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Abstract

reproduce these features of myelination failure.

role of HA in OL lineage progression in chronic lesions.

Background: CNS myelination disturbances commonly occur in chronic white matter lesions in
neurodevelopmental and adult neurological disorders. Recent studies support that myelination failure can involve a
disrupted cellular repair mechanism where oligodendrocyte (OL) progenitor cells (OPCs) proliferate in lesions with
diffuse astrogliosis, but fail to fully differentiate to mature myelinating OLs. There are no in vitro models that

Results: Forebrain coronal slices from postnatal day (P) 0.5/1 rat pups were cultured for 1, 5, or 9 days in vitro
(DIV). Slices rapidly exhibited diffuse astrogliosis and accumulation of the extracellular matrix glycosaminoglycan
hyaluronan (HA), an inhibitor of OPC differentiation and re-myelination. At 1 DIV ~1.5% of Olig2" OLs displayed
caspase-3 activation, which increased to ~11.5% by 9 DIV. At 1 DIV the density of PDGFRa.™ and PDGFRa.*/Ki67*
OPCs were significantly elevated compared to 0 DIV (P < 0.01). Despite this proliferative response, at 9 DIV ~60% of
white matter OLs were late progenitors (preOLs), compared to ~7% in the postnatal day 10 rat (P < 0.0001),
consistent with preOL maturation arrest. Addition of HA to slices significantly decreased the density of MBP* OLs at
9 DIV compared to controls (217 + 16 vs. 328 + 17 cells/mm?, respectively; P = 0.0003), supporting an inhibitory

Conclusions: Diffuse white matter astrogliosis and early OPC proliferation with impaired OL maturation were
reproduced in this model of myelination failure. This system may be used to define mechanisms of OPC
maturation arrest and myelination failure related to astrogliosis and HA accumulation.
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Introduction

Disturbances in CNS myelination are a central feature of
numerous neurodevelopmental and adult neurological
disorders, and are widely recognized to occur in areas of
reactive astrogliosis. Although myelination disturbances
frequently involve oligodendrocyte (OL) degeneration
[1-3], emerging evidence supports that OL progenitor
cells (OPCs) exhibit a robust regenerative response to
injury. In chronic white matter lesions, OPCs proliferate
but fail to fully differentiate to mature myelinating OLs,
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supporting the concept that failure to generate new
myelin is related to arrest of oligodendrocyte maturation
[4-6].

The mechanisms that mediate inhibition of OL
maturation following CNS insults are largely unknown.
Reactive astrogliosis is linked to OPC maturation arrest
and remyelination failure in a number of conditions
[7-9], and both Notch signaling and bone morphoge-
netic proteins induced during reactive gliosis have been
implicated in these inhibitory processes [10,11]. Release
of hyaluronan (HA) by reactive astrocytes also appears
to be an important regulator of CNS myelination [12],
and HA can arrest OPC maturation both in vitro and in
vivo [13,14]. HA is a non-sulfated, protein-free
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glycosaminoglycan that forms an integral part of the
extracellular matrix. In the CNS, HA is predominantly
synthesized by astrocytes, and can accumulate in areas
of chronic astrocytosis and myelination disturbance [15].
HA and its receptor CD44 are robustly expressed in
white matter lesions with diffuse astrogliosis, consistent
with the response observed in demyelinating lesions,
traumatic spinal cord injury, vascular brain injury asso-
ciated with dementia, and ischemic lesions in adult
humans and rodents [14,16,17]. The molecular mechan-
isms by which HA inhibits OL maturation are largely
unknown, and as yet, there are no well-established in
vitro models that reproduce the major features of
chronic white matter lesions.

Herein, we developed a slice culture model of reactive
astrogliosis that exhibited accumulation of HA in the
white matter, with associated OPC proliferation but
impaired maturation. Addition of HA to this system
further impaired OPC maturation, providing support for
an inhibitory role of HA in OL lineage progression. This
chronic white matter injury model thus provides a novel
system to define mechanisms of myelination failure
related to astrogliosis and disturbances in oligodendro-
cyte maturation.

Results

Organotypic slice cultures display progressive diffuse
astrogliosis and HA accumulation

Intact whole coronal forebrain slices containing white
matter and overlying cortex were cultured from postna-
tal day 0.5/1 (P0.5/1) rats. To investigate the glial injury
response in this slice culture model, we analyzed immu-
nohistochemical expression of GFAP (astrocytes) and
Ibal (microglia/macrophages) in the white matter at 0,
1, 5, and 9 days in vitro (DIV). At 0 DIV (i.e., P0.5/1 rat
brain with no culture), there was negligible expression
of GFAP in the white matter (Figure 1A), and low
expression of Ibal (Figure 1E) in cells that exhibited a
resting morphology (Figure 1E inset). Compared to 0
DIV (Figure 1A), there was a rapid and progressive up-
regulation of GFAP expression in astrocytes (Figure 1B-
D) and Ibal in microglia/macrophages (Figure 1E-H).
Both cell types exhibited a reactive morphology (GFAP*
cells, Figure 1D inset; Ibal™ cells, Figure 1H inset).
Overall, these data supported a pattern of progressive
reactive gliosis.

