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Transthyretin and the brain re-visited: Is neuronal
synthesis of transthyretin protective in
Alzheimer’s disease?
Xinyi Li and Joel N Buxbaum*

Abstract

Since the mid-1990’s a trickle of publications from scattered independent laboratories have presented data
suggesting that the systemic amyloid precursor transthyretin (TTR) could interact with the amyloidogenic b-
amyloid (Ab) peptide of Alzheimer’s disease (AD). The notion that one amyloid precursor could actually inhibit
amyloid fibril formation by another seemed quite far-fetched. Further it seemed clear that within the CNS, TTR was
only produced in choroid plexus epithelial cells, not in neurons. The most enthusiastic of the authors proclaimed
that TTR sequestered Ab in vivo resulting in a lowered TTR level in the cerebrospinal fluid (CSF) of AD patients and
that the relationship was salutary. More circumspect investigators merely showed in vitro interaction between the
two molecules. A single in vivo study in Caenorhabditis elegans suggested that wild type human TTR could
suppress the abnormalities seen when Ab was expressed in the muscle cells of the worm. Subsequent studies in
human Ab transgenic mice, including those from our laboratory, also suggested that the interaction reduced the
Ab deposition phenotype. We have reviewed the literature analyzing the relationship including recent data
examining potential mechanisms that could explain the effect. We have proposed a model which is consistent
with most of the published data and current notions of AD pathogenesis and can serve as a hypothesis which can
be tested.
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(TTR), Amyloidosis, Protein homeostasis, Aggregation

Introduction
All amyloid fibrils are similar in appearance, displaying
Congophilic, non-branching fibrils 7.5-10 nm in dia-
meter. The twenty nine (thus far) identified human
amyloid precursors [1] share no primary sequence and
no common conformation although recent biophysical
studies suggest the presence of conformationally/energe-
tically similar repeat subunits which determine whether
a given protein belongs to the “amylome” [2]. Further it
has been suggested that while the precursors represent a
variety of folded and unfolded native structures, a com-
bination of primary structural features and level of
expression determines the ordering of proteins along a
proposed “edge of stability” under in vivo conditions, i.e.
there are both qualitative and quantitative factors that

influence whether a protein will aggregate in vivo [3,4].
The frequency of many of the amyloidoses increases
with aging but their deposition appears to be indepen-
dent, i.e. each has its own anatomically predisposed site
and pattern [5]. Thus, while there are reported instances
of mixed precursor deposition, they are relatively
uncommon, e.g. [6-9]. Nonetheless the commonality of
structure that leads precursor proteins to form fibrils
suggests that interaction could occur, perhaps accelerat-
ing fibril formation. The example of transthyretin (TTR)
and b-amyloid (Ab) raises the question as to whether
the effect may be, in truth, to reduce fibrillogenesis.
Wild type and mutant forms of TTR are the precur-

sors in the systemic human diseases, Familial Amyloido-
tic Polyneuropathy (FAP), Familial Amyloidotic
Cardiomyopathy (FAC) and Senile Systemic Amyloidosis
(SSA) [10]. In contrast, Alzheimer’s disease (AD) is a
localized amyloid disease of the brain. AD and the TTR
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amyloidoses share age dependence and are manifested
as both autosomal dominant, mutation-related and
sporadic (wild type protein associated) diseases. In the
TTR amyloidoses the precursor is synthesized primarily
by hepatocytes distant from the main sites of deposition
in peripheral nerve and heart. However local synthesis
and deposition can be seen in the eye, gut, kidney and
choroid plexus. In AD the b-amyloid precursor protein
(AbPP) is synthesized ubiquitously but deposition and
tissue compromise are restricted to the brain and even
more so to specific brain regions.
The first association of TTR with AD was the observa-

tion that cerebrospinal fluid (CSF) could inhibit Ab fibril
formation in vitro [11]. TTR [12] was the third CSF pro-
tein found to interact with Ab after apolipoprotein E
(ApoE) [13] and ApoJ (or clusterin) [14]. It was
hypothesized at that time that these three extracellular
proteins could “sequester” Ab, thereby preventing neu-
ronal damage, although there was little evidence pre-
sented as to how or where such sequestration could
take place. Perhaps “chaperone” in the sense of “protec-
tor” might have been a better term than “sequester”, but
the oxymoronic phrase “pathologic chaperone” had
already been utilized to describe the co-deposition of
ApoE in AD plaques [15].
Results of the early experiments supporting the asso-

ciation and suggesting that the interaction could be ben-
eficial were suspect because of reservations concerning
methodology. Further, the notion that an in vivo sys-
temic amyloid precursor could have a salutary effect on
the course of another, albeit local, form of amyloidosis,
derived from a different precursor, taking place in a dif-
ferent, relatively closed anatomic compartment seemed
counterintuitive. Lastly the published evidence that TTR
was not a neuronal protein, but synthesized in choroid
plexus epithelium made it seem unlikely that it could
have much to do with the primarily neuronal degenera-
tive process produced by aggregation of a protein pro-
duced in/by neurons [16].
We will review the relevant published papers that have

contributed to our current knowledge regarding the
relationship between TTR and AD. We will try to point
out the inconsistencies that have cast doubt on the
pathogenetic importance of the connections and we will
present hypotheses that have been proposed to account
for the interaction.

