AD plasma, with 945 proteins showing 
an increase and 923 proteins showing a decrease in AD, 
as compared to analyzing either dataset alone (Fig.  5A 
and Supplemental Table  21). Importantly, this approach 

Fig. 4 Heparin enrichment enhances the depth of plasma proteome and is reproducible. A The second replication dataset (Set 2) was comprised 
of control (n = 36) and AD individuals (n = 49), which underwent similar heparin enrichment and TMT-MS analysis as the discovery dataset (Set 1). B 
The combined datasets yielded a total of 3284 unique proteins, and 2866 of them being identified and quantified in 50% or more of the samples 
(< 50% missing) across two sets. Set 1 and Set 2 identified 2077 and 2618 proteins respectively, with 50% missing. C The 2866 proteins were ranked 
by their  log2 estimated concentration (pg/L) in plasma. Protein concentration information was obtained from The Human Protein Atlas Database. 
Notably, this set of proteins covered an impressive range of concentrations, spanning 10 orders of magnitude. Even proteins with the lowest 
concentration, such as LAG3 and RNF213, were included, along with numerous members of the M42 matrisome that are highlighted. D The 
number and overlap of proteins quantified in Set 1 (N = 2077) and Set 2 (N = 2618) with less than 50% missing values. Among the 2866 total 
unique proteins identified, approximately 64% (1829 out of 2866) were overlapping between the datasets. E A scatter plot illustrates the Pearson 
correlation between  log2 fold-change (AD vs CTL) of significantly altered proteins in both Set 1 and Set 2. There’re 732 proteins overlapping 
in the two sets and being significantly changed in AD with a BH FDR-corrected p-value < 0.05 in both datasets. Only 10 out of 732 proteins 
exhibited discordant changes in the two sets, demonstrating a high degree of concordance (cor = 0.93, p <  1e−200). Furthermore, all 390 overlapping 
proteins selected with a BH FDR-corrected p-value < 0.01 displayed consistent changes in both datasets when comparing AD and control samples, 
with a remarkable correlation of 0.96 (p <  1e−200). The significance of Pearson correlation was determined by Student’s t-test. CTL, control; LC–MS, 
liquid chromatography-mass spectrometry; cor, Pearson correlation coefficient

(See figure on next page.)
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also ensured the retention of proteins that were identi-
fied in only one dataset (e.g., SMOC1 in Set 1), thereby 
preserving their availability for subsequent analyses. 
To assess the relationship between Hp-enriched plasma 
proteins and AD biomarkers and cognitive measures, we 
conducted correlation analyses between Z-transformed 

protein abundance (Supplemental Table  22) and MoCA 
scores, as well as immunoassay values of CSF (Aβ1-42, 
tTau, pTau181, tTau/Aβ1-42) and plasma pTau181 (Sup-
plemental Table  23). Correlation between SomaScan 
or Olink protein abundance and MoCA scores, as well 
as immunoassay values of CSF (Aβ1-42, tTau, pTau181, 

Fig. 4 (See legend on previous page.)
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tTau/Aβ1-42) and plasma pTau181 were also provided in 
Supplemental Table  24–25. In Fig.  5B, we highlighted 
77 Hp-enriched plasma proteins that exhibit significant 
correlations with at least three of the AD biomarker 
measurements or MoCA scores. Individual correlation 
scatterplots and linear fit lines are presented for ESM1, 
BGN, PLA2G7, and CSF1, all of which exhibit significant 
correlations with AD biomarkers and cognitive meas-
ures (Fig. 5C). Moreover, these proteins have consistently 
demonstrated increased abundance in AD plasma in both 
Set 1 and Set 2, as well as other platforms as described 
above. To ensure that the observed changes in these pro-
teins in AD were not influenced by age, sex, or race, we 
performed regression analyses for these traits within 
Set 1 and Set 2, followed by the same meta-analysis 
described earlier (Supplemental Fig.  6  and Supplemen-
tal Table  26). Abundance  differences of  significant pro-
teins (N = 1765, meta p < 0.05) in AD versus the control 
group, with or without regression, were highly correlated 
(cor = 0.99, p <  1e−200). Only 9 proteins (0.5%) showed 
discordant changes in AD, and all matrisome proteins 
remained significant. This indicates that the vast major-
ity of Hp-enriched proteins differing in AD plasma in this 
study are not affected by age, sex, or race. Therefore, the 
correlation between these Hp-enriched plasma proteins 
to established AD biomarkers and cognitive measures 
suggests the potential utility of these proteins for disease 
classification or staging in the context of AD progression.

Evaluation of heparin‑enriched plasma proteins 
for classifying AD
To evaluate the ability of Hp-enriched plasma proteins to 
classify CSF biomarker confirmed AD cases from control 
individuals, we performed a receiver-operating charac-
teristic (ROC) curve analysis. This analysis used plasma 
pTau181 measurements and only included plasma pro-
teins with no missing values and those that were highly 
significant (meta p-value < 0.0001, N = 536 proteins) 

across 34 control and 61 AD individuals (Supplemental 
Table  27). Our results show that the top ten perform-
ing proteins in plasma individually achieved an area 
under the curve (AUC) value ranging from 0.81 to 0.82. 
In comparison, plasma pTau181 demonstrated a higher 
AUC of 0.93, consistent with previous findings [63] 
(Fig.  6A). When we combined the top five plasma pro-
teins (CHST15, BGN, THSD7A, SLPI, and RGS10) into 
a panel, the AUC modestly increased to 0.85 (Fig.  6B). 
Although the panel did not outperform plasma pTau181 
alone, combining it with pTau181 significantly improved 
classification performance, increasing the AUC from 
0.93 (pTau181 alone) to 0.98, with a p-value of 0.00645. 
This indicates that the Hp-enriched plasma proteome 
captures some of the variance in cognitive dementia not 
solely explained by pTau181 levels.