Next, we detected HA expression with a biotinylated
hyaluronan (HA) binding protein (b HABP). At 0 DIV
(Figure 1I), there was low HA expression in the white
matter, followed by a progressive increase from 1 DIV
to 9 DIV (Figure 1J-L). Elevated HA was observed pre-
dominantly in areas of gliosis (Figure 1M-O), with a
characteristic pericellular pattern of expression (Figure
1P), consistent with previous observations [14]. Hence,
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chronic slice cultures displayed diffuse astrogliosis and
HA accumulation similar to that observed in chronic
cerebral whiter matter lesions in vivo.

Oligodendrocyte (OL) survival and progenitor responses
in white matter of organotypic slice cultures

To investigate survival of the total OL lineage in this
slice culture model, we examined the density of cleaved
caspase-3 (CC3)-positive cells (Olig2”) in the white mat-
ter at 1 DIV, 5 DIV, and 9 DIV (Figure 2A, B). Approxi-
mately 1.5% of all Olig2" cells were positive for CC3 at
1 DIV. There was a progressive but non-significant
increase to ~11.5% by 9 DIV.

To examine the response of OPCs in the white matter
of this slice culture model, we examined the density of
PDGFRa." OPCs and their co-localization with the prolif-
eration marker Ki67 at 0 DIV, 1 DIV, 5 DIV and 9 DIV
(Figure 2C). At 1 DIV, there was a significant increase in
the density of both PDGFRa " cells and PDGFRa.*/Ki67*
double-labeled cells compared to 0 DIV (ANCOVA +
Tukey’s test; P < 0.01, for both), consistent with OPC
proliferation. By 5 DIV and 9 DIV the density of both
PDGFRa" cells and PDGFRa */Ki67" double-labeled cells
returned to 0 DIV levels. With increasing time in culture,
PDGFRa" OPCs exhibited a reactive-type of morphology,
with increased cell body size and process thickness, as
well as more extensive process arborization and complex-
ity (Figure 2D-F). Hence, this slice culture model was
associated with an acute phase of rapid OPC proliferation
resulting in a net expansion in the OPC pool, followed by
a delayed phase of degeneration.

Delayed OPC maturation in white matter of organotypic
slice cultures

To determine the timing of OPC maturation, we quanti-
fied the relative percentages of late oligodendrocyte pre-
cursors  (preOLs; 04'/017) and immature
oligodendrocytes (immature OLs; O47/O1") in slice cul-
tures at 9 DIV compared to the normal rat brain at an
equivalent postnatal age (P10). Rat brains at P10 only
expressed 7 + 2% preOLs in the white matter (Figure
3A, E). Most O47/01" immature OLs displayed a
reduced process arbor and extensive early myelination
(Figure 3C). By contrast, there were 60 + 1% preOLs in
the white matter in this slice culture model at 9 DIV
(Figure 3B, E; P < 0.0001). Interestingly, both preOLs
and immature OLs displayed a reactive morphology,
with a hypertrophic cell body and an extensive arbor of
processes (Figure 3D) relative to normal brain at P10
(Figure 3C). Some O4"/O1" OLs showed a highly
branched morphology consistent with mature OLs (Fig-
ure 3F). Hence, the maturation of OPCs in this slice
model was markedly delayed relative to the normal rat
brain, with arrested OL maturation at the preOL stage.
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Figure 1 Development of white matter gliosis in ex vivo slice culture model. (A-D) Compared to 0 DIV (A), there was a marked increase in
GFAP™ astrocytes in the white matter at 1 DIV (B), 5 DIV (C), and 9 DIV (D), and cells exhibited a reactive phenotype (D, inset). (E-H) Compared
to 0 DIV (E), there was a marked increase in Ibal™ microglia/macrophages in the white matter at 1 DIV (F), 5 DIV (G), and 9 DIV (H), and cells
exhibited a reactive phenotype (H, inset). (I-L) bHABP staining at 0 DIV (I) was low in the white matter in contrast to the elevated staining in the
peri-neuronal nets of the cerebral cortex. Compared to 0 DIV (1), there was a progressive increase in bHABP in the white matter at 1 DIV (J), 5
DIV (K), and 9 DIV (L). (M-O) In contrast to the cortex, areas of white matter gliosis (M) were enriched in bHABP staining (N); double labeling is
shown in O. (P) HA (red) exhibited a perinuclear pattern in areas of gliosis (GFAP, green). Scale: A-H, 100 pm; I-O, 200 pm; P, 25 pum; Insets D, E,
H, 10 um. Ctx, cortex; SVZ, subventricular zone; WM, white matter.

