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Abstract

Background: Alcadeinα (Alcα) is a neuronal membrane protein that colocalizes with the Alzheimer's amyloid-β
precursor protein (APP). Successive cleavage of APP by β- and γ-secretases generates the aggregatable amyloid-β
peptide (Aβ), while cleavage of APP or Alcα by α- and γ-secretases generates non-aggregatable p3 or p3-Alcα
peptides. Aβ and p3-Alcα can be recovered from human cerebrospinal fluid (CSF). We have previously reported
alternative processing of APP and Alcα in the CSF of some patients with sporadic mild cognitive impairment (MCI)
and AD (SAD).

Results: Using the sandwich enzyme-linked immunosorbent assay (ELISA) system that detects total p3-Alcα, we
determined levels of total p3-Alcα in CSF from subjects in one of four diagnostic categories (elderly controls, MCI,
SAD, or other neurological disease) derived from three independent cohorts. Levels of Aβ40 correlated with levels
of total p3-Alcα in all cohorts.

Conclusions: We confirm that Aβ40 is the most abundant Aβ species, and we propose a model in which CSF p3-
Alcα can serve as a either (1) a nonaggregatable surrogate marker for γ-secretase activity; (2) as a marker for
clearance of transmembrane domain peptides derived from integral protein catabolism; or (3) both. We propose the
specification of an MCI/SAD endophenotype characterized by co-elevation of levels of both CSF p3-Alcα and Aβ40,
and we propose that subjects in this category might be especially responsive to therapeutics aimed at modulation
of γ-secretase function and/or transmembrane domain peptide clearance. These peptides may also be used to
monitor the efficacy of therapeutics that target these steps in Aβ metabolism.
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Background
Alcadeins (Alcs) represent a family of neuronal type I mem-
brane proteins (designated as Alcα, Alcβ, and Alcγ) that are
encoded by independent genes [1]. In neurons, Alc forms a
tripartite complex with Alzheimer's amyloid β- protein pre-
cursor (APP) via the crosslinking action of the neural
adaptor protein X11-like (X11L) [2,3]. In the absence of
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X11L, both the free Alc proteins and the free APP are sub-
jected to coordinated proteolytic cleavage through similar
mechanisms: APP and Alc are both cleaved by the identical
α-secretase at the juxtamembrane region. This cleavage of
Alc causes release of N-terminal soluble Alc ectodomain
(sAlc) and leaves behind a C-terminal cell-membrane-
associated AlcCTF. APP can undergo either an identical α-
secretase cleavage (thereby generating a cell-associated
APPCTFα) or instead (and unlike Alc) APP can undergo β-
secretase cleavage leading to generation of sAPPβ and a
cell-associated APPCTFβ [4]. All three CTFs (APPCTFα,
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APPCTFβ, AlcCTF) are subjected to regulated intramem-
branous cleavage by the γ-secretase complex, in which pre-
senilin 1 or 2 (PS1, PS2) functions as the catalytic subunit
[2]. Mutations in PS1 and PS2 are known to cause early
onset familial Alzheimer's disease (FAD). The γ-secretase
reaction involving APPCTFα generates the p3 fragment,
while the reaction involving APPCTFβ generates the
amyloid-β peptide (Aβ) [4]. Cleavage of AlcCTF by γ-
secretase liberates a small peptide named p3-Alc (a named
selected to be symmetrical with the name of the APP p3
peptide). The p3-Alc peptide is detectable in CSF, while
the APP p3 peptide is very labile and difficult to detect in
CSF [2,5].
Most patients with FAD carry one of over 200 patho-

genic mutations identified in the coding sequence of PS1
or PS2. These mutations alter intramembranous cleavage
of APP so as to increase production of Aβ42, the most
aggregation-prone, oligomerogenic, and fibrillogenic spe-
cies of Aβ [6-8]. Other patients with FAD may carry
pathogenic mutations in the coding sequence of the APP
gene, all of which promote the accumulation of Aβ [4].
Furthermore, Down syndrome (DS) patients carry three
copies of chromosome 21 which includes the APP gene
locus, and therefore, DS patients have a “genetic overdose”
of APP, leading them to develop AD by middle age [9].
Therefore, alterations in the generation of Aβ, in both
quality and quantity, are considered to be causes of AD
pathogenesis in genetic forms of the disease.
In the more common sporadic forms of AD (SAD), the