Overlap between the heparin‑enriched plasma and human 
brain proteomes
Previously integrated analysis of the human brain and 
CSF proteomes has revealed a substantial overlap of 
approximately 70%, strongly supporting a hypothesis 
that CSF serves as a valuable window into the brain [14]. 
However, less is known for the overlap between plasma 
and brain proteomes. While studies have explored the 
overlap between brain and plasma proteomes using 
TMT-MS proteomic datasets following the immunode-
pletion of highly abundant proteins [30], we sought to 
leverage the depth of our Heparin-MS proteomic data-
sets to assess the overlap with human postmortem brain 
proteome. To ensure the consistency of protein over-
lap analysis, we employed the same Uniprot database 
and utilized the FragPipe search algorithm we used for 
Heparin-MS plasma analysis to re-analyze 456 dorso-
lateral prefrontal cortex (DLPFC) tissues from control, 
asymptomatic AD (AsymAD) and AD brains from the 
ROSMAP and the Banner cohorts (Supplemental Fig. 7A 
and Supplemental Table  28) [11]. The classification of 

(See figure on next page.)
Fig. 5 Association of heparin binding proteins in plasma with cognition (MoCA) and conventional AD biomarkers: CSF Aβ1-42, tTau and pTau181 
and plasma pTau181. A A meta-analysis of significant differences between control and AD on 2865 Hp-enriched plasma proteins that were 
measured in 50% or more samples within filtered Set 1 (control = 18, AD = 18) and Set 2 (control = 29, AD = 44). The x-axis represents the mean 
 log2 fold-change (AD vs CTL), indicating an average abundance difference between Set 1 and Set 2. The y-axis shows the Student’s t-statistic 
(-log10 meta p-value) for all proteins in each pairwise group. Significantly increased proteins in AD are marked in red (meta p < 0.05), while proteins 
with significantly decreased levels in AD are denoted in blue. Grey dots represent proteins with insignificant changes. B The heatmap highlights 
77 Hp-enriched plasma proteins that have strong correlations to AD biomarkers. The color scale represents the degree of Pearson correlation 
(positive in red and negative in blue) between Z-transformed plasma protein abundances and immunoassay measures of various AD-related 
traits, including cognition (MoCA score), CSF Aβ1-42, CSF tTau, CSF pTau181, CSF ratio of tTau/Aβ1-42, and plasma pTau181. Significance levels 
determined by Student’s t-test are denoted by overlain asterisks; *p < 0.05, **p < 0.01, ***p < 0.001. C Individual scatterplots illustrate the correlations 
with CSF Aβ1-42, CSF pTau181, and plasma pTau181 of four specific Hp-enriched plasma proteins: ESM1, BGN, CSF1, and PLA2G7. Cor and p-values 
for each correlation are provided above each plot. The colors are differentiated by sets, with red representing Set 1 and blue denoting Set 2. pTau, 
phospho-tau; tTau, total tau; CTL, control; cor, Pearson correlation coefficient
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Fig. 5 (See legend on previous page.)
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cases incorporated semi-quantitative histopathological 
assessments of Aβ and tau neurofibrillary tangle depo-
sition, along with an evaluation of cognitive function in 
proximity to the time of death, as detailed in our previ-
ous work [11]. Specifically, AsymAD cases were charac-
terized by a neuropathological burden of Aβ plaques and 
tau tangles that closely resembled AD cases. However, 
these individuals did not exhibit substantial cognitive 
impairment near the time of death, indicating an early 
preclinical stage of AD. By applying a data normalization 
approach similar to the one used for the Hp-enriched 
plasma samples, we successfully identified 8,956 pro-
teins detected in 50% or more of the samples from brain 
tissues corresponding to 8,904 unique gene symbols 
(Supplemental Table  29). When compared to a previ-
ous brain proteome dataset generated using Proteome 

Discoverer (PD) and an older 2015 Uniprot protein data-
base [11], it was found that 7,476 of these unique gene 
symbols overlapped between the two outputs, while 
1,428 were exclusive to the FragPipe, representing an 
approximately 18% increase in the number of identifica-
tions (Supplemental Fig. 7B and Supplemental Table 30). 
This included proteins such as SMOC2, which is highly 
homologous paralog of SMOC1 [64] and also increased 
in AD brain and plasma (Fig. 5A). Furthermore, to ensure 
the consistency of the direction of change in the AD 
brain proteome compared to controls, we correlated the 
differentially abundant proteins across these two sets of 
results (Supplemental Table 31–32), revealing a correla-
tion coefficient of 0.9 between AD and control groups 
and a correlation coefficient of 0.84 between AsymAD 
and control groups (Supplemental Fig.  7C). This robust 

Fig. 6 Evaluation of heparin-enriched plasma proteins for classifying AD. ROC curves for CSF biomarker confirmed AD (n = 61) 
versus biomarker-negative control individuals (n = 34) were generated to determine the top-ranked diagnostic proteins among the 536 highly 
significant plasma proteins (meta p < 0.0001) with no missing values across all unique 95 individuals. A Individual ROC curves and AUCs for the top 
ten ranked plasma proteins, as well as plasma pTau181 alone. B ROC curves and AUCs of i) the combined top five performing proteins as a panel 
(pink), ii) plasma pTau181 alone (green), and iii) plasma pTau181 plus the protein panel (blue). ROC curve statistics for highly significant proteins, 
including AUC, p-value, 95% DeLong confidence interval, accuracy, specificity, and sensitivity for AD vs CTL, are provided in Supplemental Table 27. 
CTL, control; AUC, area under the curve