Timing of myelin onset in white matter of organotypic cultures (Figure 4A). By 5 DIV a low number of MBP*
slice cultures mature OLs were observed (Figure 4B). By 9 DIV there
We examined the immunohistochemical expression of  was a marked increase in expression of individual MBP*
MBP in the white matter at 1 DIV, 5 DIV, 9 DIV, and  cells (Figure 4C). The MBP" cells at 9 DIV were highly
13 DIV. At 1 DIV there were no MBP" cells in the slice  branched but largely occupied individual domains, and
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Figure 2 Oligodendrocyte (OL) survival and oligodendrocyte progenitor proliferation in the white matter of ex vivo slice culture
model. (A) Percentage of total OL lineage cells in the white matter that labeled with cleaved caspase-3* (CC3). Data are mean + SEM (n = 3-4
slices per time point). (B) Example of CC3* (red, arrows) and Olig2™ (green, arrowheads) cells (co-localized cells are shown in yellow). (C) Density
of PDGFRa.* (black bars, left axis) and co-localized PDGFRa*/Ki67* OPCs in the white matter. Data are mean + SEM (n = 6 slices per time point
from two independent experiments). *P < 0.01 (ANOVA followed by Tukey's multiple comparison test; uncorrected data). tP < 0.01 (ANCOVA
followed by Tukey's multiple comparison test; data corrected for atrophy). (D-F) PDGFRa.* OPCs in the white matter at 0 DIV (D), 1 DIV (E) and 5
DIV (F). The inset in E shows a PDGFRa.™ (green)/Ki67" (red) double labeled OPC. Scale: B, D-F, 20 um; E inset, 10 um.
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Figure 3 Oligodendrocyte maturation is delayed in the white matter of the ex vivo slice culture model compared to normal white
matter development in vivo. Representative photomicrographs of preOLs (green; arrows) and immature OLs (yellow; arrowheads) double-
labeled with O4 (green) and O1 (red) antibodies in the P10 rat (A, C) and the white matter of the 9 DIV slice (B, D, F). (A, C) The P10 rat
white matter contained numerous immature OLs (arrowheads) and myelin sheaths (asterisk). (B, D) Slice cultures contained predominantly
preOLs (green; arrows) with occasional immature OLs (yellow; arrowheads). Both preOLs and immature OLs in the slice cultures showed a

reactive morphology, with extensive process extension and cytoplasmic swelling when compared with normal brain at P10 (Q). (E)

Percentage of preOLs in the white matter of P10 rat (white bar) vs. organotypic slice culture at 9 DIV (Black bar). Data are mean + SEM (9
DIV slice data: n = 11 slices from three independent experiments; P10 rat data: n = 6 animals). *P < 0.0001 (unpaired two-way t-test). (F)
Some 047/017 OLs in slice culture showed a highly branched morphology (arrowhead) suggestive of a mature OL; arrow indicates a preOL.

Scale: A, B, 50 um; C, D, F, 10 um.
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Figure 4 Timing of myelin onset in white matter of ex vivo slice culture model. MBP expression at 1 DIV (A), 5 DIV (B), and 9 DIV (C) in
white matter of organotypic slice cultures. There was a progressive increase in MBP expression in the white matter with time in culture. (D) At 9
DIV, robust expression of individual MBP positive cells was observed, which were co-localized with the oligodendrocyte nuclear transcription
factor Olig2 (MBP: green, Olig2: red). (E) Evidence of onset of myelination in the white matter at 13 DIV. (F) Oligodendrocyte (arrow; DAPI: shown
as pseudo-color in red) showing wrapping of axons stained with MBP (green; arrowhead). Scale: A-C, 500 um; D, F, 20 um; E, 250 um.

co-localized with the nuclear oligodendrocyte marker
Olig2 (Figure 4D). At 13 DIV a small number of MBP*
cells appeared to be initiating myelination (Figure 4E,
F). Despite the presence of a subpopulation of mature
OLs in the white matter, there was thus a pronounced
reduction in myelination compared to the normal rat
brain at P10 (Figure 3C) or P14 [18,19].

