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TDP-43 knockdown impairs neurite outgrowth
dependent on its target histone deacetylase 6
Fabienne C Fiesel1*, Christine Schurr1, Stephanie S Weber1 and Philipp J Kahle1,2*

Abstract

Background: Trans-activation response element (TAR) DNA binding protein of 43kDa (TDP-43) is causally related to
the neurodegenerative diseases frontotemporal dementia and amyotrophic lateral sclerosis being the hallmark
protein in the disease-characteristic neuropathological lesions and via genetic linkage. Histone deacetylase 6
(HDAC6) is an established target of the RNA-binding protein TDP-43. HDAC6 is an unusual cytosolic deacetylase
enzyme, central for a variety of pivotal cellular functions including aggregating protein turnover, microtubular
dynamics and filopodia formation. All these functions are important in the context of neurodegenerative
proteinopathies involving TDP-43. We have previously shown in a human embryonic kidney cell line that TDP-43
knockdown significantly impairs the removal of a toxic, aggregating polyQ ataxin-3 fusion protein in an HDAC6-
dependent manner. Here we investigated the influence of TDP-43 and its target HDAC6 on neurite outgrowth.

Results: Human neuroblastoma SH-SY5Y cells with stably silenced TDP-43 showed a significant reduction of
neurite outgrowth induced by retinoic acid and brain-derived neurotrophic factor. Re-transfection with TDP-43 as
well as HDAC6 rescued retinoic acid-induced neurite outgrowth. In addition, we show that silencing of HDAC6
alone is sufficient to reduce neurite outgrowth of in vitro differentiated SH-SY5Y cells.

Conclusions: TDP-43 deficiency leads to impairment of neurite growth in an HDAC6-dependent manner, thereby
contributing to neurodegenerative events in TDP-43 diseases.

Keywords: TDP-43, RNAi, HDAC6, neurite outgrowth, SH-SY5Y neuroblastoma, frontotemporal dementia, amyo-
trophic lateral sclerosis

Background
Trans-activation response element (TAR) DNA binding
protein of 43kDa (TDP-43) is the neuropathological
hallmark protein of a new class of neurodegenerative
dementias and movement disorders comprising certain
types of frontotemporal lobar atrophy (FTLD-TDP) and
amyotrophic lateral sclerosis (ALS) [1]. There is also
established genetic linkage to these diseases [2]. Thus,
TDP-43 is causally implicated in the pathogenesis of
these neurodegenerative diseases, but the mechanism(s)
are largely unknown.
TDP-43 was originally identified as a protein binding to

TAR DNA sequences within human immunodeficiency

virus type 1 and acting as a strong transcriptional repres-
sor [3]. In addition to potential transcriptional regulation,
TDP-43 affects a number of identified RNAs [4]. TDP-43
regulates splicing of the pre-mRNAs for cystic fibrosis
transmembrane conductance regulator [5], apolipopro-
tein A2 [6], survival of motor neuron protein [7], and
splicing component of 35kDa [8], as well as the proces-
sing of miRNAs [9]. TDP-43 has been reported to regu-
late low molecular weight neurofilament mRNA stability
[10]. Recent microarray screens identified histone deace-
tylase 6 (HDAC6) as an altered transcript in TDP-43
silenced cells [11] and in conditional knockout mice [12].
Moreover, HDAC6 was consistently identified by sys-
tematic sequencing of RNA isolated by crosslinking
immunoprecipitation using TDP-43 antibodies [13,14].
TDP-43 binds to HDAC6 mRNA and regulates its
expression [11,15].
HDAC6 is an unusual, cytosolic deacetylase with

manifold cellular functions. For example, HDAC6 is
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centrally involved in misfolded protein and organelle
degradation processes [16]. HDAC6 regulates protein
chaperone activities by acting as a deacetylase of heat
shock protein of 90kDa (HSP90). In conjunction with
another gene product (valosin-containing protein) asso-
ciated with a form of FTD (inclusion body myopathy
with Paget disease of bone and frontotemporal demen-
tia) and ALS [17,18], HDAC6 decides over proteasomal
versus autophagic breakdown fates [19]. Indeed, we have
previously shown that HDAC6 down-regulation after
TDP-43 silencing impairs the turnover of toxic aggregat-
ing proteins [11]. Moreover, we demonstrated an accu-
mulation of one of the major HDAC6 substrates, acetyl-
tubulin [11]. As HDAC6 also deacetylates cortactin,

cytoskeletal and motility defects [20] may occur in
TDP-43 deficient cells. With regard to the neurodegen-
erative disease aspect of TDP-43, we addressed the
question if TDP-43 down-regulation might impair neur-
ite outgrowth in a manner involving HDAC6.

