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Abstract
Background: Aberrant hyperphosphorylation of tau protein has been implicated in a variety of
neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate
tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated
pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between
tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the
microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-
17) tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were
investigated.

Results: Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different
phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant
PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins
were significantly decreased in the presence of wild-type PTEN, and significantly increased when the
phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau
transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was
expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In
addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells
overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and
control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated
that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form
aggregates in the COS-7 cells.

Conclusion: Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at
specific sites, and the phosphatase activity null PTEN increases the mutant tau phosphorylation at these
sites. The changes of the tau phosphorylation status by ectopic expression of PTEN correlate to the
alteration of the mutant tau's cellular distribution. In addition, the overexpression of the mutant PTEN can
increase the level of the mutant tau aggregates and lead to the formation of visible aggregates in the cells.
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Background
Tauopathies, including Alzheimer's disease (AD), Pick's
disease (PiD), corticobasal degeneration (CBD), progres-
sive supranuclear palsy (PSP), argyrophilic grain disease
and frontotemporal dementia and parkinsonism linked
to chromosome 17 (FTDP-17), are a group of neurode-
generative disorders that are pathologically featured by
intracellular neurofibrillary tangles (NFTs) [1,2].
Although the causal role of NFTs in neurodegeneration of
tauopathies is still questionable, for example, the neurons
with NFTs can live for years [3], and the mutations of amy-
loid precursor protein (APP) [4] and presenilins [5] are
accused of the pathogenesis of AD, the neuronal toxicity
of NFTs have been implicated by a number of studies in
cellular and animal tauopathy models [2].

The major component of NFTs is bundles of paired helical
filaments (PHF) of abnormally hyperphosphorylated tau
proteins [6]. Tau is a class of microtubule-associated pro-
tein (MAP). The tau proteins are normally expressed in
neuronal and glial cytoplasm including cell bodies, neur-
ites and axons, where they bind to and stabilize microtu-
bules [7-9]. Under normal physiological conditions, tau is
phosphorylated at 2–3 serine and threonine sites before
proline. In vitro studies have identified several proline-
directed kinases that can phosphorylate tau at different
sites, including cyclin-dependent kinase 5 (CDK5) [10],
glycogen synthase kinase-3 (GSK-3) [11], mitogen-acti-
vated protein kinase (MAPK) [12,13], protein kinase A
[14], protein kinase (PKC) [15,16] and Akt/protein kinase
B (PKB) [17]. In tauopathies, tau is aberrantly hyperphos-
phorylated, carrying 3–4 times more phosphates [18,19].
The hyperphosphorylation of tau has been accused of
causing tau dysfunction, aggregation, and likely NFT for-
mation [20,21]. The evidence for a causal role of abnor-
mal tau phosphorylation and aggregation in
neurodegenerative disorders was supported by the genetic
analyses of the inherited FTDP-17, which led to identifica-
tion of tau FTDP-17 mutations that cause the disease [22-
24]. However, the molecular mechanisms by which phos-
phorylation of tau protein is regulated pathophysiologi-
cally are largely unknown.

Recent studies have revealed aberrant upregulation of
neuronal markers for mitogenic signaling pathways in the
brains of tauopathy animals and AD patients. They
include Akt and the target of rapamycin (TOR) that are
downstream effectors of the tumor suppressor phos-
phatase and tensin homologue deleted on chromosome
ten (PTEN)-regulated phosphoinositide-3 kinase (PI3K)
signaling pathway, implying a link between PI3K signal-
ing pathway and pathogenesis of AD and tauopathies [25-
28]. In the PI3K signaling pathway, tumor suppressor
PTEN antagonizes PI3K by dephosphorylating phosphati-
dylinositol (3,4,5)-triphosphate (PIP3) to regulate a vari-

ety of crucial cellular functions, including cell
proliferation, migration and apoptosis [29,30].