Exogenous hyaluronan impairs oligodendrocyte
maturation in white matter of organotypic slice cultures
We added high molecular weight HA to this slice cul-
ture system to examine its role in regulating oligoden-
drocyte maturation. At 9 DIV there was a significant
decrease in the density of MBP" oligodendrocytes in the
white matter in slices treated with HA compared to
those treated with PBS (~34%; 217 + 16 vs. 328 + 17
cells/mm?, respectively; P = 0.0003; Figure 5A-C).
Hence, exogenous HA further reduced the level of OL
maturation relative to that in untreated chronic slices
where OL maturation was already markedly lower than
equivalent age uninjured control animals.

Discussion

The normal regulation of oligodendrocyte (OL) matura-
tion and myelination in the CNS is critical for normal
vertebrate function, as well as to promote recovery fol-
lowing white matter injury. Dissociated OL cultures
have provided important information on many aspects
of these processes. Nevertheless, there are no well-estab-
lished in vitro models that accurately model the chronic
gliotic lesions often observed in disorders with myelina-
tion failure. There is now increasing interest in the use
of organotypic slice cultures for studies of OL biology
and myelination due to retention of multi-cellular inter-
actions and the ease of manipulation [20-22]. However,
we found that organotypic slice cultures display features
consistent with a chronic white matter injury in vivo,
which included white matter gliosis, cell death, OPC
proliferative and reactive responses and arrested OL
lineage maturation. Hence, when employing a chronic
slice culture model for studies of normal oligodendro-
glial biology or myelination, these chronic injury
responses should be considered.
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Figure 5 Hyaluronan impairs oligodendrocyte maturation in
organotypic slice cultures. (A) Density of MBP* oligodendrocytes
in the white matter at 9 DIV in PBS (Black bar) and HA (white bar)
treated slices. Data are mean + SEM (n = 9 slices per time group
from three independent experiments). *P < 0.0005 (unpaired two-
way t-test). (B, C) Representative photomicrographs of 9 DIV slices
stained with MBP in the PBS (B) and HA (C) treatment groups. Scale:
B, C, 100 um.

Similar to recent in vivo studies examining the chronic
OL response to white matter injury, we found rapid and
progressive reactive astrocytosis and microglia/macro-
phage accumulation in the white matter of slice cul-
tures, as well as an early proliferative response of OPCs.
This expanded pool of OPCs exhibited a reactive

Page 7 of 10

morphology, delayed OL degeneration, and impaired
maturation of preOLs to OLs. Delayed OPC maturation
did not appear to be region-specific and cortical OPC
maturation by 9 DIV also was delayed relative to the
extensive myelination that occurs in vivo by postnatal
day 10. These in vitro responses are very similar to
those first described in neonatal rodents following
hypoxia-ischemia, where despite extensive OL degenera-
tion, there was a rapid proliferative response of OPCs,
subsequent failure of preOLs to mature in chronic
astrogliotic lesions, and persistent myelination deficits
[4]. A role for OL maturation arrest in developmental
myelination disturbance is supported by more recent
studies in preterm fetal sheep following hypoxia-ische-
mia [23] and in preterm human autopsy cases with
chronic white matter injury (Buser et al., submitted).
OPCs also accumulate but fail to mature to myelinating
OLs in chronic demyelinated lesions in multiple sclero-
sis patients [24-26]. In a recent postmortem study of
brains from human cases of age-related cognitive decline
associated with vascular brain injury, a significant
increase in the total pool of OLs was correlated with
changes in MRI-defined diffusion characteristics consis-
tent with white matter myelin deficits [27].

Our slice culture system exhibited a progressive
increase in expression of HA in the white matter with
time in culture, while addition of exogenous HA further
inhibited OL maturation. These data suggest a role for
endogenously released HA in mediating the impairment
of OL maturation observed in this system, and support
previous studies where addition of HA reversibly
impaired maturation of cultured OPCs and inhibited
remyelination after lysolethicin-induced white matter
demyelination [13,14]. Accumulation of HA was also
reported following traumatic spinal cord injury [16] and
middle cerebral artery occlusion [28] in adult rats, and
in stroke-affected brain regions in adult humans [29],
although myelination deficits were not examined. The
increase in white matter HA in the slice cultures was
likely a response to the reactive astrogliosis, because in
the CNS, HA is predominantly produced by astrocytes
[30]; however, we cannot discount a role of other CNS
glia. The reactive gliosis observed in this system was
likely a response to neuronal and glial degeneration sec-
ondary to generation of the tissue slices.