Alzheimer’s Disease
The neuropathologic hallmarks of human AD include
extracellular senile plaques consisting primarily of fibrils
representing aggregated Ab peptides, intracellular neu-
rofibrillary tangles composed of hyperphosphorylated
microtubule-binding tau protein [17-19], and synaptic
and neuronal loss particularly in the hippocampus and

cortex, the regions associated with cognition and mem-
ory (reviewed in [20]). In addition inflammation
(reviewed in [21,22]), oxidative damage (reviewed in
[23-25]) and reactive gliosis [26] are evident in AD
brains.
The precise molecular mechanisms responsible for the

pathology of AD are still unclear although there is no
lack of reasonable models. Since the original isolation
and identification of Ab and AbPP, the weight of clinical
and experimental evidence supports a major, if not pri-
mary role for Ab in the development of AD (reviewed
in [27-29]). Whether it is the ultimate source of the
pathology is uncertain but the evidence for involvement
of AbPP in AD pathogenesis is convincing.

AbPP processing pathways
AbPP is a 695-770 amino acid glycosylated membrane
protein with a single hydrophobic transmembrane
domain of 23 residues [30]. A large hydrophilic amino-
ectodomain of AbPP is cleaved by a- or b-secretase to
produce secreted AbPP fragments, sAPPa or sAPPb,
respectively [31] (see Figure 1). Alpha-secretase is a
member of the ADAM (a disintegrin and metallopro-
tease) family of proteases anchored in the cell mem-
brane [32-36], which includes ADAM9 [33], ADAM10
[35], ADAM17 (also known as tumour necrosis factor-a
convertase, TACE) [37] and ADAM19 [36]. The sAPPa
fragment appears to be involved in the development of
the nervous system, promoting neurite outgrowth
[38,39], synaptogenesis [40,41], enhancing memory for-
mation [42], and providing neuro-protection against
excitotoxic stimuli [43] and metabolic and oxidative
insults [44] (For review see [45]).
Beta-secretase (BACE-1) is a predominantly b-site

amyloid precursor protein-cleaving aspartyl-protease
[46,47]. However the earlier notion that BACE-1 is the
only b-secretase activity protease in vivo [48,49] has
been challenged [50-52]. The BACE-1 cleavage product,
sAPPb, does not have the same neuroprotective proper-
ties as sAPPa. It has been recently shown that upon
further cleavage, sAPPb releases a 35 kDa amino term-
inal fragment (N-APP), representing amino acids 1-286
of AbPP, that behaves as a ligand for neuronal death
receptor 6 (DR6) [53]. That molecule has been hypothe-
sized to be involved in pruning of synapses during
development of both central and peripheral neurons
[53]. The investigators suggested that aberrant activation
of the “death signal” could play a role in AD pathogen-
esis but there is no published direct evidence for such
an effect in AD (Figure 1).
Alpha and b cleavages also yield small cytoplasmic

carboxy-terminal fragments (CTF’s), CTF83 and CTF99,
respectively. In the so-called non-amyloidogenic path-
way, CTF83 is digested by g-secretase, a complex with
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presenilin 1 at its catalytic core [54] (for g-secretase
reviews see [55-59]), releasing the APP intracellular
domain (AICD) which may contribute to the toxicity of
AD [60] and the extracellular p3 element with as yet no
known function (reviewed in [61,62]). In the amyloido-
genic pathway, CTF99 is cleaved by g-secretase resulting
in AICD and small peptides called Ab ranging from 38
to 43 amino acids. Ab1-40 and Ab1-42 are the dominant
forms in senile plaques [63,64]. Ab1-42 is more amyloi-
dogenic and more prevalent in plaques than Ab1-40 [64]
but the latter is more abundantly secreted by cultured
cells [65,66]. Ab1-42 is generated in the endoplasmic reti-
culum/Golgi/intermediate compartment (ERGIC)
[67,68], while Ab1-40 is generated in trans-Golgi network

(TGN) [68]. The endosomal/lysosomal system also plays
a role in generating Ab [69] (Figure 1).

Clearance of Ab
The amyloidogenic peptides may be taken up by micro-
glial and astrocytic endocytosis [70,71]; in the brain or
by endothelial cells comprising the blood-brain barrier
(BBB) [72]. They also form the neuropathologically diag-
nostic extracellular amorphous or fibrillar deposits (pla-
ques). Some of the released peptides may enter the
brain interstitial fluid (ISF) go to the CSF, then to the
bloodstream, a pathway which may be responsible for
10%-15% of cerebral clearance of Ab. The majority of
clearance occurs via transport through the BBB [73].

Figure 1 Amyloid precursor protein (APP) processing pathway [30-62]. AICD, AbPP intracellular domain; C83 (C99), carboxy-terminal
fragments C83 (C99); DR6, death receptor 6; LRP, lipoprotein receptor-related protein; sAPP, secreted AbPP fragment; TTR, transthyretin.
Degradation, see ‘Clearance of Ab’ of the text for details. Involvement of TTR regulation: it has been suggested that APP or its fragments up-
regulate TTR [169,171,230].
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Low-density lipoprotein receptor-related protein (LRP)
regulates Ab clearance by carrying the peptide from
brain to blood via transportation across the BBB [73]
with the assistance of two other transporter ligands,
apoE and a2-macroglobulin (a2M) (reviewed in
[74,75]). The receptor for advanced glycation end pro-
ducts (RAGE) is the influx receptor for Ab [76,77].
Besides taking up soluble and fibrillar Ab, microglia

and astrocytes also secrete proteinases that degrade Ab
extracellularly [71,78]. Ab can be degraded by a number
of proteases including angiotensin converting enzyme
(ACE) [79,80], Cathepsin B [81], endothelin converting
enzymes (ECE) [82], glutamate carboxypeptidase II [83],
matrix metalloproteinases (MMP-2/gelatinase A [84],
MMP-9/gelatinase B [85,86]), plasmin [87,88], neprilysin
(also known as neutral endopeptidase 24.11 (NEP) and
enkephalinase) [89,90] and insulin degrading enzyme
(IDE, insulysin) [78,91]. Deficiency of neprilysin [92,93]
and IDE [94] caused increased cerebral accumulation of
endogenous Ab in transgenic models of AD in vivo.
Moreover, overexpression of neprilysin [95,96] and IDE
[96] reduced Ab levels and plaque burden in similar
transgenic mice. Lipidated ApoE enhanced degradation
of Ab by neprilysin [97].