The tumor suppressor gene Pten, also known as MMAC1
and TEP1, has been found to be mutated in many human
sporadic and hereditary cancers [31-34]. Although PTEN
exhibits both protein and lipid phosphatase activity in
vitro [35], only PIP3 has been identified as a major lipid
substrate for PTEN in vivo [35,36], leaving PTEN's protein
substrate(s) unknown. Multiple lines of evidence from
PTEN-null animal models have shown that PTEN is
required for normal embryonic development [37-40] and
that conditional inactivation of PTEN in the brain led to
abnormal development of neurons [41,42]. Recently Grif-
fin et al. showed decreased levels and altered distribution
of PTEN along with elevated PI3K signaling in the brain of
AD patients [25]. We also showed that overexpression of
PTEN can affect phosphorylation of wild-type human tau
at multiple sites, decrease tau aggregation and improve
tau binding to microtubules in cells [43]. Given that tau
phosphorylation is harmful to neurons, these results sug-
gest that PTEN regulates tau phosphorylation through
PI3K signaling and that the loss of PTEN functions may
contribute to neurodegeneration in AD.

In the present study, in order to investigate whether PTEN
can affect the phosphorylation, aggregation and microtu-
bule binding ability of mutant tau associated with tauop-
athy, we used an FTDP-17 missense mutant tau, R406W,
which has been shown to be less soluble and less capable
of binding to microtubules than wild-type tau [44,45].
Here we demonstrate that PTEN inhibits tau phosphoryla-
tion at Akt sites, hence reducing the aggregation and pro-
moting the binding to microtubules of an FTDP-17
mutant tau.

Results
Overexpression of PTEN affects the FTDP-17 mutant tau 
phosphorylation
Tau can be phosphorylated at multiple sites by various
kinases. In a previous study, we found that tumor suppres-
sor PTEN can affect wild-type human tau phosphorylation
at several sites, including two Akt sites, Ser214 and
Thr212. To further study whether PTEN affects phosphor-
ylation and hence aggregation and microtubule associa-
tion of FTDP-17 mutant tau proteins, we cotransfected the
T40RW, a tau mutant identified from FTDP-17 [46], and
human wild-type PTEN (PTEN-WT) or a mutant PTEN
lacking the phosphatase activity (PTEN-CG) [47,48] into
COS-7 cells. Using phospho-tau specific antibodies [49],
we have evaluated the FTDP-17 mutant tau phosphoryla-
tion status at 7 different sites, including Akt targets,
Thr212 and Ser214, GSK-3 targets, Ser199, Thr205 and
Ser396, and two paired-helical filament (PHF) tau phos-
phorylation sites, Ser202 and Ser262 (Fig. 1A). Western
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analysis and densitometry, quantification of the phos-
phorylated tau revealed that overexpression of wild-type
PTEN slightly but significantly decreased the level of
Ser214 phospho-tau to 80% compared to vector trans-
fected control (Fig. 1). The levels of phospho-tau at the
other 6 examined sites did not show significant changes in
the presence of wild-type PTEN compared to control (Fig
1B).

Dramatic changes in the levels of phospho-tau were
observed when the FTDP-17 mutant tau was cotransfected
with the catalyst activity null mutant PTEN. The levels of
Thr212 and Ser214 phospho-tau were significantly
increased by approximately 30% and 60%, respectively
(Fig. 1B). Although Thr212 and Ser214 can also be phos-
phorylated by other kinases, including MAPK and PKC,
besides Akt, the observation that the mutant tau phospho-

The effects of PTEN on phosphorylation of the FTDP-17 mutant tauFigure 1
The effects of PTEN on phosphorylation of the FTDP-17 mutant tau. A. Schematic drawing of the FTDP-17 mutant tau, 
T40RW, and major phosphorylation sites by various kinases. The missense mutation of Arg to Trp at position 406 is labeled by 
a star. The examined phosphorylation sites are in bold. Kinases are abbreviated as follows: M, MAPK; G, GSK-3; C5, CDK5; A, 
PKA; C, PKC; PK, phosphorylase kinase. The four repeats of microtubule-binding domain (MBD) are shown as the filled areas. 
B. Vector, wild-type (PTEN-WT) or the phosphatase null mutant PTEN (PTEN-CG) transfected COS-7 cells were analyzed by 
Western blotting using phospho-tau specific antibodies as indicated. C. Levels of phospho-tau were quantified and normalized 
to the total tau level. Error bars indicate means ± SE, n = 4, *p < 0.02 and **p < 0.05.
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rylation at MAPK and PKC sites, such as Ser199, Ser202
and Ser262, did not exhibit any significant change in the
presence of either wild-type or the mutant PTEN. This sug-
gests that Akt, rather than MAPK and PKC, plays an
important role in the mutant tau phosphorylation, and
this effect can be regulated by PTEN activity.