Results
Reduction of neurite outgrowth by TDP-43 knockdown
Western blot analysis confirmed [11] the reduction of
TDP-43 and HDAC6 protein in shTDP cells stably
expressing TDP-43 directed shRNA compared to con-
trol parental SH-SY5Y cells (Figure 1A). Neuronal dif-
ferentiation was induced by treatment with retinoic acid
(RA) and brain-derived neurotrophic factor (BDNF)
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Figure 1 Reduced neurite outgrowth in shTDP cells. A, Parental SH-SY5Y cells (Ctrl) or cells stably transduced with shRNA against TDP-43
(shTDP) were lysed, electrophoresed and Western blots sequentially probed with antibodies against TDP-43 (top panel) and HDAC6 (middle
panel). Anti-GAPDH probing (bottom panel) confirmed equal loading. B, Schematic protocol for neurite outgrowth. Cells were primed with RA
for 3d, after 3d RA-containing medium was changed. After another 3d medium was changed to serum-free supplemented with 50 ng/ml BDNF
followed by further incubation. C, After each indicated interval, some cover slips were taken for fixation and staining with Alexa568-phalloidin.
Size bars correspond to 10 μm. Quantifications were performed for the parameters D, number of neurites per cell, E, number of neurite branches
per cell, F, total neurite length per cell and G, mean neurite length. All parameters were reduced in shTDP cells (light bars) compared to control
cells (dark bars), either showing a trend (ns) or significantly (*p < 0.05, **p < 0.005).
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(Figure 1B). After 3d RA treatment, control cells grew
appreciable neurites, which formed robust neuritic net-
works after the RA-BDNF differentiation protocol (Fig-
ure 1C). In contrast, shTDP cells barely induced neurites
after 3d RA treatment, and formed much reduced neuri-
tic networks during the RA-BDNF treatment (Figure
1C). Instead, the phalloidin stainings of actin filaments
often showed abnormal growth cone structures and
stress fibers in differentiated shTDP cells (Figure 1C).
Compared to control cells, shTDP cells had significantly
less neurites per cell (Figure 1D), less neurite branches
(Figure 1E), and significantly shorter neurites (Figure 1F
and 1G).

Neurite outgrowth impairment depends on TDP-43 and
HDAC6
Re-transfection experiments were performed to assess
whether neurite growth impairments in shTDP cells
depended directly on TDP-43 and HDAC6. Transfection
of TDP-43 did not lead to high overexpression levels of
TDP-43 (see additional file 1A for Western blots and
additional file 1B for densitometric quantification) prob-
ably reflecting the previously reported self-regulation of
TDP-43 [21]. Thus, TDP-43 re-transfection may not full
restore normal functional TDP-43 protein levels. Never-
theless, TDP-43 transfection was sufficient to completely
restore HDAC6 levels in shTDP cells (see additional file
1A for Western blots and additional file 1C for densito-
metric quantification).
To accommodate the shorter time frames for transient

re-transfections, cells were differentiated only with RA
for 4d. Under these conditions, we observed no signifi-
cant difference in the number of neurites per cell (Fig-
ure 2A and 3A and for quantification 2B and 3B).
However, there was a trend of reduced number of neur-
ite branches (Figure 2C and 3C) that appeared to be res-
cued by transfection of TDP-43 (Figure 2C) and HDAC6
(Figure 3C), but these effects did not reach statistical
significance. Consistently, the reduction in neurite
length could be rescued by TDP-43 re-transfection (Fig-
ure 2D), demonstrating that neurite outgrowth impair-
ment in shTDP cells is directly related to TDP-43
depletion. Importantly, HDAC6 re-transfection signifi-
cantly rescued neurite length (Figure 3D), indicating
that the HDAC6 down-regulation in shTDP cells is
involved in neurite outgrowth impairment. As the neur-
ite outgrowth rescue was found to be only partial, it is
possible that TDP-43 deficiency affects additional path-
way(s) beyond HDAC6, which remain to be identified.