Amyloid hypothesis and alternatives
With Ab as its focus, the current version of the “amy-
loid hypothesis” as the etiology of Alzheimer’s disease
proposes that “soluble oligomers” formed by Ab are the
toxic agents rather than monomers or fibrils. The extra-
cellular oligomers are proposed to induce inflammatory
responses, oxidative stress etc. and ultimately cause neu-
ronal spine and synaptic loss through an as yet
unknown mechanism [98-101].
There is abundant evidence favoring an Ab-centric

hypothesis. Patients with Down’s syndrome, caused by
trisomy 21, thus carrying a third copy of the AbPP gene,
uniformly develop AD-like pathology after age 40. The
increased AbPP gene dose results in elevated Ab level
and early deposition of extracellular Ab, neuritic plaques
and neurofibrillary tangles [102-104]. In familial AD
(FAD) mutations of presenilin 1 and 2 and AbPP genes
cause early onset FAD with increased amounts of Ab
[105-108] or ratio of Ab1-42/Ab1-40 [109,110]. In an early
onset form of AD, the so-called Swedish double muta-
tion (K670N/M671L), cleavage by b-secretase is
enhanced with subsequent increased production of total
Ab [111].
Transgenic mouse AD models have been created using

genes encoding mutant forms of presenilin and AbPP
that have been identified in autosomal dominant forms
of human AD. To some extent they all reproduce AD
phenotypes, more closely resembling the early stages of
the human disease than the globally symptomatic

condition (see reviews [112-114]). The AbPP models
seem to require multiple copies of the mutant gene,
creating a molecular environment more analogous to
that in Down’s syndrome than in sporadic human AD.
It is not certain that the organismal response to multiple
copies of a gene encoding a mutant protein is absolutely
analogous to the disease produced by an aggregated
fragment from two copies of a normal AbPP gene.
Nonetheless the molecular events and the pathologic
sequellae are similar.
In human AD patients, the severity of pathology cor-

relates best with the concentration of soluble Ab in the
brain, not with that of the insoluble plaques, the mor-
phologic hallmark of AD [115,116]. In brain-slices,
dimers and trimers of Ab are synaptic toxins and oligo-
mers inhibit long term potentiation [117-120]. Recently,
it has been suggested that oligomeric Ab1-42 binds to
PrPc and inhibits synaptic plasticity [121], however that
observation has not been confirmed in all laboratories
[122].
Other functional studies have indicated that the

degree of dementia in AD is more highly correlated
with the presence of neurofibrillary tangles than amyloid
plaques [123,124]. However those studies antedated the
analyses of soluble Ab. Patients with mild cognitive
impairment (MCI) who develop AD have lower levels of
Ab1-42, higher total tau (T-tau) protein, and tau phos-
phorylated at threonine 181 (P-tau181) in CSF than
those who do not [125,126]. In CSF of AD patients, the
decreased Ab1-42 and increased tau levels appear to be
good biomarkers for some purposes [127-129].
In cell culture, in vitro synthesized Ab oligomers are

toxic to a variety of cells [130]. When added to primary
cultured murine neurons, the oligomers cause synaptic
loss, calcium imbalance [131], disruption of mitochon-
dria [132], with subsequent oxidative stress similar to
that seen in brains of AD patients [133]. However most
in vitro toxicity studies used synthetic Ab peptides and
required higher (μM) concentrations than those likely to
be encountered in vivo. In addition the aggregation-
prone nature of Ab has made it difficult to identify the
precise conformations of the toxic species. Despite these
correlations, the relationship between Ab cytotoxicity in
tissue culture and the mechanism of neuronal loss in
AD is still uncertain.
Hypotheses alternative to the amyloid cascade include

a primary effect of ApoE on metabolism [134], mem-
brane dysfunction caused by Ab dimers [135], primary
axonal transport dysfunction [136,137], oxidative stress
related to aging, primary mitochondrial dysfunction or
cerebrovascular disease [24] and a primary presenilin
defect. These challenges to the amyloid cascade hypoth-
esis have persisted (see reviews [138-142]), particularly
since clinical trials of agents which targeted clearance of
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amyloid plaques or inhibition of g-secretase have failed
[143]. Nonetheless the hypothesis remains dominant
with the failures being interpreted as being related to
either inadequate specificity (in the case of g-secretase
inhibitors, resulting in off-target toxicity), unresponsive
stage of disease, or neurovascular inflammation (as with
the anti-Ab antibodies) [144].

Transthyretin (TTR)
Unlike the circumstance in AD where AbPP is produced
and processed in neurons and Ab aggregates form pri-
marily in the CNS, TTR, a 55 kDa homotetrameric pro-
tein, causes disease by depositing as aggregates primarily
at a distance from the major site of synthesis. The circu-
lating protein is produced predominantly in the liver,
which rarely displays evidence of aggregation or dys-
function. The TTR amyloidoses are prototypical sys-
temic gain of toxic function disorders. The toxic species
is comprised of aggregates formed from monomers
which misfold after they dissociate from the homotetra-
mer [145]. The most common form of TTR aggregation
disease is senile systemic amyloidosis (SSA), caused by
wild type TTR protein deposits in the heart, which
increases in prevalence in the aged, with frequencies as
high as 10-20% in the 9th and 10th decades, perhaps
even higher in older groups [146,147]. Mutant TTR pro-
tein deposits in peripheral and autonomic nerves and
heart are responsible for disease in familial amyloidotic
polyneuropathy (FAP), and familial amyloidotic cardio-
myopathy (FAC). More than 80 mutants have been
reported to be responsible for autosomal dominant
deposition disease [148]. CNS deposition has not been
noted in FAP except in the choroid plexus and leptome-
ninges with rare unstable mutants (TTR’s D18G, A25T,
L12P) and in some cases of individuals carrying more
common mutations, e.g. TTR V30M, which are primary
sites of TTR synthesis [10]. The carriers of those muta-
tions have a characteristic clinical CNS presentation,
even though there does not appear to be actual neuronal
involvement by the aggregates [149,150].
TTR is a thyroid hormone (thyroxine (T4)) carrier and