molecular pathogenesis remains unknown. Aβ42 levels
are reduced in the CSF of SAD patients [10-12], but the
use of CSF Aβ42 as an in vivo marker for APP metabol-
ism is complicated by its deposition in brain and cerebral
vasculature as the disease progresses. Recent evidence sug-
gests that a disturbance in an apolipoprotein E (APOE)-iso-
form-dependent step in Aβ clearance plays a role in the
pathogenesis of SAD [13], although these data could not
exclude the possibility that Aβ oligomerization or fibrilliza-
tion (and not a defect in some clearance pathway alone)
may also play a role, since apoE also plays a role in Aβ
aggregation (Caesar et al., unpublished observations).
We recently reported that the CSF of subjects with spor-

adic MCI and early AD showed a relative overrepresenta-
tion of a minor p3-Alcα species, p3-Alcα38, raising the
possibility that γ-secretase dysfunction can exist even in the
absence of an FAD-linked genetic mutation [14]. The previ-
ous study [14] was performed using immunoprecipitation-
mass spectrometry which, as performed, is considered to be
a semi-quantitative method. Therefore, we have begun
moving toward the development of sensitive ELISAs that
will permit convenient, reliable, and sensitive quantitation
of total p3-Alcα and selected minor species (with p3-Alcα38
being the top priority in that respect). Here we report the
application of a recently developed ELISA system (antibody
and assay development described elsewhere) [15] that can
quantify total p3-Alcα in the range of 40 to 600 pg/mL.
Using this system, we have quantified total p3-Alcα levels in
the CSF of three independent cohorts that consist of sub-
jects with MCI/CDR 0.5 or AD (CDR 1–3), as well as sub-
jects that are either cognitively intact, age-matched controls
or suffer from frontotemporal lobar degeneration (FTLD).
This latter population served as other neurological disease
(OND) controls.

Results
CSF p3-Alcα levels in elderly nondemented subjects and in
subjects with MCI, or mild or moderate SAD in Cohort 1
(Japan) and Cohort 2 (US).
We first examined p3-Alcα levels in the CSF of subjects
with MCI (CDR 0.5), mild or moderate AD (CDR 1 and
CDR 2) and age-matched elderly nondemented controls
(CDR 0) in Cohort 1 (Japan) (Table 1). The p3-Alcα levels
in subjects were compared according to CDR (Figure 1A,
left panel). Subjects with MCI (CDR 0.5, n = 20) showed a
trend toward higher levels than controls (CDR 0, n = 18),
but the trend did not reach statistical significance. p3-Alcα
levels in subjects with mild AD (CDR 1, n = 13) were sig-
nificantly higher than those in controls (p< 0.05; Tukey-
Kramer’s multiple comparison test). Interestingly, p3-Alcα
levels in AD subjects with moderate dementia (CDR 2,
n = 13) were indistinguishable from those observed in
non-demented controls. When the p3-Alcα levels of the
CDR 1 and CDR 2 subjects were compared, these
groups were also significantly different (p< 0.05).
In Cohort 1 (Japan), we observed a significant increase

in Aβ40 levels in subjects with MCI/CDR 0.5 (p< 0.05)
and mild AD (CDR 1, p< 0.01), while Aβ42 levels did not
significantly change as a function of disease progression
(Figure 1A, middle panels). Furthermore, the total p3-Alcα
levels significantly correlated with the levels of Aβ40 (R2 =
0.536, p< 0.0001) in subjects with CDR 0.5, 1 and 2
(Figure 2A). The Aβ42/40 ratio was reduced in MCI and AD
subjects as compared to the Aβ42/40 of non-demented con-
trols (CDR 0) (Figure 1A, right panel). This is a standard ef-
fect and is believed to be a consequence of reduced Aβ42
levels due to its deposition in cerebral vessels and paren-
chyma [16,17]. No differences between male and female sub-
jects were detected for p3-Alcα and Aβ40 levels (Additional
file 1, Figure S1).
We next analyzed p3-Alcα levels in the CSF of subjects

in Cohort 2 (USA) (Figure 1B), in subjects with very mild
dementia (CDR 0.5) (N.B., in this cohort, the term MCI is
not utilized) and mild dementia due to AD (CDR 1)
(Table 1) [18]. CSF from Cohort 2 (USA) showed the
expected relatively stable levels of Aβ40 in very mild de-
mentia (CDR 0.5) and mild AD (CDR 1) subjects when
compared to those of non-demented controls. In this co-
hort, both p3-Alcα levels and Aβ40 levels remained