Overexpression of PTEN affects the FTDP-17 mutant tau 
aggregation and cellular distribution
It has been generally believed that hyperphosphorylation
of tau can lead to tau aggregation. Given PTEN's effects on
mutant tau's phosphorylation, we then asked if ectopic
expression of wild-type and mutant PTEN can lead to
changes of mutant tau aggregation and cellular distribu-
tion/partitioning. First, we determined cellular distribu-
tion of the mutant tau by fractionating the cells
cotransfected with the FTDP-17 mutant tau, T40RW, and
either wild-type PTEN, a catalytic activity dead PTEN
mutant or vector (control). The transfected mutant tau in
various fractions including cytosolic soluble tau, microtu-
bule-bound tau, membrane-bound tau and SDS-soluble
aggregated tau was detected by Western blots (Fig. 2A). In
the presence of wild-type PTEN, there was about 20%
more soluble tau in the cytosol compared to those in the
control cells. Correlated with the increase of soluble tau,
overexpression of wild-type PTEN decreased the level of
the aggregated mutant tau by approximately 20%, indicat-
ing a shift between the pools of free tau and aggregated tau
caused by PTEN. Similar to what happened in tau phos-
phorylation with the ectopic expression of the mutant
PTEN, a significant shift from the cytosolic free tau to the
aggregated tau was observed when the mutant PTEN was
expressed: the amount of aggregated tau was nearly dou-
bled while the soluble fraction of the mutant tau was
decreased by 50% (Fig. 2).

Using filter/trap assays, we isolated and quantified the
amounts of SDS-insoluble tau aggregates from the mutant
tau and PTEN cotransfected cells (Fig. 3A). After Western
blots and densitometry, we found that the overexpression
of wild-type PTEN did not significantly change the
amount of insoluble tau aggregates compared to control.
On the other hand, the level of the detergent resistant
mutant tau aggregates was increased more than 50% in
the cells cotransfected with the mutant PTEN compared to
the control vector. These results, together with the changes
of tau cellular distribution upon overexpression of PTEN,
suggest that PTEN plays a role in mutant tau pathophysi-
ological functions, likely through PTEN's regulatory
effects on tau phosphorylation.

Overexpression of the mutant PTEN caused formation of 
aggregates of the mutant tau in cells
The observation that the significant increase of mutant tau
aggregates in the presence of mutant PTEN led us to

hypothesize that a mutation in PTEN may cause visible
tau aggregates in cells. To test the hypothesis, COS-7 cells
stably expressing T40RW tau were transfected with pIRES-
EGFP-PtenWT, pIRES-EGFP-PtenCG or pIRES-EGFP as a
control, and immunostained with anti-tau and anti-tubu-
lin antibody. The expression of PTENs was represented by
the expression of EGFP (Fig. 4A,E,I). The tau immunoflu-
orescence was shown to only partially overlap with that of
microtubules (Fig. 4D,H,L), suggesting a defect in micro-
tubule binding of this mutant tau. The overexpression of
wild-type PTEN did not change the cellular localization of
the mutant tau or the interaction between the mutant tau
and microtubules (Fig. 4H). On the other hand, upon
overexpression of the mutant PTEN, we observed aggre-
gates of the mutant tau in the cytosol (Fig. 4J,L), although
the nature of the aggregates in how they resemble the
NFTs remains to be determined. In addition, the reduced
immunofluoresent colocalization between the mutant tau
and microtubules indicated an impaired interaction
between the two. Furthermore, we observed an abnormal
pattern of tau immunostaining (Fig. 4J) and less-organ-
ized microtubule structures (Fig. 4K) in the mutant PTEN
transfected cells compared to those in control vector and
wild-type PTEN transfected cells. Given that the expres-
sion of the mutant PTEN alone in the cells did not cause
disorganization of the microtubules (data not shown),
the observed changes in microtubules in the mutant tau
transfected cells are likely due to the formation of the
mutant tau aggregates.