(See figure on next page.)
Fig. 7 Mapping differential abundant heparin-enriched plasma proteins in AD within a human consensus brain network. A The I-graph displays 
the updated M42 membership following FP database search, which includes 35 total proteins. Members with increased abundance in Hp-enriched 
AD plasma are highlighted in red, while those with decreased abundance are indicated in blue. B The pie chart shows the number of proteins 
that overlap between the Hp-enriched plasma dataset (N = 2865) and consensus human brain datasets (N = 8956 proteins). 2211 out of 2865 (77%) 
proteins identified in plasma are also identified in the brain. The percentage coverage of proteins in each module is also presented. C 44 modules 
of previously generated consensus human brain co-expression network [11] visualized in the order of module relatedness following protein 
re-assignment as described in method. D Overlap of Hp-enriched plasma proteins (y-axis) with increased abundance in AD depicted in red 
or decreased abundance in AD shown in blue within brain network modules. The intensity of color shading indicates the degree of overlap. 
Statistical significance is indicated in the heatmap regions using stars (* p < 0.05, ** p < 0.01, *** p < 0.001). The p-values derived from FET were BH 
FDR-corrected. E The heatmap demonstrates the bicor correlations of each module with CERAD, Braak, and MMSE cognitive scores (* p < 0.05, 
** p < 0.01, *** p < 0.001). As mentioned previously, M42 ‘Matrisome’ exhibits the strongest correlation with AD pathology, and several synaptic 
modules (M1, M4, M5, and M22) display an overall decrease in AD brain. F Using FET, the cell type nature of each module was assessed by module 
protein overlap with brain cell-type-specific markers of astrocytes, microglia, neurons, oligodendrocytes and endothelia. The strength of the color 
shading indicates the degree of cell type enrichment with asterisks denoting statistical significance (* p < 0.05, ** p < 0.01, *** p < 0.001). The 
FET-derived p-values were BH FDR-corrected. CTL, control
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correlation provides strong support for the reliability of 
the FragPipe quantitative outputs. Subsequently, we sys-
tematically mapped all the measured brain proteins by 
FragPipe to one of the 44 pre-existing network eigenpro-
teins from a consensus brain network [11]. This mapping 
was achieved by recalculating the kME (bicor correlation 

to module eigenprotein) for each protein and assigning it 
to the module with the highest correlation (Supplemental 
Table 33). A revised M42 was generated (Fig. 7A), com-
prising 35 members, marking a 10% increase compared 
to the number observed in the previous TMT-MS brain 
dataset using PD [11]. This new M42 included additions 

Fig. 7 (See legend on previous page.)
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such as SMOC2, COL5A1, SLIT3, HGF, NXPH2, RSPO2, 
and CHADL, among which SMOC2 and COL5A1 exhib-
ited significant increases in AD plasma levels. Moreover, 
the incorporation of APOE-specific protein isoforms 
into the database led to the assignment of APOE4 to 
M42, rather than APOE (inferred as APOE3), follow-
ing the FragPipe search of the brain proteome. Although 
APOE exhibited the strongest association with M42 
(kME = 0.287) compared to all other modules in the net-
work, it did not meet the 0.3 kME cutoff for inclusion 
into a network module. This finding further bolsters the 
genetic connection between the APOE ε4 genotype and 
increased levels of M42 members in AD [11, 65]. When 
comparing the proteins identified in plasma with those 
in the brain proteome, we discovered that a substantial 
portion, approximately 77% (2211 out of 2685) of the 
plasma-identified proteins were also quantified in the 
brain (Fig. 7B and Supplemental Table 34). Surprisingly, 
this was a higher percentage than we have reported for 
the CSF-brain overlaps (~ 70%) [14]. To assess the over-
lap between the brain network and the plasma proteome, 
we mapped Hp-enriched plasma proteins to one of the 
44 brain co-expression modules in Fig. 7B. Among these 
modules, those associated with M40 ‘Antigen binding’ 
(98% of members) and M26 ‘Acute phase response’ (89% 
of members) exhibited the highest degree of overlap with 
the plasma proteome. Notably, M42 ‘Matrisome’, which 
exhibited the most robust correlation with AD pathol-
ogy in the brain [11, 30], demonstrated a 46% overlap 
(16 out of 35 members) with the plasma proteome. This 
represents a significant improvement compared to the 
immunodepletion approach, which only detected 5 
out of 35 members (APOE4, APP, DAG1, GPNMB, and 
LRP1), reflecting a mere 14% of the module (Supplemen-
tal Tables  8 and 33). Collectively, the significant over-
lap between brain and plasma proteomes highlights the 
potential of the Hp-enriched plasma proteome in captur-
ing signatures related to AD brain pathophysiology.

The heparin‑enriched AD plasma proteome contextualized 
through integration with a consensus AD brain proteome 
network
To gain deeper insights into the biological connection 
between differentially abundant plasma proteins and 
the brain network in AD, we conducted a comprehen-
sive integrated analysis of the two distinct proteomes. 
Specifically, we examined which brain co-expression 
modules (Fig. 7C) exhibited strong overlap with differ-
entially abundant Hp-enriched plasma proteins in AD 
using a Fisher’s exact test (FET). As depicted in Fig. 7D, 
Hp-enriched plasma proteins that increased in AD (red) 
are significantly overlapped with seven brain modules, 
while 16 modules exhibited overlaps with proteins 

significantly decreased in AD plasma (blue). Interest-
ingly M21, which is linked to microglia and inflamma-
tion and modestly increased in symptomatic AD brain, 
contains both increased and decreased plasma pro-
teins. As described previously [11], many of these brain 
modules displayed significant correlations with AD 
pathology (i.e., CERAD for neuritic plaque burden and 
Braak staging for the progression of tau neurofibrillary 
tangles), cognitive status prior to death (MMSE), and 
brain cell types as illustrated in Fig. 7E-F. This allowed 
us to prioritize modules that exhibited significant cor-
relations with AD clinicopathological traits and spe-
cific brain cell types and that were also enriched with 
differentially abundant plasma proteins in AD. We 
categorized these modules into groups based on their 
expression trends in disease (Fig.  8). For example, cer-
tain modules displayed concordant changes in AD 
plasma and brain, even in some instances in the asymp-
tomatic phase of disease in the brain. This included 
modules such as the ’Matrisome’ (M42), whereas mod-
ules associated with ‘Acute-phase response’ (M26) and 
‘RNA-splicing’ (M13) were increased in both plasma 
and brain only in the symptomatic phase of disease. We 
also observed significant overlap between plasma pro-
teins that are significantly decreased in AD and modules 
related to synaptic proteins or ER/glycosylation (M1, 
M8, and M29) that exhibit a gradual reduction in lev-
els within the brain across control, AsymAD, and AD 
cases. Interestingly, within the modules, the trends were 
not consistent for all plasma proteins. For example, in 
M42, while most of the matrisome members were sig-
nificantly increased in AD brain and plasma, SDC4 
and APP exhibited significant decreases in AD plasma, 
which was in opposition to their changes in the brain. 
Another class of modules demonstrated divergent abun-
dance trends in AD brain and plasma (M11, M7, M25, 
M39, M15, and M44). For instance, proteins specifi-
cally in M11 ‘Cell adhesion/ECM’, M7 ‘MAPK signaling’ 
and M25 ‘Sugar metabolism’, such as PTBP1, FHL1 and 
DCTN2, exhibited increased levels in the AD brain, yet 
decreased levels in the Hp-enriched AD plasma. Finally, 
modules that showed significant overlap with the Hp-
enriched plasma proteome, yet exhibited moderate to 
low correlations with AD clinicopathological traits are 
detailed in Supplemental Fig.  8. These included M40 
‘Antigen binding’, which is highly increased only in the 
AD plasma, potentially reflecting a peripheral-derived 
inflammation and immune response to AD pathology in 
the brain. On the contrary, M37 ‘Endosome’ and M30 
‘Proteasome’ were significantly decreased in AD plasma 
while not changing in the brain, suggesting a potential 
failure of protein clearance in AD plasma. In summary, 
these analyses facilitated the categorization of groups 
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of Hp-enriched plasma proteins based on their associa-
tions with AD brain pathophysiology. Additionally, they 
shed light on the directionality of specific plasma pro-
teins within the brain network modules. Some of these 