Conclusions

This model provides a novel system to define mechan-
isms that regulate disturbances in oligodendrocyte
maturation and myelination failure related to chronic
CNS astrogliosis. Future studies will utilize this model
to determine the signaling pathways by which HA regu-
lates oligodendrocyte development in the setting of
chronic white matter injury.
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Methods

Postnatal brain slice preparation and culture

All animal procedures were approved by the OHSU
Institutional Animal Care and Use Committee (IACUC)
according to the NIH Guide for the Care and Use of
Laboratory Animals. Timed pregnant Sprague-Dawley
(SD) rats were purchased from Charles River (Hollister,
CA, USA). Whole forebrain coronal slices (300 um; col-
lected at the level of the rostral corpus callosum and
anterior septal nuclei; 3 adjacent slices from each brain)
collected from postnatal day (P) 0.5/1 rat pups were
used to prepare organotypic cultures according to a pre-
vious method [31], with modifications. Brains were
embedded in 1.5% low melting point agar (Fischer
Scientific, Fair Lawn, NJ, USA) and sectioned into sterile
ice-cold complete Hank’s balanced salt solution (HBSS,
Ca**/Mg** free [Invitrogen Co., Carlsbad, USA], supple-
mented with D-glucose [30 mM), HEPES buffer [2.5
mM], CaCl, [1 mM], MgSO, [1 mM], NaHCOj; [4
mM], and 0.001% phenol red [Sigma-Aldrich Co., St.
Louis, MO, USA]) using a VTS 1600 vibrating micro-
tome (Leica Microsystems Inc., Buffalo Grove, USA).
Isolated slices were transferred onto 0.4 pm porous
membrane cell culture inserts (Becton Dickinson, Frank-
lin Lakes, NJ, USA) that were pre-coated with laminin/
poly-D-lysine (Sigma-Aldrich Co.), and cultured in slice
culture media (Basal Medium Eagle [Invitrogen Co.],
supplemented with complete HBSS [25% v/v], D-glucose
[27 mM], penicillin [100 U/mL], streptomycin [100 U/
mL], glutamine [1 mM; Sigma-Aldrich Co.], and 5%
horse serum [New Zealand origin, heat inactivated; Invi-
trogen Co.]). Slices were incubated at 37°C/5% CO,, and
the growth medium changed daily. In pilot experiments
we determined that 5% serum resulted in optimal acute

Table 1 Antibodies and markers
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survival of the slices when compared to 25% serum, as
previously reported [21].

Time course experiments

Slices were collected at 1, 5, 9, or 13 days in vitro (DIV),
fixed in 4% paraformaldehyde (PFA; 0.1 M phosphate
buffered saline [PBS]) for 1 h at RT, and washed thor-
oughly in PBS prior to immunohistochemical staining.
As controls, slices were fixed immediately after cutting
(0 DIV; i.e., no culture).

Hyaluronan experiments

High molecular weight hyaluronan (1.59 x 10° Da; Sei-
kagaku Co., Tokyo, Japan) was dissolved in sterile PBS
(5 mg/mL), and then added daily to fresh slice growth
medium (final concentration, 100 pg/mL) from 0 DIV
until 9 DIV [14]. Slices were then processed for immu-
nohistochemistry as described.

Immunohistochemistry

Single- or double-labeling immunofluorescence was per-
formed on sections in 24-well plates. Antibodies and
dilutions are shown in Table 1. For PDGFRa/Ki67 dou-
ble labeling and O4 and O1 antibody double labeling,
sections were blocked for 1 h in PBS containing 5% nor-
mal goat serum (NGS), and then with primary antibo-
dies diluted in PBS/3% NGS for 72 h at 4°C [4]. For all
other antibodies, sections were incubated in 0.01 M
citrate buffer (pH 6.0) at 85°C for 20 min, left to cool
for 20 min, and then washed three times in PBS. Block-
ing and primary antibody incubation was performed as
above, with the addition of 0.4% triton X-100 (Sigma-
Aldrich Co.). For secondary detection, all sections were
washed three times in PBS, and incubated with

Antigen Host Marker Dilution Supplier
Biotinylated hyaluronan binding Bovine Hyaluronan 1:200 Associates of Cape Cod, Inc, East Falmouth, MA
protein (bHABP)
Cleaved caspase-3 (CC3) Polyclonal Rabbit Apoptotic cells 1:500 Cell Signaling Technology, Danvers, MA
GFAP Polyclonal Rabbit  Astrocytes 1:500 Dako North America, Inc, Carpinteria, CA
Ibal Polyclonal rabbit  Microglia/macrophage  1:500 Wako Chemicals USA Inc., Richmond, VA
Ki67 Monoclonal Cell Cycle Activation 1:200 Novocastra, Buffalo Grove, IL
mouse
MBP Mouse Mature OL 1:500 Covance, Princeton, NY
O, Monoclonal Immature/mature OL 1:3000 Dr. Rashmi Bansal (University of Connecticut Health
mouse IgM Center, Farmington, CT)
Biotinylated O, Monoclonal Late OL progenitor/ 1:500 Research Genetics, Huntsville, AL
mouse IgM immature OL
PDGFRau Polyclonal rabbit  OL progenitor 1:1000  R&D Systems, Minneapolis, MN
Olig2 Mouse Oligodendrocyte (OL) 1:250 Dr. John Alberta (Dana-Farber Cancer Institute, Boston,