Reduction of neurite outgrowth by HDAC6 knockdown
To confirm that depletion of HDAC6 significantly con-
tributes to defective neurite outgrowth of SH-SY5Y
cells, we have generated stably silenced HDAC6 cells

(shHDAC6) by treating parental cells with different
amounts of lentiviral shRNA against HDAC6. This
resulted in dose-dependent decrease of HDAC6 protein
(Figure 4A). The reduction of HDAC6 by direct silen-
cing was much stronger than by TDP-43 silencing (Fig-
ure 4B). In contrast to parental controls (Figure 4C,
upper panel), cells treated with high amounts of
HDAC6 shRNA vector showed altered cellular morphol-
ogy that was accompanied by a complete loss of neurite
outgrowth upon in vitro differentiation with RA and
BDNF (Figure 4C, lower panel). Interestingly, cells trea-
ted with less virus showed an intermediate phenotype as
the cellular pool contained normal shaped SH-SY5Y
cells with intact neurite outgrowth as well as cells with
altered morphology without neurites (Figure 4C, middle
panel). Differentiation with only RA allowed for co-
staining with anti-HDAC6 antibody and showed that
cellular morphology and concomitant neurite outgrowth
is proportional to the amount of HDAC6 protein on the
single cell level (Figure 4D). Thus, efficient silencing of
HDAC6 in SH-SY5Y cells leads to an abnormal cellular
phenotype and loss of neurite outgrowth.
In order to demonstrate that the observed defective

neurite growth is dependent on HDAC6 and not an
artifact of the viral shRNA transduction, we have re-
introduced HDAC6 by transient transfection into
shHDAC6 cells (Figure 5A). Cells were microscopically
analyzed (Figure 5B) after treatment with RA for four
days and neurite number, branching and length (Figure
5C, D and 5E) were quantified. Upon silencing of
HDAC6, we could not observe any difference in the
number of neurites (Figure 5C). However, in shHDAC6

cells branching and length of these protrusions was sig-
nificantly decreased compared to control cells (Figure
5D and 5E). Overall, the phenotype of shHDAC6 cells
resembled cells that were silenced for TDP-43, albeit
the extent of the alterations were even stronger, which
might be explained by the stronger HDAC6 downregu-
lation by direct silencing. Importantly, HDAC6 re-
expression was sufficient to reverse these drastic pheno-
types completely (Figure 5), suggesting that indeed the
HDAC6 protein amount in single cells is decisive for
neurite outgrowth of in vitro differentiated SH-SY5Y
cells.

Discussion
The present study confirms the neurite outgrowth
impairment in TDP-43 stably silenced human neuro-
blastoma SH-SY5Y cells, as was previously reported for
transiently silenced mouse neuroblastoma Neuro-2a
cells [22] and NSC-34 motor neuron cells [23]. More-
over, TDP-43 deficient Drosophila melanogaster have a
similar impairment in neuritic complexity of motoneur-
ons and neuromuscular junctions [24,25]. Thus, TDP-43
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deficiency, as it may occur in human disease by cytoso-
lic sequestration of this nuclear protein [26], causes a
neurite defect (in addition to deregulated aggregating
toxic protein turnover [11]) that may contribute to

motorneuron disease in ALS, and if occurring in the
frontal and temporal cortex also to FTLD-TDP.
Although the overall phenotype of HDAC6 knockout

mice is very mild despite abnormal acetylation levels of
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Figure 2 Rescue of neurite outgrowth in shTDP cells by TDP-43 re-transfection. Parental SH-SY5Y cells (Ctrl) or cells stably transduced with
shRNA against TDP-43 (shTDP) were exposed to RA. After 1d, cells were transfected for 4h with Flag-TDP-43 or control vector. After another 3d
RA treatment, cells were fixed and labeled with Alexa568-phalloidin (red) and anti-Flag (green). Nuclei were counterstained with Hoechst (blue).
A, shown are representative images. Scale bar corresponds to 20 μm. Quantifications of re-transfected, Flag-positive cells were performed for the
parameters B, number of neurites per cell, C, number of neurite branches and D, mean neurite length. Significance levels are indicated as in
Figure 1.
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tubulin and HSP90, at least in testis and spleen [27], a
more recent report shows neurodegeneration in HDAC6
depleted mice and flies, which is accompanied by the
accumulation of ubiquitinated proteins due to impaired
autophagy [28] generally reminiscent of human disease.