proteins exhibited consistent increases or decreases in 
both the brain and plasma, while others displayed diver-
gent changes.

Fig. 8 Overlap between human brain network modules and differentially abundant heparin-enriched plasma proteins in AD. Protein expression 
trends of the 12 out of 44 (27%) consensus brain network modules [11] that exhibited significant correlations with AD clinicopathological 
traits and were enriched with differentially abundant plasma proteins in AD. Brain module abundance is represented by eigenprotein values 
of the consensus brain network (control = 101, AsymAD = 181, AD = 174), while volcano plots illustrate the differential abundance  (log2 fold-change 
AD vs CTL) of module proteins overlapped with the Hp-enriched plasma proteome. The statistical significance of changes in module eigenprotein 
abundance across the three groups of the consensus brain cohort was assessed using ANOVA with Tukey post-hoc correction. Modules 
with p < 0.05 were considered significant. A The M42 ‘Matrisome’, M26 ‘Acute-phase response’, and M13 ‘RNA-splicing’ displayed increased protein 
levels in both the AD brain and plasma. B The M1 ‘Synaptic transmission’, M29 ‘Glycosylation/ER’ and M8 ‘Protein transport’ showed decreased 
protein levels in both AD brain and plasma. C-D The remaining six modules, including M11 ‘Cell adhesion/ECM’, M7 ‘MAPK signaling’, M25 ‘Sugar 
metabolism’, M39 ‘Translation initiation’, M15 ‘Synaptic vesicle’, and M44 ‘Viral transcription’, exhibited divergent abundance changes in AD brain 
and plasma. CTL, control; AsymAD, asymptomatic AD; Astro, astrocytes; Micro, microglia; Endo, endothelia
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Discussion
Here we show that heparin enrichment of plasma fol-
lowed by MS-based proteomic analyses (Heparin-MS) 
is a reproducible methodology to enrich a subset of 
plasma proteins that distinguish AD from controls. 
More than 2800 plasma proteins spanning over 10 
orders of magnitude in protein concentration in plasma 
can be reliably assessed using this methodology. Con-
textualizing these data by integrating them with previ-
ous studies and our extensive human AD brain and CSF 
data, we show that Hp-enriched AD plasma proteome 
provides novel insight into the pathobiology of AD by 
reflecting protein changes in AD brain.

Our primary rational for exploring heparin enrichment 
of plasma was to evaluate whether this enrichment would 
enable us to detect and quantify members of an AD 
brain protein module in plasma, referred to as M42, the 
matrisome [11]. Our previous proteomic data had iden-
tified M42 as a highly conserved protein module in the 
human AD brain and the CRND8 mouse model of amy-
loid deposition [11, 19]. Notably, selected M42 proteins 
show some of the highest fold increases in the human 
AD and CRND8 mouse brain proteome, including APP/
Ab and APOE, as well as many proteins known to bind 
heparin [19]. We have recently shown many members of 
this module bind amyloid and co-accumulate with Aβ 
in plaques, cerebrovascular amyloid, and/or dystrophic 
neurites [19]. As in the AD brain proteome, we find that 
many M42 members in Hp-enriched plasma proteome 
can also distinguish AD from controls. Thus, our Hp-
enriched plasma data indicates that M42 proteins are 
not only intimately linked to AD amyloid pathology, but 
also appear to be robust AD plasma protein biomarkers. 
More unexpectedly, our current data suggests that many 
proteins identified initially in the human AD brain pro-
teome are also robustly detectable in the Hp-enriched 
AD plasma proteome. Targeted analyses of AD plasma 
such as Aβ42, Aβ40, various pTau species, GFAP and 
neurofilament light chain (NEFL) have provided highly 
informative blood-based biomarkers that clearly reflect 
underlying pathological processes in the brain [66]. 
However, broader integration of AD plasma proteome 
with the human AD brain proteome has not yielded 
many novel insights into AD pathobiology. As discussed 
in detail below, the evaluation of our Hp-enriched AD 
plasma proteome through the lens of our AD brain pro-
teome suggests that protein changes in multiple brain 
modules are detectable in the AD plasma proteome.

These findings have many implications relevant to our 
understanding of AD as a brain only versus a whole-
body disorder. Currently it is unclear whether the 
changes observed in the Hp-enriched AD plasma are 

simply readouts of protein level changes in the AD brain 
reflected in the plasma or evidence that AD pathophysi-
ology directly impacts peripheral organ function in a way 
that drives biomarkers changes, which can be observed in 
plasma. Given the complex relationship between changes 
in the AD brain and Hp-enriched plasma proteome that 
is not always conserved in directionality within selected 
protein modules, previous evidence that plasma bio-
markers may reflect changes in the brain proteome, and 
precedence for robust bidirectional crosstalk between the 
brain and the periphery, our own bias is that the plasma 
proteomic changes represent an admixture of central and 
peripheral processes.