the only known plasma retinol (vitamin A) transporter,
binding to retinol binding protein (RBP) charged with
retinol. The binding sites for its normal ligands, T4 and
RBP have been well defined [151-153]. Surprisingly,
mice with their endogenous ttr gene silenced have no
apparent functional phenotype with respect to either
thyroid function or vitamin A metabolism as long as
vitamin A is supplied in the diet [154-156]. They have
been shown to have a behavioral abnormality, the nature
of which is currently under active investigation [157,158]
and have been reported by one laboratory to have a
neuropeptide Y phenotype with obesity and hyperphagia
[159]. They also appear to have a defect in peripheral

nerve repair in response to injury and an abnormality in
the proportion of proliferating to apoptotic cells in the
supraventricular zone in the embryonic brain [160,161].
In clinical situations in humans the serum TTR level

(0.08-0.45 mg/ml) is used as a marker for malnutrition
as well as inflammation, decreasing in both clinical set-
tings [162]. Its serum level is decreased in patients with
some tumors [163,164], although it is not clear whether
the decrease is related to an inflammatory response or is
an intrinsic property of the tumors.
TTR is encoded by a single copy of gene located on

chromosome 18 in human and chromosome 4 in mouse.
The gene contains four exons with the first exon encod-
ing the leader sequence (reviewed in [10]). The gene is
expressed in liver, kidney, pancreas, choroid plexus [165],
retinal epithelium, leptomeningeal epithelium [166].
Despite the frequency of cardiac TTR deposition there
does not appear to be either TTR gene transcription or
TTR protein synthesis in the heart (Buxbaum unpub-
lished). Several groups have shown material reactive with
anti-TTR antibodies present in brain parenchyma indi-
cating that the TTR mRNA is effectively translated
[167-169]. However those observations could also be
explained by neuronal endocytosis of TTR synthesized in
choroid plexus epithelium [170,171]. More recent stu-
dies, using microarray analysis of RNA from carefully dis-
sected regions of brains from multiple animals showed
strain and regional variation in ttr transcription in differ-
ent areas of the brain parenchyma [172]. These results
differ from those seen in earlier work, using primarily
Northern blotting, which suggested that the choroid
plexus was the only site of ttr transcription in the brain
and that the apparent neuronal expression was a function
of contamination with choroid plexus or leptomeningeal
epithelium [16,173-175]. The most recent results suggest
that normally there is a very low level of neuronal TTR
synthesis [169,176] with substantial increase in particular
pathologic states [169].

Transthyretin in human AD
Early immunopathologic studies, based on the premise
that TTR might be the amyloid precursor in AD, gave
conflicting results with respect to the presence of TTR
in plaques in human AD brains [177,178]. More recent
analyses found TTR co-localized in hippocampal pla-
ques and vessels of AD patients [167,168]. Anti-TTR
serum stained the majority of neuronal bodies in AD
brains but only 10% of neurons in age-matched non-
demented controls [169]. The latter finding may be
responsible for the many reports of TTR synthesis only
in the choroid plexus in the normal brain since the TTR
signal from the choroid plexus, ependyma and leptome-
ninges is much stronger than that from normal neurons
[16,179].
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TTR, ApoE and ApoJ (clusterin) are major Ab-binding
proteins in human CSF [12-14]. The mean CSF TTR
level has been reported to be decreased in several series
of AD patients [180-184]. However not all investigators
have found this to be true [185]. The significance of the
decrease is not clear. It has been proposed, on the basis
of the decrease, that TTR sequesters Ab but no site of
sequestration has been identified. It is also possible that
the CSF TTR concentration may be determined in part
by neuronal TTR synthesis [169], particularly in AD (as
well as choroid plexus production) and that the
observed reduction is related to neuronal loss. Also
plausible is the possibility that patients with AD have a
genetic or acquired low CSF TTR level independent of
Ab binding, which conceivably could put them at
greater risk for AD. A recent analysis of TTR single
nucleotide polymorphisms (SNPs) in the MIRAGE study
of AD families has associated 5 TTR SNPs with hippo-
campal atrophy [186]. A prior single small study did not
identify AD in carriers of amyloidogenic TTR mutations,
but there is no a priori reason why such mutations
would predispose to Ab deposition [187].
Reduced CSF TTR levels have also been reported in

patients with depression (although not in those who
committed suicide), normal pressure hydrocephalus and
most recently in amyotrophic lateral sclerosis (ALS)
[188-190]. The variability of the finding has made it an
unsuitable CSF marker for AD and made it more diffi-
cult to understand its role in AD pathogenesis.
An in vivo interaction between Ab/TTR was also

noted in human kidneys [191], and in the muscle of a
single patient with inclusion body myositis [192]. How-
ever its significance in these circumstances is unclear
since the subjects did not have clinical AD.
It was hypothesized that TTR could inhibit Ab related