Table 1 Summary of subject information for the four cohorts

Cohort 1 CDR 0 CDR 0.5 CDR 1 CDR 2

N 18 20 13 13

Age 78.8 ± 5.83 71.9 ± 7.929 81.1 ± 5.27 83.8 ± 7.01

Gender (F %) 72.2 55.0 100 84.6

MMSE (score) - 25.5 ± 2.86 19.1 ± 3.28 16.2 ± 2.68

HDS-R (score) - 25.3 ± 3.42 18.3 ± 4.40 14.5 ± 3.78

Aβ 40 (pg/mL) 9288 ± 3663 13070 ± 4798 14450 ± 3846 11460 ± 4768

Aβ 42 (pg/mL) 633.8 ± 292.8 506.6 ± 194.7 656.7± 380.3 415.6 ± 228.2

p3-Alcα (pg/mL) 7086 ±1971 8548 ± 2373 9238 ± 2243 6902 ± 2345

Cohort 2 CDR 0 CDR 0.5 CDR 1

N 20 20 13

Age 74.1 ± 6.61 75.5 ± 5.61 76.2 ± 6.22

Gender 50.0 55.0 53.8

MMSE (score) 28.7 ± 1.27 26.3 ± 2.33 23.1 ± 3.71

Aβ 40 (pg/mL) 10450 ± 3872 9758 ± 4527 9080 ± 3953

Aβ 42 (pg/mL) 802.6 ± 185.2 322.0 ± 73.05 292.7 ± 64.62

p3-Alcα (pg/mL) 9569 ± 3604 9538 ± 3225 8111 ± 2666

Cohort 3 CDR 0 CDR 0.5 CDR 1 CDR 2-3 FTLD

N 23 9 13 12 37

Age 66.3 ± 9.26 68.0 ± 8.51 69.7 ± 10.1 69.2 ± 9.73 69.6 ± 11.6

Gender (F%) 47.8 55.6 61.5 50.0 45.9

MMSE (score) - 26.9 ± 1.27 21.4 ± 2.10 11.7 ± 5.85 16.3 ± 8.62

Aβ 40 (pg/mL) 6392 ± 1876 7066 ± 4707 6930 ± 4256 6316 ± 4006 4487 ± 2824

Aβ 42 (pg/mL) 795.7 ± 280.1 383.6 ± 317.6 401.0 ± 333.6 335.2 ± 218.1 387.8 ± 307.5

p3-Alcα (pg/mL) 5254 ± 1365 6047 ± 3336 5918 ± 3404 5441 ± 2323 3557 ± 1816

Cohort 4

N 57

Age 68.2 ± 7.82

Gender (F%) 64.9

MMSE (score) 28.5 ± 2.18

CSF Aβ 40 (pg/mL) 7800 ± 3716

CSF Aβ 42 (pg/mL) 417.1 ± 216.6

Average age, gender (% of female) and MMSE (and HDS-R in Cohort 1) scores, average values of p3-Alcα, Aβ40 and Aβ42 of non-demented controls (CDR 0), MCI
subjects (CDR 0.5), AD subjects with mild, moderate or severe (CDR 1, CDR 2 and CDR 3, respectively) and FTLD subjects are summarized. Cohorts 1 and 3,
Japanese cohort; Cohort 2, US cohort. In Australian cohort 4, subjects are diagnosed as pre-clinical stage. Details of individual subjects are shown in the
Supplementary Information (Additional file 3: Tables S1 ~ S4). CDR = clinical dementia rating, HDS-R = Hasegawa's dementia scale; MMSE =Mini-Mental State
Examination. Numbers indicate "mean ± standard deviation".

Hata et al. Molecular Neurodegeneration 2012, 7:16 Page 3 of 12
http://www.biomedcentral.com/7/1/16
relatively stable in the subjects with CDR 0.5 and 1, and
the levels of the two peptides did not show the direct cor-
relation observed in Cohort 1 (R2 = 0.07922, p = 0.1126)
(Figure 2B). It is worth noting that, in this cohort, semi-
quantitative data on amyloid deposition were available on
all subjects, based on [11 C] Pittsburgh compound B ([11 C]
PiB) amyloid imaging. No differences between male and
female subjects were detected for p3-Alcα and Aβ40 levels
(Additional file 1, Figure S1).
In Cohort 1 (Japan), we noticed that the Aβ42 levels in