Discussion
In a previous study, we found tumor suppressor PTEN reg-
ulates tau phosphorylation at multiple sites and affects
tau aggregation and binding to microtubules. To further
explore the role of PTEN in the pathogenesis of tauopa-
thies, we examined phosphorylation of an FTDP-17
mutant tau in the presence of wild-type or the catalyst
activity null mutant PTEN. Similar to what happened to
wild-type tau [43], overexpression of PTEN (wild-type and
the mutant) caused changes in tau phosphorylation most
significantly at Akt sites, Thr212 and Ser214, suggesting
that PTEN-regulated PI3K signaling also plays a role in
phosphorylation of pathological tau mutants. It has been
known that Ser214 is one of the major tau phosphoryla-
tion sites in NFTs whose phosphorylation interferes with
the tau-microtubule interaction in vitro [50]. Together
with the previous observation that tau is heavily phospho-
rylated at Ser214 in NFTs concomitant with decreased lev-
els of PTEN in AD brains [25,43], our current results
support the notion that Ser214 phosphorylation may be a
crucial factor contributing to tauopathies, which can be
affected by PTEN through the PI3K signaling pathway.
However, since PTEN-modulated PI3K signaling also reg-
ulates other tau kinases besides Akt, the possibility that
PTEN can affect tau phosphorylation at other sites
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through different mechanisms requires further investiga-
tion. In addition, since PTEN may exert its cellular func-
tions independent of the PIP3 signaling pathway, e.g.,

inhibiting phosphorylation of transcription factor ETS-2
through MAPK [51], it remains possible that PTEN may
affect the pathogenesis of tauopathy by a mechanism

PTEN affects cellular distribution and binding to microtubule of the FTDP-17 mutant tauFigure 2
PTEN affects cellular distribution and binding to microtubule of the FTDP-17 mutant tau. A. The fractionation scheme used to 
resolve different cellular pools of tau. Total membrane and cytosolic fractions were prepared. The tau fraction sedimenting 
with total membranes (Pellet 1) was treated with nocodazole to solubilize microtubule-associated tau (microtubule-bound 
tau). The remaining membrane-bound/aggregated tau (Pellet 2) was treated with Na2CO3 to extract membrane-associated tau 
(membrane-bound tau). The remaining tau aggregates (Pellet 3) were dissolved by SDS. B. Western blot analysis of expression 
of PTEN and of tau in various celluar fractions. C. Quantification analysis. Data represent mean ± SE, n = 3, *p < 0.02.
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other than regulating the phosphorylation status of tau,
such as by affecting tau ubiquitination and degradation.

We have previously shown that PTEN affects phosphor-
ylation of wild-type tau at multiple sites. Here we demon-
strate that PTEN affects the mutant tau most significantly
at the Akt sites. This difference is likely due to the changes
in the biochemical properties of tau caused by the mis-
sense FTDP-17 mutation, which may reflect the confor-
mational/structural changes of the mutant tau, which
could alter the accessibility of the mutant tau to the tau
kinases and accelerate pathogenesis of tauopathy.

It has been shown that the FTDP-17 mutant tau proteins
form filaments in transgenic mouse brains [52-54], and
the tau filaments are stained by the AT100 antibody that
detects phospho-tau at Ser214 and Thr212 [53,55], sug-
gesting the mutant tau is hyperphosphorylated at the Akt
sites. However, it has not been clarified why FTDP-17
mutant tau proteins fail to form aggregates and exhibit
less phosphorylation at certain sites compared to wild-
type tau in cultured cells [44,45,56-58]. In this study, we
were able to detect tau aggregates in the cells coexpressing
the mutant tau and the phosphatase activity null PTEN,
resembling the in vivo observations. Our data suggested

that abnormally upregulated PI3K signaling can forcefully
increase tau phosphorylation at the two Akt sites that may
play a key role in the pathogenesis of tauopathies, a
notion that is supported by the observation that a higher
Akt activity and loss of PTEN are indeed found in post-
mortem AD brains [25,43].