toxicity by sequestration of Ab thus preventing Ab
aggregation and fibril formation based on the observa-
tion that first identified TTR as an Ab-binding protein
in CSF [167]. In subsequent studies of the capacity of a
series of recombinant mutant TTR’s to inhibit Ab fibril
formation at neutral pH in vitro was analyzed. The
investigators found that the amount of Congo red bind-
ing material formed over a 24-36 hour period was
reduced in the presence of many of the recombinant
TTR’s (at a 5:1 molar ratio of Ab:TTR). However, the
experiments suffered from the lack of non-TTR e.g.
albumin, controls and the use of a relative measure of
inhibitory capacity that was never quantified in terms of
protein concentration. In addition the nature of the
Ab1-42 when it was added to the assay was not precisely
defined. Given current knowledge regarding the propen-
sity of Ab to aggregate on standing, it is not clear from
the publications whether the different TTR’s were actu-
ally seeing the same Ab conformers. Nonetheless in

retrospect the observation that TTR bound Ab and
inhibited fibril formation was correct, although the
detailed results regarding the relative capacities of differ-
ent variants are less likely to be valid. The hypothesis
itself was attractive since TTR is abundant in Human
CSF (5-20 μg/ml or 0.1-0.36 μM) and serum (174-420
μg/ml or 3-7 μM) [12,193]; while Ab concentration in
CSF is relatively low (3 nM or less) [194,195]. However
it inferred, as a second hypothesis, that the interaction
would be responsible for lowering the CSF TTR
concentration.

Transthyretin in AD worm and mouse models
The initial in vitro studies were followed by the intri-
guing report that in C. elegans, wild type human TTR
co-expressed with Ab in body wall muscle cells under
control of the same (unc 54) promoter rescued a pheno-
type of defective locomotion seen in animals expressing
only Ab [196]. The significance of those data was not
clear since no follow up studies were reported in the
same system. However with the development of trans-
genic mouse models of AD it became possible to exam-
ine the phenomenon in a more disease-relevant
experimental system.
In the transgenic mouse AD model Tg2576 in which

the human APP Swedish mutation is expressed under
the control of a hamster prion promoter and is asso-
ciated with plaques, dystrophic neurites, vascular invol-
vement and gliosis, analyses of transcription showed up-
regulation of ttr. TTR protein was immunochemically
detected in neurons in the hippocampus and cerebral
cortex, although neuronal-specific ttr transcripts were
not assessed [171,197]. TTR immunoreactivity was seen
in the same areas as the Ab-staining plaques. Further-
more, injection of anti-TTR antibodies into one ventri-
cle increased Ab deposition on the injected side relative
to that seen in the contralateral cerebral hemisphere
[168], suggesting that the reduction of functionally avail-
able TTR caused the increased AD-like pathology.
In later studies in the APP23 mouse model (Swedish

mutation controlled by the Thy 1 promoter), hippocam-
pal and cortical regions of brains from 15-month old
mice showed neuronal staining for TTR and co-staining
for Ab and TTR in the deposits. The blood vessels were
also Ab and TTR positive [158]. Crossing the APP23
mice with a mouse strain over-expressing wild type
human TTR under the control of its own promoter
(APP23/hTTR+) normalized cognitive function and spa-
tial learning as well as diminishing the neuropathologic
changes and the amounts of Ab deposited in the ani-
mals bearing both constructs [158]. Moreover, APP23/
mttr-/- animals showed Ab deposition in the hippocam-
pus and/or cortex 3 months earlier than in the presence
of the ttr gene [158]. In animals sacrificed at 5.5 months
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of age the frequency and amount of Ab staining and
extractable Ab in the brains of the APP23/mttr-/- were
greater than in the APP23/mttr+/+ mice [158]. Another
AD transgenic mouse model, the ceAPPswe/PS1ΔE9
mouse, hemizygous for a silenced ttr allele, also showed
earlier deposition than controls but not as early as in
the homozygous knockouts in the APP23 mice [198],
suggesting a gene dose effect.
Results of experiments examining the effects of silen-

cing the ttr gene on other models of AD have not been
uniform. In contrast to the results suggesting a salutary
effect of TTR in the Tg2576 AD model [171], other
investigators reported that total and vascular Ab bur-
dens in pooled 13-20 month-old Tg2576/TTR-/- mouse
brains were significantly increased compared to Tg2576/
TTR+/- mice [199]. The investigators saw no difference
in the age of onset and progression between the two
strains of mice. However those conclusions were based
on examining only two mice from each group per
month, which is probably not sufficient to be certain of
the observations regarding the pace of development of
disease reported in the APP23 mice. In addition homo-
zygous Tg2576/TTR+/+ control mice were not included
in the study so there was no comparison between ttr+/+

and ttr-/- animals. Similar studies were performed in
TgCRND8 mice, a more aggressive AD model of Ab
deposition in which plaques develop as early as 3
months. The magnitude of spatial memory deficits and
Ab plaque burden were not different in the hippocampi
of 6-month-old TgCRND8/TTR+/-, TgCRND8/TTR-/-

and TgCRND8/TTR+/+ mice [200]. In that model it
might have been too late at 4 and 6 months of age to
observe significant changes in the rate of development
of disease due to the deletion of the ttr gene as sug-
gested by the APP23 and ceAPPswe/PS1/ΔE9
experiments.
The variability in the results of the gene silencing

experiments may be due to differences in the mouse
strains studied. Alternatively, since it is clear that mice
with two intact copies of the ttr gene still develop AD-
like pathology, and there is considerable variation in the
degree of pathology and behavioral abnormality seen
from mouse to mouse in the same strain, it is difficult
to get significant results without using relatively large
numbers of animals of the same gender, precisely
matched for age if one is trying to determine the pace
of development of disease, rather than degree of pathol-
ogy at the endpoint, which may be independent of the
presence or absence of TTR. It is possible that examin-
ing the knockouts is observing the loss of a physiologic
inhibitor/modulator of the pathogenetic process and
more subject to mouse to mouse variation, while the
over-expressed wild type hTTR transgene experiment is
more analogous to a pharmacologic manipulation in

which the agent is provided in sufficient quantities to
overcome individual host differences. It might be useful
to cross the hTTR over-expressing mice with animals
bearing other AD mutants to be certain that the results
seen in the APP23 strain were not peculiar to that strain
combination.