MCI and AD subjects appeared to be dimorphic, and we
suspect that this may reflect differential levels of Aβ42 de-
position (i.e., subjects with low Aβ42 may have more amyl-
oid deposition than those with normal levels of Aβ42), but
no [11 C]PiB data were available to enable us to assess this
possibility. Using an Aβ42 cut-off value [19] of 500 pg/ml,
we divided the subjects in Cohort 1 (Japan) into two popu-
lations and analyzed the level of p3-Alcα and Aβ in the
“low Aβ42” (Figure 3A-D) and “high Aβ42” (Figure 3E-H)
subpopulations. In the subpopulation of subjects with low
CSF Aβ42 levels (<500 pg/mL) in MCI/CDR 0.5 and AD
(CDR 1 and CDR 2), neither CSF Aβ40 nor CSF p3-Alcα



Figure 1 Levels of p3-Alcα, Aβ40, and Aβ42, and Aβ42/40 ratios in CSF of three cohorts. (A) Cohort 1 (Japan). Non-demented healthy
controls (CDR 0, n = 18), very mild AD subjects (CDR 0.5, n = 20), AD subjects with mild dementia (CDR 1, n = 13) and AD subjects with moderate
dementia (CDR 2, n = 13) were analyzed for levels of p3-Alcα (left) and Aβ40 (middle left), Aβ42 (middle right) and Aβ42/40 ratio (right). (B)
Cohort 2 (USA). Non-demented healthy controls (CDR 0, n = 20), MCI subjects (CDR 0.5, n = 20) and AD subjects with mild dementia (CDR 1,
n = 13) were analyzed for levels of p3-Alcα (left) and Aβ40 (middle left), Aβ42 (middle right) and Aβ42/40 ratio (right). Dashed line on the
middle right panel indicates cut-off value of Aβ42 (500 pg/mL). (C) Cohort 3 (Japan). Non-demented healthy controls (CDR 0, n = 23), MCI
subjects (CDR 0.5, n = 9), AD subjects with mild dementia (CDR 1, n = 13) and AD subjects with moderate and severe dementia (CDR 2–3, n = 12),
and FTLD subjects (n = 37) of Japanese cohort (Cohort 3) were analyzed for levels of p3-Alcα (left) and Aβ40 (middle left), Aβ42 (middle right)
and Aβ42/40 ratio (right). Statistical analysis was performed using the Dunn's multiple comparisons test following the Kruskal-Wallis test. *, p<
0.05; **, p< 0.01; ***, p< 0.001.
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levels were increased in MCI and AD subjects when com-
pared to the corresponding levels in the CSF of non-de-
mented controls (CDR 0) (Figure 3A-C). Therefore, the
overall profiles of Aβ40 and Aβ42 levels in this low Aβ42
subpopulation of Cohort 1 (Japan) closely resembled those
of Cohort 2 (USA) (compare Figure 3A-D with Figure 1B).
In this low Aβ42 subpopulation of Cohort 1 (Japan), the
correlation between CSF Aβ40 levels and CSF p3-Alcα
levels observed for the entire cohort was no longer
evident.
The second subpopulation of Cohort 1 was composed of

MCI and AD subjects who showed relatively higher Aβ42
levels (>500 pg/mL). In this high Aβ42 subpopulation, we
observed an increase in levels of both Aβ40 and p3-Alcα in
MCI and AD subjects (Figure 3E-H). These data suggest
that there might be subpopulations of MCI and SAD sub-
jects that exhibit relatively higher CSF levels of both Aβ
and p3-Alcα. These subpopulations might represent differ-
ential depletion of CSF Aβ42 by progressive cerebral and
cerebrovascular amyloid deposition. We would tentatively
propose that the subjects distinguished by their high
(vs low) Aβ42 levels might define separate endophenotypes
that might be useful for understanding the heterogeneity
in causes and/or progression of SAD. For example, the low
Aβ42 subpopulation might have a relatively greater pro-
portion of their Aβ42 in fibrillar form, while those normal
or high Aβ42 might have a relatively greater proportion of
their Aβ42 in nonfibrillar, soluble oligomer form.