Conversely, HDAC6 promotes neuroprotection against
aggregating protein toxicity [29]. Pharmacological inhibi-
tion of HDAC6 slows down axonal growth due to
microtubular impairments [30]. Iguchi et al. [22] corre-
lated the neurite outgrowth deficiencies in TDP-43
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Figure 3 Rescue of neurite outgrowth in shTDP cells by HDAC6 transfection. Parental SH-SY5Y cells (Ctrl) or cells stably transduced with
shRNA against TDP-43 (shTDP) were exposed to RA. After 1d, cells were transfected for 4h with Myc-HDAC6 or control vector. After another 3d
RA treatment, cells were fixed and labeled with Alexa568-phalloidin (red) and anti-Myc (green). Nuclei were counterstained with Hoechst (blue).
A, shown are representative images. Scale bar corresponds to 20 μm. Quantifications of transfected, Myc-positive cells were performed for the
parameters B, number of neurites per cell, C, number of neurite branches and D, mean neurite length. Significance levels are indicated as in
Figure 1.
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silenced mouse neuroblastoma cells to reduced activity
of Rho GTPases. Thus, it is noteworthy that Hdac6-/-

mouse embryonic fibroblasts showed reduced activity of
the Rho-like GTPase Rac1, which was correlated to the
HSP90 deacetylase activity of HDAC6 [31]. Finally,
HDAC6 was very recently shown to regulate dendrite
morphogenesis in postmitotic neurons by acting on the
anaphase-promoting complex and CDC20 at centro-
somes [32]. Our new finding that TDP-43 mediates
neurite outgrowth through HDAC6 provides a novel
avenue to the understanding of neuronal signaling path-
ways contributing to neurodegenerative diseases.

Conclusions
TDP-43 deficiency causes impaired neurite outgrowth.
TDP-43 silencing downregulates HDAC6 levels, and trans-
fection of HDAC6 into shTDP cells restores neurite out-
growth. Silencing HDAC6 directly causes severe
cytoskeletal rearrangements and loss of neurite outgrowth
in human neuroblastoma SH-SY5Y cells. Thus, TDP-43
and HDAC6 are in a linear cascade mediating neurite out-
growth. Disturbing this pathway in human TDP proteino-
pathies may contribute to neurodegeneration.

Methods
Cell Culture
Human neuroblastoma SH-SY5Y cells (ATCC) were
grown in Dulbecco’s modifies eagle medium: F12 (Bio-
chrom AG) supplemented with 10% fetal bovine serum
(PAA Laboratories) under humidified conditions at 37°C
and 5%CO2. Stably silenced shTDP SH-SY5Y cells were
described previously [11]. Stably silenced shHDAC6 cells
were generated by treating parental SH-SY5Y cells with
an HDAC6-specific shRNA lentiviral clone (clone ID
TRCN0000314976, Sigma), which targets the HDAC6
mRNA in the 3’UTR and therefore allows efficient re-
transfection with cDNA. 12,500 cells were treated with
1.5 or 0.22 × 105 transforming units (TU) for 48 h.
Selection was performed by adding puromycin (Invivo-
gen) to the culture medium (1 μg/ml).