For some brain protein modules, such as M42, we 
observed overall consistency among brain, CSF and 
plasma in terms of direction of change [11, 20, 21]. For 
example, not only are SMOC1 and SPON1 increased in 
CSF upwards of 30 years in advance of AD [17], these 
proteins are also increased in the preclinical or asympto-
matic stage of disease in brain, suggesting each as high 
value biomarkers if detected in plasma [11]. SPON1 
was one of the most consistent M42 proteins meas-
ured across proteomic platforms as it was increased in 
AD by aptamer-based (SomaScan) and antibody-based 
(Olink) measurements. In total, 16 matrisome proteins 
in M42 were differentially abundant in AD plasma fol-
lowing Heparin-MS, where SMOC1, SPON1, OLFML3, 
GPNMB, and HTRA1 are among the most significant 
ones elevated. Other newly identified members of M42 in 
plasma include SMOC2 and HGF, which have also been 
shown to be elevated in AD CSF [67]. However, the bio-
logical basis for the consistency of changes in these com-
partments is not yet understood. Future studies aiming to 
measure matrisome proteins in plasma from cohorts like 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 
the Dominantly Inherited Alzheimer Network (DIAN) 
will be essential for assessing their prognostic values in 
predicting disease outcomes.

In our previous consensus analysis of the human brain, 
we did not incorporate the APOE-specific isoforms 
(APOE2 and APOE4) into the human protein database 
[11]. Since these isoforms differ due to substitutions of 
cysteine residues with arginine residues, they can be eas-
ily distinguished in the human proteome after trypsin 
cleavage that releases novel peptides, which can then be 
accurately mapped and quantified using mass spectrom-
etry [57]. Notably, by integrating genomics and prot-
eomics data from the same individuals, we previously 
demonstrated that the individuals carrying an APOE ε4 
allele exhibited higher M42 levels in brain, and this reg-
ulation was not solely driven through the levels of the 
APOE protein itself [11]. In this study, the inclusion of 
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the APOE4-specific protein isoform rather than APOE 
in M42 serves to further strengthen the genetic associa-
tion between APOE ε4 genotype and M42 levels. This 
also indicates that the APOE4 protein isoform may have 
a stronger predisposition for interaction with heparin 
and HBPs within M42 in the brain than other APOE 
isoforms [58]. In the future, the implementation of inte-
grated genomics and proteomics pipelines will be needed 
for assessing whether M42 proteins in plasma are under 
genetic regulation by APOE ε4. This will provide valu-
able insights into whether this relationship is consistent 
across both the central nervous system and the periph-
eral system.

Heparin and HS accelerate the formation of Aβ fibrils 
[26–28] and loss of this heparin-APOE binding interac-
tion has been suggested as a possible mechanism for 
the resistance to AD of the APOE Christchurch loss-of-
function mutation recently described in a PSEN1 ADAD 
mutation carrier [58]. However, more recently, a rare 
RELN variant has been proposed to delay the age of onset 
of siblings with ADAD, who do not carry the Christch-
urch APOE variant [68]. Like APOE, Reelin (RELN) is 
also an HBP, but in contrast to the APOE Christchurch 
variant, the RELN variant is associated with heightened 
interactions with heparin and a consequent reduction 
in tau phosphorylation via the Dab1 signaling pathway 
[68]. It is worth noting that in our study, we observed 
increased levels of RELN in the Hp-enriched fraction 
compared to input. Hence, there appears to be an intri-
cate relationship between heparin interactions, APOE, 
and AD risk. The exact mechanisms by which HBPs, 
including APOE and members of M42, influence amyloid 
deposition and potential clearance still requires further 
investigation.

Beyond their interactions with APOE and M42 mem-
bers, HSPGs alone have been implicated in AD pro-
gression and pathogenesis [69]. Specifically, HSPGs are 
believed to play a crucial role in mediating the internali-
zation and propagation of specific proteopathic seeds 
of tau [70]. Namely, the HSPG glypican-4 (GPC4) has 
been identified as a contributor to APOE4-induced 
tau hyperphosphorylation [71]. It is also noteworthy 
that 6-O sulfation on HSPGs is presumed to regulate 
the cell-to-cell propagation of tau [72]. Interestingly, 
glypican-5 (GPC5), which is structurally homologous 
to glypican-4, is a core member of M42. While it is 
yet to be established whether glypican-5 plays a role 
in the regulation of tau internalization, the co-expres-
sion between APOE4 and GPC5 in the brain suggests 
the possibility of such involvement. Evidence support-
ing the role of HS in the etiology of AD is also emerg-
ing in genome-wide association studies (GWAS). For 
example, GWAS meta-analysis identified the heparan 

sulfate-glucosamine 3-sulfotransferase 1 gene (HS3ST1) 
as a risk locus associated with late-onset AD [73]. Fur-
thermore, a recent study reported a seven-fold increase 
in total brain HS in AD compared to controls and other 
tauopathies [74]. These findings collectively suggest that 
dysfunction in HS and HBPs in brain, CSF and plasma 
may play a central role in the etiology and the clinico-
pathological presentation of AD.

We also identified a significant number of novel 
plasma proteins that exhibited increased levels in AD. 
Among these proteins were the proteoglycan biglycan 
(BGN), which is typically found in the extracellular 
matrix of blood vessels [75], and Endothelial Cell–Spe-
cific Molecule 1 (ESM1), also known as endocan. Both 
proteins play roles in regulating endothelial cell func-
tion and angiogenesis, and they have been implicated 
in processes related to inflammation and vascular dis-
ease [75, 76]. Furthermore, we observed an elevation 
in Colony-Stimulating Factor 1 (CSF1) in the plasma of 
individuals with AD. CSF1 primarily functions in the 
regulation of the immune system [77]. Elevated levels 
of CSF1 in plasma have been associated with various 
diseases and conditions, including inflammation, can-
cer, and certain autoimmune disorders [78, 79]. Taken 
together, these findings suggest that widespread sys-
temic inflammation may also manifest in the plasma of 
individuals with AD. However, whether this phenom-
enon is specific to AD or extends to other subtypes 
of dementia remains a subject that requires further 
investigation.