Figure 2 Correlation of p3-Alcα levels with Aβ40 level in
subjects with CDR 0.5, 1 and 2–3. Correlation of CSF p3-Alcα and
Aβ40 levels was explored in subjects with CDR 0.5, 1 and 2 in cohort
1 (A, n = 46), in subjects with CDR 0.5 and 1 in cohort 2 (B, n = 33),
and CDR 0.5, 1 and 2–3 in cohort 3 (C, n = 34). The relation between
p3-Alcα and levels was investigated by Pearson's correlation
coefficient test (GraphPad Prism 5). Statistical significance is indicated
in figure with asterisks.
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CSF p3-Alcα levels in elderly non-demented subjects and
in subjects with MCI, AD and FTLD in cohort 3 (Japan)
In an effort to confirm the observations described above,
we next analyzed another cohort (Cohort 3; Japan), which
is independent of Cohort 1 (Japan). This Japanese cohort
(Cohort 3) includes non-demented controls (CDR 0;
n = 23), MCI/CDR 0.5 (n = 9), mild AD (CDR 1; n = 13),
moderate and severe AD (CDR 2 + CDR 3; n = 12), and
FTLD (n = 37) subjects (Table 1). There were no signifi-
cant differences across the various subject groups with
respect to average ages or age range (Table 1). Cohort 3
(Japan) showed typical profiles for CSF Aβ levels
(Figure 1C); CSF Aβ42 levels were decreased and CSF
Aβ40 levels did not change in MCI/CDR 0.5 and AD
subjects as compared with the corresponding values
from non-demented controls (Figure 1C, middle
panels). Aβ42/40 ratios were decreased in MCI and
AD, consistent with the typical pattern for those diag-
nostic groups (Figure 1C, right panel). FTLD subjects
(OND controls) also showed the typical trends in Aβ
levels. In Cohort 3 (Japan), no significant increase of
CSF p3-Alcα levels in AD was observed as compared to
non-demented controls, although the CSF of FTLD
subjects showed a significant reduction in the p3-Alcα
levels as compared to non-demented controls and MCI/
AD subjects (Figure 1C, left panels). In this cohort, a
strong correlation of p3-Alcα with Aβ40 (R2 = 0.8483,
p< 0.0001) was observed in subjects with CDR 0.5, 1
and 2–3 as was observed in Cohort 1 (Figure 2C). No dif-
ferences between male and female subjects were observed
for the p3-Alcα levels or for the Aβ40 levels (Additional
file 1, Figure S1).
CSF samples in Cohort 3 (Japan) (like Cohort 1)

appeared to be dimorphic with regard to levels of CSF
Aβ42. Therefore, we again divided subjects into two popu-
lations with a cut-off value of CSF Aβ42 (500 pg/mL), and
we again analyzed CSF p3-Alcα levels and Aβ40 levels as
shown in Figure 3 (compare Figure 3 vs Figure 4). In sam-
ples from the low Aβ42 subpopulation of MCI/CDR 0.5
and AD (CDR >1) subjects, CSF levels of Aβ40 and p3-
Alcα were indistinguishable from the corresponding values
from non-demented controls and were not correlated
(Figure 4A-D). On the other hand, CSF from a subpopula-
tion of MCI (CDR 0.5) and AD (CDR >1) subjects who
showed high Aβ42 levels (>500 pg/mL) showed high p3-
Alcα and high Aβ40 levels when compared with non-
demented controls and FTLD subjects (Figure 4E-H).

Correlation of p3-Alcα levels between CSF and plasma in
same individuals
We previously reported that plasma p3-Alcα levels are
increased in AD patients [15]. Therefore, we wanted to
study the relationship between CSF and plasma in p3-
Alcα levels in the same individuals. In the cohorts we



Figure 3 Levels of p3-Alcα, Aβ40, and Aβ42, and Aβ42/40 ratios in CSF of Cohort 1 (Japan) following subgrouping into “low Aβ42” and
“high” Aβ42” subpopulations. Subjects of Japanese cohort (Cohort 1) were divided into two subpopulations with a cut-off value of Aβ42
(500 pg/mL). (A-D, low Aβ42 subgroup). Control (Aβ42 >500 pg/mL) and MCI and AD subjects (Aβ42< 500 pg/mL) were analyzed for p3-Alcα
(A), Aβ40 (B), Aβ42 (C) and Aβ42/40 ratio (D). (E-H, high Aβ42 subgroup). Control (Aβ42 <500 pg/mL) and MCI and AD subjects (Aβ42>
500 pg/mL) were analyzed for p3-Alcα (E), Aβ40 (F), Aβ42 (G) and Aβ42/40 ratio (H). Dashed line on panels C and G indicates the cut-off value of
Aβ42 (500 pg/mL). Statistical analysis was performed using the Dunn's multiple comparisons test following the Kruskal-Wallis test. *, p< 0.05; **,
p< 0.01; ***, p< 0.001.