MA
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appropriate AlexaFluor fluorescent dye conjugated sec-
ondary antibodies (1:500, all raised in goat; Invitrogen
Co.). Nuclei were counterstained with DAPI (Invitrogen
Co.). No-primary-control studies for all antibodies
exhibited no positive staining. Sections were mounted
with Vectashield fluorescent mounting medium (Vector
Laboratories, Inc., Burlingame, CA, USA).

Cell quantification

The white matter of cultured slices was analyzed using a
Leica DMIRE2 inverted fluorescence microscope (Leica
Microsystems Inc., Buffalo Grove, IL, USA) coupled to a
Stereoinvestigator stereology system (MBF Bioscience,
Williston, VT, USA). For each slice, the entire white
matter (defined by DAPI-staining) region of interest
(ROI) was traced at 5 x magnification. Using the soft-
ware to maintain white matter boundaries, cell counts
were performed using the optical fractionator probe
(Grid size, 300 x 400 pum; Counting frame, 30 x 30 pum;
z-depth 20 pum) at 40 x magnification in a minimum of
10 randomly selected white matter fields per slice. The
slice thickness was also measured at each counting site.
Cell density (mm?) was calculated by the formula: [cell
counts/(number of fields x counting frame area (mm?))].

Statistics

An unpaired two-tailed t-test was used to compare per-
centage OLs between normal rat brain and the slice cul-
tures. One-way analysis of variance (ANOVA) followed
by Tukey’s multiple comparison test was used to assess
changes in percentage CC3" OLs in the white matter
over time in culture. To determine the effect of slice
atrophy on PDGFRa cell density measurements, we
quantified mean white matter volume. For each slice,
white matter volume was calculated from white matter
ROI area x mean white matter thickness (determined
from all count sites) as acquired during cell counting.
One-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparison test was first run to deter-
mine relative atrophy with time in culture. There was a
significant overall effect of group (P < 0.01), with a sig-
nificant decrease in white matter volume at 5 DIV and 9
DIV compared to other ages (white matter volume,
mm?®: 0 DIV, 0.26 mm?; 1 DIV, 0.29 mm?; 5 DIV, 0.18
mm?; 9 DIV, 0.18 mm?; P < 0.05), which was attributed
to a shrinkage of the white matter ROI area rather than
in the z-plane of the slice (data not shown). Because of
this reduction in white matter volume, we accounted for
degree of atrophy by using white matter volume as a
covariate when comparing cell density measurements
between time in culture using a one-way analysis of cov-
ariance (ANCOVA) followed by Tukey’s multiple com-
parison test. Cell density data were presented
uncorrected for atrophy. A P-value less than 0.05 was

Page 9 of 10

considered statistically significant. All data are presented
as mean + standard error of the mean (SEM), with sig-
nificance indicated for both ANOVA and ANCOVA
analyses (For figure 2, *P < 0.01 refers to analysis of
uncorrected data by ANOVA; tP < 0.01 refers to analy-
sis of data corrected for slice atrophy by ANCOVA).

Acknowledgements

Supported by the National Institutes of Neurological Diseases and Stroke:
TROTNS054044, R37NS045737-0651/06S2 to SAB and 1F30NS066704 to AR, a
Bugher Award from the American Heart Association (SAB) and the March of
Dimes Birth Defects Foundation (SAB). LS was supported by NIH core grant
RRO0163 supporting the Oregon National Primate Research Center. JD was
supported by a Heubner Family Developmental Neurobiology of Disease
Fellowship. The Olig2 antibodies were a generous gift of Dr. John Alberta.
AB was supported by NIMH grant KOTMH08025

Author details

1Departmem of Pediatrics, Oregon Health & Science University, 3181 SW
Sam Jackson Park Road, Portland, Oregon 97239, USA. “Department of
Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park
Road, Portland, Oregon 97239, USA. 3Division of Neuroscience, Oregon
National Primate Research Center, Oregon Health & Science University, 505
NW 185th Ave, Portland, OR 97006, USA.