Western blot analysis
Cells were collected and lysed in lysis buffer (50 mM Tris
(pH 7.4), 50 mM NaCl, 1% NP-40, 0.1% deoxycholate,
and 0.1% SDS, 1× Complete proteinase inhibitor
(Roche)). Protein concentration was determined by use
of bicinchoninic acid (Pierce Biotechnology). Protein was
subjected to SDS-PAGE using 4-12% Bis-Tris NuPAGE
gradient gels (Invitrogen) and transferred onto nitrocellu-
lose. Membranes were incubated with rabbit anti-TDP-
43 (1:2,000, ProteinTech Group), rabbit anti-HDAC6
(1:2,000, Santa Cruz, H-300) or a mouse monoclonal
antibody against glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) (1:35,000; Biodesign International)

overnight followed by horseradish peroxidase-conjugated
secondary antibodies (1:15,000; Jackson ImmunoResearch
Laboratories). Bands were visualized with Immobilon-
Western Chemiluminescent HRP Substrate (Millipore)
on Hyperfilm ECL high performance chemiluminescence
(GE Healthcare).

Neurite outgrowth measurements
In vitro differentiation of parental SH-SY5Y cell clones
was performed on basis of a previous report with modi-
fications [33]. In brief, 25,000 cells/ml were plated onto
poly-D-lysine (Sigma) and collagen (Cohesion) coated
cover slips. After overnight incubation, cells were trea-
ted with 40 μM RA (Sigma) for 6d. Cells were washed
and incubated in serum-free medium containing 50 ng/
ml BDNF (Bachem) for another 5d. Cells were fixed,
stained and analyzed by microscopy.
For immunostaining, cells were fixed with 4% paraf-

ormaldehyde for 20 min at room temperature followed
by permeabilization with 1% Triton X-100 in phos-
phate-buffered saline (PBS) for 30 min. Cells were
blocked in 10% normal goat serum and incubated with
anti-Flag (1:500, Sigma, M2, affinity purified), anti-Myc
(1:500, Roche) or anti-HDAC6 (1:500, Santa Cruz)
and/or with Alexa568-coupled phalloidin (Molecular
Probes) for 1 h at room temperature followed by incu-
bation with secondary antibody anti-mouse Alexa-
Fluor488 or anti-mouse AlexaFluor647 (both
Molecular Probes) for 1 h at room temperature in 1%
bovine serum albumin (BSA) in PBS. Cells were
washed in PBS and nuclei counterstained with Hoechst
33342 (1:5,000; Sigma) before mounting the cover slips
onto slides using fluorescence mounting medium
(Dako). Confocal fluorescent images were taken with
an AxioImager microscope equipped with an Apo-
Tome Imaging System (Zeiss).
Neurites were quantified using Neurolucida software

(Version 8, MBF Bioscience). After manual tracing
quantified neurite parameters include total length of
neurites (μm), number of neurites and nodes per cell.
Mean neurite length was calculated as ratio of total
neurite length and number of neurites. Quantified were
at least 50 cells per experiment in at least three inde-
pendent experiments. Statistical analysis was performed
with two-sided, paired student’s t-test.

Rescue experiments
Cells were transiently transfected 24 h after RA addition
with Myc-HDAC6 or Flag-TDP-43 wt using Lipofecta-
mine 2000 (Invitrogen). Constructs pCMV Myc-HDAC6
and pcDNA3.1(-) Flag-TDP-43 have been described pre-
viously [11]. Cells were incubated for additional 72 h
with RA-containing medium before fixation, immuno-
fluorescence staining and microscopic analysis.
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Additional material

Additional file 1: Rescue of stably silenced shTDP-43 SH-SY5Y cells.
Parental SH-SY5Y cells (Ctrl) or stably transduced cells with shRNA against
TDP-43 (shTDP) were transfected with either Flag-TDP-43 wt, Myc-HDAC6
or control vector. Cells were lysed, electrophoresed and Western blots
sequentially probed with antibodies against TDP-43 (top panel) and
HDAC6 (middle panel). Anti-GAPDH probing (bottom panel) was used as
a loading control. A, shown is a representative Western blot.
Densitometric analysis of TDP-43 levels B, or HDAC6 levels C, of three
independent experiments is shown.

List of abbreviations
ALS: amyotrophic lateral sclerosis; BDNF: brain-derived neurotrophic factor;
FTLD: frontotemporal lobar degeneration; GAPDH: glyceraldehyde-3-
phosphate dehydrogenase; HDAC: histone deacetylase; PBS: phosphate-
buffered saline; RA: retinoic acid; shRNA: small hairpin RNA; TDP-43: trans-
activation response element (TAR) DNA binding protein of 43kDa; TU:
transforming units
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