In this study, we also leveraged the consensus brain pro-
tein co-expression network to explore the relationship 
between the Hp-enriched plasma and brain proteomes in 
AD. Within some brain network modules, certain plasma 
proteins consistently exhibited increases or decreases in 
AD that mirrored changes in the brain, while others dis-
played divergent alterations as previously described [30]. 
Among those consistently increased, beyond M42 mem-
bers, were proteins mapping to M26 in the brain, associ-
ated with the ‘Acute phase response’, which suggests that 
proteins related to complement activation potentially asso-
ciated with immune function are enriched in AD plasma. 
Notably, proteins of interest in M26 included SERPINA3, 
which was recently identified through a large-scale analysis 
of the plasma proteome using Mendelian randomization 
as potentially causal in AD pathogenesis [80]. Addition-
ally, we observed proteins in plasma that were mapped to 
neuronal modules related to synaptic biology in the brain, 
which displayed consistent decreases in AD. Whether this 
change in plasma reflects synapse loss in the brain will 
require further investigation. Nevertheless, it is intriguing 
that a signature of synaptic loss typically associated with 
cognitive decline in AD brain appears in the Hp-enriched 
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AD plasma. There was also some discordance in the direc-
tion of change between AD plasma and brain proteomes. 
For instance, proteins specifically in M7 ‘MAPK signaling’ 
and M25 ‘Sugar metabolism’, exhibited increased levels 
in the AD brain, yet decreased levels in the Hp-enriched 
AD plasma. This trend contrasts with the direction of 
change observed in CSF [30], where glycolytic signature 
is increased in AD even in the preclinical phase [14, 30, 
50]. The precise mechanisms underlying this discordance 
remain unclear. However, it is plausible that blood–brain 
barrier dysfunction might contribute to these differences 
[81], where proteins increased in plasma are decreased in 
CSF, and vice versa.

Although we successfully captured heparin-binding pro-
teins (HBPs) in plasma, future studies employing high salt 
concentrations in the washing steps could further enhance 
the specificity of enrichment for HBPs from human plasma 
[82]. However, an unintended consequence of the current 
method was the clearance of highly abundant proteins 
such as albumin. This reduction of albumin from the Hp-
enriched fraction resulted in the comprehensive coverage 
of nearly 3,000 plasma proteins following TMT-MS cou-
pled with high-pH off-line fractionation. Thus, in contrast 
to immunodepletion methods [83], antibody-free affinity 
enrichment-based approaches utilizing nanoparticle, cati-
onic/anionic or hydrophobic/hydrophilic-based strategies 
appear to substantially enhance plasma proteome cover-
age through MS-based technologies [84]. Collectively, 
this progress marks a step toward overcoming one of the 
major limitations of MS-based plasma proteomics, which 
is the vast dynamic range of protein abundances. Utiliza-
tion of more advanced mass spectrometers, such as the 
Orbitrap Astral, which quantifies five times more peptides 
per unit time than other state-of-the-art Orbitrap mass 
spectrometers [85], is expected to significantly enhance 
the depth of proteome coverage in plasma when employ-
ing these affinity enrichment strategies. Further studies 
that couple the Orbitrap Astral MS platform with data-
independent acquisition mass spectrometry (DIA-MS) 
will likely enhance scalability for larger sample throughput. 
This is of particular significance due to the complementary 
coverage of the Heparin-MS plasma proteome in contrast 
to the SomaScan and Olink platforms, which will further 
enhance the depth of the plasma proteome when measure-
ments are integrated across platforms [30].

While this study provided a comprehensive proteomic 
analysis of Hp-enriched plasma from human subjects, 
several limitations should be acknowledged. Notably, 
the study participants predominantly consisted of non-
Latino white individuals. Recent reports have highlighted 
disparities in AD prevalence, with Black and Hispanic 

populations showing a higher likelihood of developing 
AD compared to older white Americans [86–88]. Addi-
tionally, it has been observed that cognitively impaired 
African American individuals have lower levels of CSF 
tTau and pTau compared to Caucasians [36]. An impor-
tant ongoing initiative of the Accelerating Medicines 
partnership for AD (AMP-AD) [89] is the inclusion of 
African American and Hispanic individuals in plasma 
biomarker studies. Research efforts employing heparin 
enrichment techniques should aim to encompass a more 
diverse participant population to better capture the com-
plexities of AD across different racial and ethnic groups. 
Future studies that investigate the interplay between age, 
sex, and race within the Hp-enriched plasma proteome 
will yield valuable insights. Moreover, our plasma prot-
eomics study exclusively focused on control and sympto-
matic individuals who were AD biomarker positive based 
on their tau/amyloid ratio in the CSF. Future plasma pro-
teomic studies aimed at exploring the pre-symptomatic 
stages of AD before cognitive impairment manifests will 
be needed to identify plasma proteins that undergo early 
changes in the disease course. Nevertheless, this study 
offers a global view into the Hp-enriched plasma pro-
teome, reinforcing a hypothesis that increased matrisome 
proteins are shared between the brain and blood in AD.

Conclusion
In summary, these findings provide support for the integra-
tion of a heparin enrichment method with MS-based pro-
teomics for identifying a wide spectrum of plasma protein 
signatures that reflect pathological changes in the AD brain.