Transthyretin and Ab in vitro interaction
In contrast to the results from in vivo mouse studies,
results from in vitro experiments analyzing the interac-
tion between TTR and Ab are more consistent, particu-
larly in recent years when we have come to understand
how to control the behavior of pro-amyloidogenic pro-
teins in solution in vitro [201].
Schwarzman et al studied 47 recombinant TTR var-

iants (see above). Most (except G42 and P55) bound to
Ab and inhibited Ab aggregation in vitro [202]. But the
interpretation of those experiments is subject to some
reservations with respect to the experimental methodol-
ogy (vide supra). Wild type human TTR binds to all
forms of soluble Ab, monomer, oligomer and fibrils
[158,203-205]. TTR binds to Ab better at 37°C than 25°
C [158], binds to Ab aggregates better than Ab mono-
mer [158,205,206], and Ab1-42 better than Ab1-40 [158].
The binding is highly dependent on the quarternary
structure of TTR [206]. It has been suggested that
human monomeric TTR binds Ab better than the TTR
tetramer. On the basis of tandem mass spectrometry
analysis of a glutaraldehyde cross-linked TTR-Ab frag-
ment, the Ab binding site appeared to be located in the
A strand, in the inner b-sheet and EF helix of TTR
[206]. These putative sites must be confirmed indepen-
dently, using a different methodology. They do not cor-
respond or encompass the sites proposed earlier based
on structural modeling [12]. If the sites are correct then
mutations in the potential binding residues should
reduce affinity or abrogate binding completely.
The stoichiometry and the binding affinity of the Ab-

TTR interaction have been difficult to establish, perhaps
because of the tendency of Ab to aggregate, so that its
molecular mass at any moment of the interaction is
probably heterogeneous. Using a tryptophan fluores-
cence quenching method, Ks was estimated at 2300 M-1

for TTR and Ab soluble species [205]. The authors
noted that the Ks could be underestimated by several
orders of magnitude because the Ab monomer molecu-
lar weight was used in the estimation and it is likely
that much of the bound Ab was heterogeneously oligo-
meric. Using a competition binding method with radio-
iodinated Ab1-42 (presumably a stronger binder than
Ab1-40) as the ligand the Kd was estimated to be 28 nM
[203]. However there is still lack of independent confir-
mation of this relatively strong interaction constant. In
contrast to other laboratories the same investigators
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concluded that the binding between TTR and various
Ab species is similar.
Nonetheless, it is now apparent, as originally sug-

gested by Goldgaber and his colleague [12,202], that the
interaction between TTR and Ab interferes with Ab
aggregation in vitro. Using a variety of methods at least
four other laboratories have now shown that TTR inhi-
bits Ab fibril formation [158,203-205]. While it appears
from some assays that TTR inhibits oligomer formation
in others the mechanism of inhibition of fibril formation
may be mediated via suppression of large aggregate for-
mation (Li and Buxbaum, unpublished). Two groups
have clearly shown that monomeric TTR suppresses Ab
fibril formation better than TTR tetramer (Li and Bux-
baum, unpublished) [206]. The interaction between TTR
and Ab species is apparently beneficial to cultured cells
under Ab stress. TTR prevented accumulation of the Ab
In cultured vascular smooth muscle cells [207]. In the
human neuroblastoma cell line SK-N-BE, TTR inhibited
ultrastructural changes characteristic of apoptosis [204].
Pre-incubation of Ab with TTR also suppressed cas-
pase-3 activation in the undifferentiated human neuro-
blastoma SH-SY5Y cell line [203] and the cytotoxicity
induced by Ab oligomers on SH-SY5Y cells differen-
tiated by retinoic acid treatment [169]. Moreover, TTR
also inhibited cytotoxicity and the induction of reactive
oxygen species (ROS) by Ab species in cultured embryo-
nic mouse neurons [169].

Is the beneficial effect of transthyretin direct?
While TTR binding to Ab appears to be well documen-
ted it is not clear how such binding impacts on AD in
vivo. The notion of “sequestration” has been floated
from the very beginning however, where or how the Ab
is being “sequestered” is not apparent (see Figure 2 for
hypothesis). It has also been suggested that TTR is a
“cryptic protease” and cleaves Ab [208], with subsequent
disaggregation of the fibrils [203]. The data supporting
this hypothesis have not been confirmed by other
laboratories, either with respect to disaggregation or
proteolysis under physiologic conditions. The concentra-
tion of recombinant TTR (13.6 μM) used to show clea-
vage of Ab [208] is almost twice the level found in the
serum and 30 times higher than the concentration of
TTR in CSF [12,193]. Since the concentration of TTR in
the brain has not been determined these results have to
be interpreted carefully.
If the soluble Ab oligomers or fibrils are the neuro-

toxic elements in AD patients or mouse models, the
protective property of TTR can be a simple function of
inhibiting aggregation and fibril formation by binding
Ab aggregates thus reducing their toxicity, as has been
shown in vitro. TTR-Ab complexes have been co-immu-
noprecipitated from the cerebral cortices of APP23 mice

as well as some human AD brains using anti-TTR sera,
although the precise conformer of the bound Ab has
not been established [169] (Figure 2).
In the APP23 AD mice over-expressing human TTR