Authors’ contributions

JD designed the study, performed slice culture experiments, data collection,
and statistical analyses, and drafted the manuscript with SB. AR and AB
assisted in study design and model development. JM and KH performed
slice culture immunohistochemistry and data collection. MP prepared HA
and verified its quality, and assisted with HA labeling protocols. LS and SB
conceived of the study, and participated in its design and coordination. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 11 May 2011 Accepted: 5 July 2011 Published: 5 July 2011

References

1. Wilke S, Thomas R, Allcock N, Fern R: Mechanism of acute ischemic injury of
oligodendroglia in early myelinating white matter: the importance of
astrocyte injury and glutamate release. J Neuropath Exp Neurol 2004, 63:372-881.

2. Back SA, Luo NL, Mallinson RA, O'Malley JP, Wallen LD, Frei B, Morrow JD,
Petito CK, Roberts CT Jr, Murdoch GH, Montine TJ: Selective vulnerability
of preterm white matter to oxidative damage defined by F2-
isoprostanes. Ann Neurol 2005, 58:108-120.

3. Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL,
Holtzman DM: Selective vulnerability of late oligodendrocyte progenitors
to hypoxia-ischemia. J Neurosci 2002, 22:455-463.

4. Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A,
Craig A, Struve J, Sherman LS, Back SA: Arrested oligodendrocyte lineage
maturation in chronic perinatal white matter injury. Ann Neurol 2008,
63:520-530.

5. Fancy SP, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH,
Franklin RJ: Overcoming remyelination failure in multiple sclerosis and
other myelin disorders. Exp Neurol 2010, 225:18-23.

6. Huang Z Liu J, Cheung PY, Chen C: Long-term cognitive impairment and
myelination deficiency in a rat model of perinatal hypoxic-ischemic
brain injury. Brain Res 2009, 1301:100-109.

7. Skripuletz T, Bussmann JH, Gudi V, Koutsoudaki PN, Pul R, Moharregh-
Khiabani D, Lindner M, Stangel M: Cerebellar cortical demyelination in the
murine cuprizone model. Brain Pathol 2010, 20:301-312.

8. Anderson JM, Hampton DW, Patani R, Pryce G, Crowther RA, Reynolds R,
Franklin RJ, Giovannoni G, Compston DA, Baker D, Spillantini MG,

Chandran S: Abnormally phosphorylated tau is associated with neuronal
and axonal loss in experimental autoimmune encephalomyelitis and
multiple sclerosis. Brain 2008, 131:1736-1748.


http://www.ncbi.nlm.nih.gov/pubmed/15330341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15330341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15330341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15984031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15984031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15984031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11784790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11784790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18393269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18393269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20044992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20044992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19747899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19747899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19747899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19371354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19371354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18567922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18567922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18567922?dopt=Abstract

Dean et al. Molecular Neurodegeneration 2011, 6:46
http://www.molecularneurodegeneration.com/content/6/1/46

20.

21

22.

23.

24,

25.

26.

27.

28.

29.

30.

Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O:
Human embryonic stem cell-derived oligodendrocyte progenitor cell
transplants remyelinate and restore locomotion after spinal cord injury.
The J Neurosci 2005, 25:4694-4705.

John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS,
Brosnan CF: Multiple sclerosis: re-expression of a developmental pathway
that restricts oligodendrocyte maturation. Nat Med 2002, 8:1115-1121.
Wang Y, Cheng X, He Q, Zheng Y, Kim DH, Whittemore SR, Cao QL:
Astrocytes from the contused spinal cord inhibit oligodendrocyte
differentiation of adult oligodendrocyte precursor cells by increasing the
expression of bone morphogenetic proteins. J Neurosci 2011,
31:6053-6058.

Sherman LS, Back SA: A ‘GAG' reflex prevents repair of the damaged
CNS. Trends Neurosci 2008, 31:44-52.

Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T: Hyaluronan blocks
oligodendrocyte progenitor maturation and remyelination through TLR2.
Proc Natl Adac Sci USA 2010, 107:11555-11560.

Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL,
Banine F, Liu Y, Chang A, et al: Hyaluronan accumulates in demyelinated
lesions and inhibits oligodendrocyte progenitor maturation. Nat Med
2005, 11:966-972.

Asher R, Perides G, Vanderhaeghen JJ, Bignami A: Extracellular matrix of
central nervous system white matter: demonstration of a hyaluronate-
protein complex. J Neurosci Res 1991, 28:410-421.

Struve J, Maher PC, Li YQ, Kinney S, Fehlings MG, Kuntz Ct, Sherman LS:
Disruption of the hyaluronan-based extracellular matrix in spinal cord
promotes astrocyte proliferation. Glia 2005, 52:16-24.

Wang X, Xu L, Wang H, Zhan Y, Pure E, Feuerstein GZ: CD44 deficiency in
mice protects brain from cerebral ischemia injury. J Neurochem 2002,
83:1172-1179.