Abbreviations
Hp  Heparin
HS  Heparan Sulfate
HSPG  Heparan Sulfate Proteoglycan
ALB  Albumin
AD  Alzheimer’s disease
Aβ  Amyloid beta
APP  Amyloid precursor protein
ADAD  Autosomal dominant AD
CSF  Cerebrospinal fluid
CV  Coefficient of variation
DP  Diluted plasma
FDR  False discovery rate
GIS  Global internal standard
GO  Gene ontology
HBPs  Heparin binding proteins
Hp-depleted FT  Heparin-depleted flowthrough
Hp-enriched  Heparin-enriched
LOAD  Late-onset AD
M42  Module 42
MoCA  Montreal Cognitive Assessment
NRGN  Neurogranin
TMT-MS  Tandem mass tag mass spectrometry
TF  Transferrin
VCP  Valosin-containing protein
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depicted in blue. Grey dots represent proteins with insignificant 
changes. For SomaScan, 308 proteins are increased in AD while 3,917 
are decreased. For Olink, 108 proteins are increased in AD while 284 are 
decreased. Protein levels in AD are generally lower than in controls in 
SomaScan, resulting in a lower  log2 fold-change (AD vs CTL) compared 
to the Heparin-MS data. C-D) Pearson correlation between  log2 
fold-change (AD vs CTL) of significant common gene products (FDR < 
0.05) measured by the Heparin-MS and SomaScan (N = 445 gene 
products, cor = 0.7, p = 9.1e-67), as well as the Heparin-MS and Olink (N 
= 58 gene products, cor = 0.88, p= 9.4e-20). The significance of the 
Pearson correlation was determined by Student’s t-test. CTL, control; 
cor, Pearson correlation coefficient. Supplemental Figure 5. Workflow of 
the data analysis pipeline across two Hp-enriched plasma datasets. A) 
Set 1 and Set 2 were jointly analyzed using FP, followed by independent 
batch-specific variance correction procedures, which included TAMPOR 
and batch-regression. Subsequently, 12 cases from Set 2 that did not 
meet the AT+ threshold criteria were excluded (see methods). A total of 
109 samples and 2865 total proteins were selected for further analysis, 
with 13 overlapping control samples between the two datasets. B) 
Measurements of various AD-related traits, including cognition (MoCA 
score), CSF Aβ1-42, CSF tTau, CSF pTau181, CSF ratio of tTau/Aβ1-42, and 
plasma pTau181, were shown for the selected unique cases (n = 96). 
Significance levels determined by Student’s t-test are denoted by 
overlain asterisks;*p < 0.05, **p < 0.01, ***p < 0.001, ****p< 0.0001. 
Supplemental Figure 6. Comparison of Set 1 and Set 2 with or without 
regression for age, sex, and race. A-D) Variance partition analysis is 
visualized by violin plots, using experimental factors to evaluate the 
percentage of explained variance in samples. The y-axis represents the 
percentage of explained variance, while the x-axis shows factors 
contributing to variance, including age, sex, race, group, batch, and 
residuals. A) Set 1 post-TAMPOR and before regression. B) Set 1 after 
regression. C) Set 2 post-TAMPOR and before regression. D) Set 2 after 
regression. Notably, variance due to age, sex, race, and batch was 
significantly reduced after correction, underscoring the efficacy of the 
correction procedure in removing trait-related variability from the 
proteomic data. E) A scatter plot illustrates the correlation between  log2 
fold-changes for AD vs CTL (cor = 0.99, p <  1e-200) on significant 
proteins (N = 1765, meta p < 0.05) in the meta-analysis (Set 1 + Set 2), 
with only batch regression or after regression for age, sex, race, and 
batch. CTL, control; cor, Pearson correlation coefficient. Supplemental 
Figure 7. Comparing TMT-MS proteomic measurements of human brain 
generated by FragPipe (FP) and Proteome Discoverer (PD). A) 456 raw 
files collected from the ROSMAP and Banner cohorts as previously 
described (11) underwent a database search using FP (see methods), 
resulting in the identification of 8956 UniprotID-identified proteins, 
each with measurements available in 50% or more across 456 
individual cases (control = 101, AsymAD = 181, AD = 174). These 
proteins were subsequently assigned to one of the 44 pre-existing 
consensus network modules (11) by re-calculating the kME (bicor 
correlation to module eigenprotein) for each protein and assigning it to 
the module that exhibited the highest correlation (52). B) The number 
and overlap of unique gene products identified in the FP and the PD 
outputs, with 7476 overlapping between the two datasets. FP provided 
an additional 1428 unique gene products compared to PD, resulting in 
an 18% increase in proteome coverage. C) Scatter plots illustrate the 
correlation between  log2 fold-change for AD vs CTL (left, cor= 0.9, p < 
 1e-200) and AsymAD vs CTL (right, cor = 0.84, p <  1e-200), using common 
gene products (N = 7467) found in both FP and PD search results. CTL, 
control; cor, Pearson correlation of coefficient. Supplemental Figure 8. 
Overlap between additional human brain network modules and 
differentially abundant Hp-enriched plasma proteins in AD. Protein 
expression trends are examined for the 10 modules that exhibit 
significant overlap with differentially abundant Hp-enriched plasma 
proteome but demonstrate moderate to low correlation with AD 
clinicopathological traits in the brain. Brain module abundance is 
quantified by eigenprotein values derived from the consensus brain 
dataset (11) (control = 101, AsymAD = 181, AD = 174), while volcano 
plots illustrate the differential abundance  (log2 AD vs CTL) of module 
proteins overlapped with the Hp-enriched plasma proteome. The 
statistical significance of changes in module eigenprotein abundance 

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13024- 024- 00757-1.