Conclusion
In this study, we demonstrate that ectopic expression of
wild-type or the phosphatase activity null mutant tumor
suppressor PTEN can affect the FTDP-17 tau phosphoryla-
tion at important PHF sites to regulate tau's microtubule-
binding function and aggregation. Our data suggest that
mutations in Pten or deficiency in its phosphatase activity
may lead to pathogenesis of tauopathies. In addition, our
findings provide additional support for the link between
the PI3K pro-survival signaling pathway and tauopathy in
neurodegeneration, and potentially assign PTEN as a
potential therapeutic target for AD.

Methods
Constructs
Human wild-type and mutant Pten cDNAs were sub-
cloned into pIRES-EGFP (Invitrogen, Carlsbad, CA) to
generate pIRES-Pten expression vectors. Specifically, the

PTEN affects aggregation of the mutant tauFigure 3
PTEN affects aggregation of the mutant tau. A. COS-7 cells transiently overexpressing the FTDP-17 mutant tau were trans-
fected with PTEN-WT, PTEN-CG or control vectors. SDS-insoluble aggregated tau proteins were detected by using a filter-
trap/immunoblotting assay. The transfected PTEN and total tau proteins (as indicated in middle and lower panels) were 
detected by Western blots from same amounts of lysates as in filter assays. B. The amounts of aggregated tau were quantified 
by densitometry and normalized against the amount of total tau. Error bars indicate means ± SE, n = 3, *p < 0.02 compared to 
the vector transfection control.
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1.2 kb Pten cDNA fragments were cut and collected from
pEF-PtenWT and pEF-PtenCG (gifts from Dr. Hong Wu,
UCLA) using EcoRI/BamHI sites. The fragments were then
ligated to EcoRI/BamHI digested pIRES-EGFP to produce
pIRES-EGFP-PtenWT and pIRES-EGFP-PtenCG.

Cell cultures and transfection
COS-7 cells were maintained in DMEM medium supple-
mented with 10% FBS and antibiotics. Cells were first
transfected with the mutant tau (T40RW) and equally
split, followed by a second transfection with either wild-
type PTEN or the lipid phosphatase null mutant PTEN
(PTEN CG), using lipofectamine (Invitrogen). In some
experiments, COS-7 cells stably expressing the FTDP-17
mutant tau (T40RW) were cultured on coverslips, and

then transfected with pIRES-EGFP-PtenWT or pIRES-
EGFP-PtenCG.

Western blotting
To analyze phospho-tau, cells were homogenized in a
lysis buffer containing 10 mM Tris/Cl, pH 7.4, 150 mM
NaCl, 5 mM EDTA, 5 mM EGTA, 50 mM NaF, 1 mM
Na3VOF3, 5 mM DTT, 1% NP-40 and a cocktail of pro-
tease inhibitors. Cell lysates were collected after brief son-
ication and centrifugation at 18,000 × g. Equal amounts of
lysate samples were then subjected to SDS-PAGE. Proteins
were transferred to PVDF membranes and probed with
anti-tau antibodies: H150 (1:1000; Santa Cruz Biotech-
nology, Santa Cruz, CA), pS214 (1:1000; Biosource,
Carlsbad, CA), pS199 (1:1000; Biosource), pT212