the amounts of SDS and formic acid extractable Ab spe-
cies were markedly reduced [158]. Thus, in this model
the suggestion that given its amyloidogenic property,
TTR may bind to Ab and form large insoluble aggre-
gates, thus protecting neurons from the toxicity induced
by soluble oligomeric Ab species has no experimental
support. It is also possible that TTR may bind to AbPP
as well inhibiting the cleavage of the AbPP by blocking
at or close to a-, b-, or g-secretase docking sites, thus
reducing the amount of Ab either by facilitating the
non-amyloidogenic pathway (by helping a- secretase
docking) or by inhibiting the amyloidogenic pathway
(preventing b- or g-secretase docking) [169]. This has
been proposed to account for the salutary effect of the
Bri2 transgene in a transgenic AD model [209]. It is also
possible that TTR binds to the secretases or both the
secretases and AbPP (fragments/full-length) and blocks
Ab production. This is another possible explanation for
the markedly decreased Ab1-40/1-42 content in the pre-
sence of AbPP in the cortex of the hTTR over-expres-
sing APP23 mice [169] (Figure 2).
Since the evidence indicates that TTR can bind many

forms of Ab it is also possible that TTR exerts its salu-
tary effect on AD, particularly when it is over-expressed
in the APP23 mice, by enhancing the hypothesized
“plasma sink” by which Ab-binding molecules in the cir-
culation shift the equilibrium of newly generated Ab
from the brain, where the aggregates may be cytotoxic
to the peripheral circulation, where they can be
degraded. This has been proposed as an explanation for
the effects of anti-Ab antibodies, gelsolin and the gang-
lioside GM1 [210,211]. If that is the case it should be
possible to isolate TTR-Ab complexes from the serum
of the human TTR over-expressing APP23 mice.

Is the beneficial effect of transthyretin indirect?
Despite the evidence supporting a direct interaction
between TTR and Ab-related peptides, the TTR effect
might be indirect. As an amyloidosis precursor, TTR
could activate the unfolded protein (UPR), and other
proteostatic responses thus inducing chaperone tran-
scription, or activating stress related pathways, thus
changing the protein homeostasis network to be more
efficient in coping with Ab aggregation [212]. If this is
the case, one would expect to find benefits from com-
parable over-expression of other amyloid precursor pro-
teins. Wild type cystatin C and Bri2, other proteins in
which mutations produce CNS amyloid deposition in
humans, also inhibit Ab fibril formation [213-216]
(Table 1). Gelsolin, another human amyloid precursor
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Figure 2 Proposed mechanisms of TTR inhibition of Ab toxicity. TTR inhibition of Ab aggregation (fibril formation) was reported by many
groups [12,158,169,203-205] and current evidence suggested that the binding is mediated by association of monomeric TTR to Ab. It is also
possible that TTR facilitates Ab degradation directly [208] or indirectly, transports of Ab from CNS into serum (plasma sink hypothesis) [12,202].
TTR may also inhibit Ab production by inhibition of g-secretase cleavage [169].
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binds Ab [217] and ameliorates a transgenic AD model
even when only expressed peripherally, a phenomenon
more likely to reflect a “plasma sink” effect [218]. How-
ever each of these proteins binds Ab directly and their
effects cannot be attributed exclusively to stimulation of
protein homeostatic mechanisms.
Others have argued that the TTR effect in AD models

depends upon its function as an RBP binding protein.
Increased TTR could increase the amount of available
retinoic acid, thus enhancing neuronal maintenance.
Similarly the accelerating effect of the TTR knockout
could depend on a relative lack of retinoids in the CNS
which amplifies the toxic effect of Ab. Retinoic acid
inhibitors have been shown to compromise neuronal
function in older rodents and retinoic acid has been
found to enhance performance [219,220]. Thus it would
be useful to determine if expressing a human AD gene
on an RBP knockout background in the presence and
absence of TTR would reveal a different phenotype
from that seen when the APP23 construct is expressed
in the absence of TTR alone. There are also suggestions
that TTR may also be involved in AD through a vascu-
lar mechanism. In such a scenario TTR would cleave
apolipoprotein A-I (ApoA-I), a constituent of HDL
resulting in reduced cholesterol efflux and increased for-
mation of amyloid fibrils [221].
Given the multiple functions of TTR (reviewed in

[222]), it also possible that TTR enhances mechanisms
that specifically degrade Ab, or that it plays a currently
unknown role in the maintenance of critical neuronal
functions.

Do Alzheimer’s peptides regulate neuronal transthyretin
expression?
If TTR expression plays an important role in neuronal
protection from Ab aggregation or processing or in the
normal function of AbPP, it would seem appropriate for
its expression to be regulated by the system involved in
the generation of Ab or its related peptides. In hippocam-
pal slices from Tg2576 AD mice TTR mRNA and protein
were increased compared to WT mice [158,168,171]. The
same was true in isolated cortex and hippocampus of the