Additional file 1: Supplemental Figure 1. Comparing heparin enrichment 
across APOE isoforms.A)Thevolcano plot shows differentially enriched 
proteins in the Hp-enriched fractions (n = 3) of pooled plasma sample 
compared to the DP inputs (n = 3). Red circles represent significant 
Hp-enriched proteins in plasma and examples of AD-related HBPs are 
highlighted, in addition to APOE isoforms. Blue symbols represent proteins 
significantly depleted from the Hp-enriched fractions. The significance 
cutoff is p < 0.05 (ANOVA with Tukey post-hoc correction) and fold-
change > 2.B)The bar plot shows average abundance changes of APOE2, 
APOE3 and APOE4 isoforms across three replicates within each fraction of 
pooled plasma (DP input = 3, Hp-depleted FT = 3, Hp-enriched = 3). The 
y-axis is calculated by average  log2 fold-change of protein intensity from 
three replicates over their geomean across all 9 samples. The significance 
of difference was determined by ANOVA with Tukey post-hoc correction 
and denoted with stars (* p < 0.05, ** p < 0.01, *** p < 0.001). Supplemen-
tal Figure 2. Western blotting of thrombin and APOE in Set 1 (n = 36). A) 
Western blotting was conducted on DP input, Hp-depleted FT, and 
Hp-enriched fraction obtained from Set 1 samples, which included 18 
control and 18 AD cases. Thrombin (~75 kDa) and APOE (~34 kDa) were 
the target HBPs of interest. On each gel, 2 control samples, 2 AD samples, 
and 1 GPS sample (see method) were loaded for each fraction. The results 
show that both thrombin and APOE were depleted from the DP input and 
Hp-depleted FT and enriched in the Hp-enriched fraction. WB: western 
blotting. Supplemental Figure 3. Comparison of immunodepleted and 
heparin-enriched plasma proteomes. A) The Set 1 (control = 18, AD = 18) 
underwent top 14 removal and the same TMT-MS analysis as performed 
on the Hp-enriched Set 1. B) The volcano plot illustrates the differential 
abundance of 1,129 proteins between the control and AD groups. The 
x-axis represents the  log2 fold-change (AD vs CTL), while the y-axis 
represents the Student’s t-statistic (-log10 p-value) calculated for all 
proteins in the pairwise comparison. Proteins significantly increased in AD 
(N = 432) are highlighted in red (p < 0.05), whereas those significantly 
decreased in AD (N = 383) are depicted in blue. Grey dots represent 
proteins with insignificant changes. C) The number and overlap of 
proteins quantified in the top 14 (N = 1,129) and Hp-enriched (N = 2,077) 
datasets with less than 50% missing values are shown. There are 1,273 
proteins only detected by heparin enrichment, while the top 14 method 
identifies only 325 specific proteins. D) The volcano plot illustrates the 
differential abundance of 1,273 proteins (AD vs Control) uniquely 
identified in the Hp-enriched dataset. The x-axis represents the  log2 
fold-change (AD vs CTL), while the y-axis represents the Student’s 
t-statistic (-log10 p-value) calculated for all proteins in the pairwise 
comparison. Proteins significantly increased in AD (N = 339) are 
highlighted in red (p < 0.05), whereas those significantly decreased in AD 
(N = 409) are depicted in blue. Grey dots represent proteins with 
insignificant changes. E) A scatter plot shows the Pearson correlation 
between  log2 fold-change (AD vs CTL) of significantly altered proteins in 
both the top 14 and Hp-enriched datasets. There are 380 proteins 
overlapping between the two sets, showing significant changes in AD 
with a BH FDR-corrected p-value< 0.05 in both datasets. Only 5 out of 380 
proteins exhibited discordant changes in AD vs Control, demonstrating a 
high degree of concordance (cor = 0.93, p < 2.2e-166). All 215 overlapping 
proteins selected with a BH FDR-corrected p-value < 0.01 displayed 
consistent changes in both datasets when comparing AD and control 
samples, with a remarkable correlation of 0.96 (p <  1e-119). The significance 
of the Pearson correlation was determined by Student’s t-test. CTL, 
control; cor, Pearson correlation coefficient. Supplemental Figure 4. 
Differential protein abundance of SomaScan and Olink and their 
correlations with Heparin-MS.A-B) The volcano plot illustrates the 
differential abundance of proteins measured by SomaScan (N = 7,284) 
and Olink (N = 979) between the control and AD groups. The x-axis 
represents the  log2 fold-change (AD vs CTL), while the y-axis represents 
the Student’s t-statistic (-log10 p-value) calculated for all proteins in each 
pairwise comparison. Proteins significantly increased in AD are high-
lighted in red (p < 0.05), whereas those significantly decreased in AD are 
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across the three groups in the consensus brain cohort was assessed using 
ANOVA with Tukey post-hoc correction. Modules with p < 0.05 were 
considered significant. Among these modules, M4 ‘Synaptic transmission’, 
M34 ‘GTP binding’, M14 ‘Protein folding’, M37 ‘Endosome’, M30‘Proteasome’, 
M43 ‘Ribonucleoprotein binding’ and M38 ‘Heat shock/protein folding’ 
consist of proteins with decreased abundance in AD plasma, while 
M40‘Antigen binding’ exclusively contains increased plasma proteins in 
AD. M27‘ECM’ and M21 ‘MHC/immune’ exhibit a balanced representation 
of both increased and decreased plasma proteins in AD. CTL, control; 
AsymAD, asymptomatic AD.

Additional file 2: Table S1 : Protein abundance and CVs of 3 fractions of 
pooled plasma. Table S2: Protein overlap across 3 fractions of pooled 
plasma. Table S3: Pooled plasma ANOVA. Table S4: Set 1 sample informa-
tion (n = 36). Table S5: (Set 1 + Set 2) raw protein abundance (n = 121). 
Table S6: Set 1 variance-corrected protein abundance. Table S7: Set 1 
Student’s t-test (heparin enrichment). Table S8: Set 1 Student’s t-test (top 
14 removal). Table S9: Protein overlap between heparin enrichment and 
top 14 removal. Table S10: SomaScan median-centered data Table S11: 
Olink median-centered data. Table S12: Protein overlap across Heparin-
MS, SomaScan and Olink. Table S13: SomaScan Student’s t-test. Table S14: 
Olink Student’s t-test. Table S15: Set 2 sample information (n = 85). 
Table S16: Set 2 variance-corrected protein abundance. Table S17: Plasma 
protein concentration. Table S18: Protein overlap between Set 1 and 
Set 2. Table S19: Set 2 Student’s t-test. Table S20: (Set 1 + Set 2) sample 
information without outliers (n = 109). Table S21: (Set 1 + Set 2) meta-
analysis of significance. Table S22: (Set 1 + Set 2) Z-transformed protein 
abundance. Table S23: Correlations between Z-score and AD biomarkers. 
Table S24: Correlations between SomaScan and AD biomarkers. Table S25: 
Correlations between Olink and AD biomarkers. Table S26: (Set 1 + Set 2) 
meta-analysis of significance after regression for age, sex, race and batch. 
Table S27: ROC curve statistics for highly significant plasma proteins and 
plasma pTau181 (n = 95, duplicated samples and missing values removed) 
.Table S28: (ROSMAP + BANNER) brain sample information (n = 456). 
Table S29: (ROSMAP + BANNER) variance-corrected protein abundance. 
Table S30: Protein overlap between FragPipe and Proteome Discoverer 
search of (ROSMAP + BANNER) brain dataset. Table S31: (ROSMAP + 
BANNER) ANOVA from FragPipe search. Table S32: (ROSMAP + BANNER) 
ANOVA from Proteome Discoverer search. Table S33: (ROSMAP + BANNER) 
module re-assignment. Table S34: Protein overlap between Hp-enriched 
plasma and brain datasets.
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