Craig A, Ling Luo N, Beardsley DJ, Wingate-Pearse N, Walker DW,

Hohimer AR, Back SA: Quantitative analysis of perinatal rodent
oligodendrocyte lineage progression and its correlation with human. Exp
Neurol 2003, 181:231-240.

Dean JM, Moravec MD, Grafe M, Abend N, Ren J, Gong X, Volpe JJ,

Jensen FE, Hohimer AR, Back SA: Strain-specific differences in perinatal
rodent oligodendrocyte lineage and its correlation with human. Dev
Neurosci .

Yang Y, Lewis R, Miller RH: Interactions between oligodendrocyte
precursors control the onset of CNS myelination. Dev Biol 2011,
350:127-138.

Gadea A, Aguirre A, Haydar TF, Gallo V: Endothelin-1 regulates
oligodendrocyte development. J Neurosci 2009, 29:10047-10062.

Mi S, Miller RH, Tang W, Lee X, Hu B, Wu W, Zhang Y, Shields CB, Miklasz S,
Shea D, Mason J, Franklin RJ, Ji B, Shao Z, Chedotal A, Bernard F, Roulois A,
Xu J, Jung V, Pepinsky B: Promotion of central nervous system
remyelination by induced differentiation of oligodendrocyte precursor
cells. Ann Neurol 2009, 65:304-315.

Riddle A, Dean JM, Buser JR, Gong X, Maire J, Chen K, Ahmad T, Chen V,
Nguyen T, Kroenke CD, Hohimer AR, Back SA: Histopathological correlates
of MRI-defined chronic perinatal white matter injury. Ann Neurol 2011.
Wolswijk G: Oligodendrocyte precursor cells in the demyelinated
multiple sclerosis spinal cord. Brain 2002, 125:338-349.

Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W: Differentiation
block of oligodendroglial progenitor cells as a cause for remyelination
failure in chronic multiple sclerosis. Brain 2008, 131:1749-1758.

Kremer D, Aktas O, Hartung HP, Kury P: The complex world of
oligodendroglial differentiation inhibitors. Ann Neurol 2011, 69:602-618.
Back SA, Kroenke CD, Sherman LS, Lawrence G, Gong X, Taber ER,

Sonnen JA, Larson EB, Montine TJ: White matter lesions defined by
diffusion tensor imaging in older adults. Ann Neurol 2011.

Al Qteishat A, Gaffney JJ, Krupinski J, Slevin M: Hyaluronan expression
following middle cerebral artery occlusion in the rat. Neuroreport 2006,
17:1111-1114

Al'Qteishat A, Gaffney J, Krupinski J, Rubio F, West D, Kumar S, Kumar P,
Mitsios N, Slevin M: Changes in hyaluronan production and metabolism
following ischaemic stroke in man. Brain 2006, 129:2158-2176.

Marret S, Delpech B, Delpech A, Asou H, Girard N, Courel MN, Chauzy C,
Maingonnat C, Fessard C: Expression and effects of hyaluronan and of
the hyaluronan-binding protein hyaluronectin in newborn rat brain glial
cell cultures. J Neurochem 1994, 62:1285-1295.

Page 10 of 10

31. Polleux F, Ghosh A: The slice overlay assay: a versatile tool to study the
influence of extracellular signals on neuronal development. Sci STKE
2002, 2002:pl9.

doi:10.1186/1750-1326-6-46

Cite this article as: Dean et al: An organotypic slice culture model of
chronic white matter injury with maturation arrest of oligodendrocyte
progenitors. Molecular Neurodegeneration 2011 6:46.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/12357247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12357247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21508230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21508230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21508230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18063497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18063497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16086023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16086023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1713274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1713274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1713274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12437588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12437588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12781996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12781996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21144846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21144846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19675238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19675238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19334062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19334062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19334062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11844734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11844734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18515322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18515322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18515322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21520230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21520230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16837837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16837837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16731541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16731541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7510775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7510775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7510775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12060788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12060788?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Results
	Organotypic slice cultures display progressive diffuse astrogliosis and HA accumulation
	Oligodendrocyte (OL) survival and progenitor responses in white matter of organotypic slice cultures
	Delayed OPC maturation in white matter of organotypic slice cultures
	Timing of myelin onset in white matter of organotypic slice cultures
	Exogenous hyaluronan impairs oligodendrocyte maturation in white matter of organotypic slice cultures

	Discussion
	Conclusions
	Methods
	Postnatal brain slice preparation and culture
	Time course experiments
	Hyaluronan experiments
	Immunohistochemistry
	Cell quantification
	Statistics

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