APP23 mice. We can also infer that the same is true in
human AD since there is little neuronal staining for TTR
in non-demented human brains and extensive staining
brains from AD patients as reported anecdotally by Gold-
gaber and Johnson and systematically examined in our
laboratory (see above). Since primary cultured neurons
derived from 14-16d embryonic mice of the same geno-
types show markedly increased expression of the TTR
gene, it is safe to say that the increased staining is due to
increased synthesis rather than uptake of choroid plexus
synthesized TTR [169].
It had previously been suggested that sAPPa might

increase TTR transcription, although at that time TTR
mRNA had not been demonstrated in neurons [223]. In
more recent studies it has been reported that the AICD
fragment regulates transcription of other genes through
activating Fe65 and the chromatin-remodeling factor
Tip60 [224-227]. The genes regulated by AICD include
neprilysin, the neutral endopeptidase with Ab-degrading
activity (vide supra) [225]; lipoprotein receptor LRP1
which is related to cholesterol metabolism and Ab
transport [228]; EGF receptor, whose promoter is bound
by AICD and negatively regulated [229] etc. Most
recently it has been suggested that the TTR and Klotho
genes are specific downstream targets of sAPPb [230].
TTR and Klotho expression are decreased in loss-of-
function states but increased in gain-of-function states
using transcriptional profiling [230] (Figure 1).
When mice are exposed to environmental “enrich-

ment”, both the steady-state levels of Ab peptides and
Ab deposition in brains of APPswe/PS1ΔE9 are signifi-
cantly reduced, and ttr is one of the genes up-regulated
[231]. Similarly administration of Gingko biloba and a
number of unsaturated fatty acids to rodents have been
reported to increase TTR mRNA abundance in cortical
neurons as measured by microarray analysis [232-234].
Some of these compounds have had favorable effects in
transgenic models of human AD [235,236]. However
large studies of at least one of these in human AD
patients have failed to show any benefit [237]. Perhaps
this is just an example of “too little too late” rather than
a conceptual error.

Table 1 Do Amyloid precursors “chaperone” Ab?
Protein Transgene

suppresses
Knock-out
accelerates

Cytotoxic inhibition In vitro interaction In Human AD brains

Transthyretin + + + + +

Bri2 + N.D. N.D. + +

Cystatin C + N.D. N.D. + +

Gelsolin +* N.D. N.D. + +

Neuroserpin +** N.D. + + +

N.D., Not Determined.

*Gelsolin only expressed in livers of transgenic animals.

**Neuroserpin experiments have only been done in transgenic drosophila.
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Summary: Transthyretin, aging and Alzheimer’s disease
Over-expression of human TTR suppresses the AD phe-
notype in a well validated model of human AD. Silen-
cing the endogenous ttr gene appears to accelerate the
disease but those results are less consistent. The major-
ity of cortical and hippocampal neurons in human AD
brains contain TTR protein as do the neurons in several
murine AD models. The increased neuronal TTR is the
result of increased transcription. In vitro interaction
between recombinant TTR and synthetic Ab has been
demonstrated in multiple laboratories with the interac-
tion reducing both fibril formation and Ab-induced
cytotoxicity in tissue culture. The interaction has now
been shown to occur in vivo in both a murine model
and in some human AD brains. Further it appears that
TTR transcription may be directly influenced by the Ab
precursor. Thus wherever Ab peptides are produced, i.e.
intracellularly in neurons or secreted into the cerebral
interstitial space, TTR is available, either on the basis of
neuronal (intracellular) or choroid plexus production
and secretion. If, as suggested by the in vitro studies, the
TTR monomer is critical for binding intracellular Ab, it
is likely that newly synthesized peptide rather than dis-
sociated tetramer is the source. Hence we would expect
to find Ab 1-40/42 and TTR monomer in the same cellu-
lar compartment.
In the face of these data suggesting a role for TTR in

suppressing the molecular events responsible for clinical
AD, one must conclude that with time the amount of
pathogenic Ab peptide production exceeds the neuron’s
capacity to neutralize it. This neutralizing capacity may
be represented by the conventional protein homeostasis
network (including the unfolded protein response, heat
shock induced chaperones and their co-chaperones, the
proteasome ubiquitin system and autophagic responses)
[212]. It now appears that in this setting TTR may also
comprise part of that network. There are considerable
data suggesting that these mechanisms decline with
aging. A relative deficiency of any of them may render
the normal processes that deal with Ab or its aggregates
unable to compensate for a constant (or increased)
aggregate load thus initiating disease. Such a scenario
could certainly account for the findings in the over-pro-
duction models of AD, whether it also applies in spora-
dic disease is a subject of speculation and further
investigation. For the moment any such studies cannot
ignore the role of TTR since hippocampal and cortical
neurons from human AD and mouse AD model brains
seem to increase its production.

Epilogue: Is transthyretin the only one?
Ab amyloid formation, like all amyloidogenesis involves
homotypic interactions that result in aggregation with
subsequent toxic oligomer and fibril formation.

Intracellular aggregation is suppressed by heterotypic
interactions between the amyloidogenic precursors and
elements of the chaperone system, allowing refolding or
transport in the soluble state to either the secretory
pathway or to the cellular degradative machinery. In the
vast neuropathologic literature describing AD, a number
of molecules have been found co-localized in the Ab
deposits. Similarly in the hundreds of publications utiliz-
ing the murine AbPP transgenic mice as AD models,
there are reports of many manipulations that enhance
or diminish the AD phenotype. We have presented a
detailed analysis of the evidence suggesting that wild
type TTR, a systemic amyloid precursor, can suppress
Ab aggregation in vitro and in vivo and ameliorate its
pathologic effects in a well-validated transgenic mouse
model of human AD. In the AD model literature we
noted that reports indicating that wild type forms of
other proteins rendered amyloidogenic by autosomal
dominant mutations, e.g. Bri2 [215], cystatin C
[213,214], gelsolin [217,218,238], and perhaps neuroser-
pin [239] (mutations result in non-amyloid neuropatho-
logic aggregation), seem to be over-represented as a
class. They appear to have the capacity to interact with
Ab and in some instances suppress the AD phenotypes
in transgenic mouse models (see Table 1). It is possible
that the same structural features that predispose these
proteins to undergo the homotypic interactions that
result in aggregation when affected by a particular struc-
tural change as a consequence of mutation, allow the
wild type conformers to interact heterotypically to pre-
vent aggregation of similarly susceptible client proteins,
in this case Ab. Whether the phenomenon represents
therapeutically exploitable physiology remains to be
seen.
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