The phosphatase activity null PTEN leads to formation of visible tau aggregates in cellsFigure 4
The phosphatase activity null PTEN leads to formation of visible tau aggregates in cells. COS-7 cells stably expressing the 
FTDP-17 mutant tau were transfected with pIRES-EGFP (A-D), pIRES-EGFP-PTENwt (E-H) or pIRES-EGFP-PTENcg (I-L). 
Expression of EGFP control (A), PTEN-WT (E) or PTEN-CG (I) was visualized based on the EGFP fluorescence. Cells were 
further immunostained to detect tau (B,F,J) and α-tubulin (C,G,K). Fluorescence micrographs were visualized and recorded by 
fluorescence microscope. D, H, and L are merged images of tau and α-tubulin immunostaining.
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(1:1000; Biosource), pS396 (1:1000; Biosource), pS202
(1:1000; Biosource), pS262 (1:1000; Biosource) and
pT205 (1:500; Biosource). PTEN proteins were detected
using mouse anti-PTEN antibody (1:1000; Cell signaling,
Danvers, MA). Tubulin was detected using anti-α-tubulin
antibody (1:10000; Sigma, St. Louis, MO). The mem-
branes were incubated with peroxidase-labeled secondary
antibodies, and signals were visualized using ECL. In
some experiments, Western blots were scanned and pro-
tein bands were quantified using Scion Image software.

Fractionation of transfected COS-7 Cells
COS-7 cells were cotransfected with the mutant human
tau and either wild-type, the mutant human Pten, or
pcDNA control. Cells were fractioned as previously
described with modifications [43,59]. Specifically, cells
were harvested 48 h after transfection and homogenized
in breaking buffer (0.25 M sucrose/10 mM Hepes, pH 7.2/
1 mM MgOAc2/protease inhibitors mixture) by using a
stainless steel ball-bearing homogenizer (18-μm clear-
ance). Cytosol was prepared from postnuclear superna-
tant by ultracentrifugation for 1 h at 190,000 × g. The
resulting membrane pellet was resuspended and incu-
bated on ice for 30 min with 5 μM nocodazole, followed
by ultracentrifugation for 1 h at 190,000 × g to produce
post-nocodazole supernatants containing microtubule-
associated tau. The generated pellets containing both
membrane-associated and aggregated tau were further
extracted using 100 mM sodium carbonate buffer (pH
11.5) at 4°C for 30 min. The post-Na2CO3 pellets were
prepared by ultracentrifugation at 190,000 × g for 1 h and
washed with 1% SDS to produce a fraction containing tau
aggregates. Aliquots containing equal amounts of protein
were analyzed by SDS/PAGE-Western blotting for tau
using H150. Western blotting results were quantified by
densitometry to determine the tau level in each fraction.

Filter/trap assays for tau aggregates
The filter/trap assays were performed as described previ-
ously with minor modification [43,59]. Specifically, COS-
7 cells expressing the FTDP-17 mutant human tau were
transfected with human wild-type Pten, the mutant Pten or
pcDNA control. Cells were lysed in a buffer containing
0.5% Nonidet P-40/1 mM EDTA/50 mM Tris HCl, pH
8.0/120 mM NaCl/protease inhibitors mixture. After brief
sonication, cell lysates were passed through a cellulose
acetate membrane (0.2 μm; Bio-Rad, Hercules, CA) using
Bio-Dot Microfiltration Apparatus (Bio-Rad) and washed
three times with 1% SDS followed by immunoblotting
using H150 antibody. Quantitative Western blot analyses
were used to determine the level of tau aggregates in each
sample.

Immunocytochemistry
To stain tau and tubulin in pIRES-EGFP-Pten transfected
COS-7 cells that stably express the mutant human tau
(T40RW), cells on coverslips were fixed in 4% parafor-
madelhyde (PFA)/PBS for 15 min followed by washing
with PBS 5 times at 5 min each. Cells were then permea-
bilized with 0.1% Triton X-100 in PBS for 10 min before
blocking with 5% BSA/PBS for 30 min. After washing with
PBS, cells were incubated with anti-tau antibody, H150
(1:200; Santa Cruz Biotechnology) and anti-α-tubulin
antibody (1:2000; Sigma) in 5% BSA/PBS for 2 hrs. Cells
were then washed and incubated with 7-amino-4-methyl-
coumarin-3-acetic acid (AMCA)-conjugated anti-mouse
IgG (1:300; Invitrogen) and Alexa Fluor 594-conjugated
anti-rabbit IgG (Invitrogen; 1:300) for 1 h. The coverslips
were then washed and mounted on slides. All procedures
were performed at room temperature. Images were visual-
ized and taken using deconvolution microscopy (Zeiss
Axiovert 100 M).
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