Hata et al. Molecular Neurodegeneration 2012, 7:16 Page 6 of 12
http://www.biomedcentral.com/7/1/16



Figure 4 Levels of p3-Alcα, and Aβ40, Aβ42 and Aβ42/40 ratios in CSF of Cohort 3 (Japan) subpopulations. Subjects of cohort 3 were
divided into two subpopulations with cut-off value of Aβ42 (500 pg/mL). (A-D, low Aβ42 subgroup). Control and FTLD subjects (Aβ42 >500 pg/
mL) and MCI and AD subjects (Aβ42< 500 pg/mL) were analyzed for p3-Alcα (A), Aβ40 (B), Aβ42 (C) and Aβ42/40 ratio (D). (E-H, high Aβ42
subgroup). Control and FTLD subjects (Aβ42 <500 pg/mL) and MCI and AD subjects (Aβ42> 500 pg/mL) were analyzed for p3-Alcα (E), Aβ40 (F),
Aβ42 (G) and Aβ42/40 ratio (H). Dashed line on panels C and G indicates cut-off value of Aβ42 (500 pg/mL). Statistical analysis was performed
using the Dunn's multiple comparisons test following the Kruskal-Wallis test. *, p< 0.05; **, p< 0.01; ***, p< 0.001.
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have described here so far, we do not have access to
matched CSF and plasma samples from same subjects
and drawn at same time. Thus, we used samples from a
fourth cohort which includes pre-clinical stage subjects
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without significant impairment for memory and recogni-
tion (MMSE average score 28.5, Table 1), but who show
a slight lower score of California Verbal Learning Test.
Such subjects are currently the targets for various early
intervention trials [20]. For this population, we had ac-
cess to plasma and CSF from the same individuals taken
at the same time. We examined p3-Alcα levels in plasma
and CSF of aged population (n = 57), and sought poten-
tially relevant correlations. We identified a significant
positive correlation between plasma p3-Alcα levels and
CSF levels (p = 0.032 and R2 = 0.0809 by Pearson's correl-
ation coefficient test). The results suggest that CSF p3-
Alcα levels can correlate with plasma levels (Figure 5).
Discussion
In our previous studies, we demonstrated that the pro-
ducts of alternative cleavage of non-APP substrates
(known as Alcs) by γ-secretase gave rise to a modified
p3-Alcα peptide profile in media conditioned by trans-
fected cells expressing an FAD-linked mutant PS1 and a
similar modified profile was also identified in the CSF of
subjects with sporadic MCI (known as CDR 0.5 in Co-
hort 2 and recently renamed “prodromal AD” in the
revised lexicon for dementia syndromes [21]), and mild
AD [5,14]. In order to quantify these peptides reliably
and conveniently, we have recently developed an ELISA
for p3-Alcα [15]. This ELISA system quantifies total p3-
Alcα levels, but does not specifically measure the individ-
ual species of p3-Alcα. In the current paper, we have
employed this ELISA to quantify total p3-Alcα levels in
Figure 5 Positive correlation of p3-Alcα levels in CSF with those
in plasma of same subjects. Correlation of CSF p3-Alcα levels with
plasma p3-Alcα levels were examined in same subjects of pre-clinical
stages for dementia, whose MMSE score did not decrease
remarkably (n = 57, Table 1). The relation between CSF p3-Alcα levels
and plasma levels was investigated by Pearson's correlation
coefficient test (Graph Pad Prism 5) (R2 = 0.0809; *p = 0.032).
the CSF of three independent cohorts of subjects who
were categorized as either nondemented controls, spor-
adic MCI, sporadic AD, or FTLD.
Interestingly, applying our new, quantitative p3-Alc

ELISA to CSF for the first time, we were surprised to ob-
serve in two cohorts of Japanese subjects the apparent ex-
istence of subpopulations of sporadic MCI and AD
subjects in whose CSF there was differential elevation of
the levels of the reaction products generated by γ-secretase
cleavage of multiple substrates; i.e., APP and Alcadein.
Since Aβ40 and total p3-Alcα were highly correlated in
these cohorts, the current data support the use of p3-Alcα
as a surrogate for total APP-derived γ-cleaved products.
Elevated levels of p3-Alcα and Aβ were also observed in
plasma samples of some female AD patients [15]. How-
ever, in CSF, we did not detect any differences in levels be-
tween male and female subjects. In another independent
cohort study with plasma samples, we confirmed the sig-
nificant increase of p3-Alcα levels in MCI and AD patients,
but we observed no systematic differences between male
and female subjects [22]. Therefore, it is worth noting that
the observation of a sex specific increase in p3-Alcα levels
in plasma of female AD patients has not been consistently
observed in all cohorts studied.
The increase in p3-Alcα level could arguably be caused

by (1) increased primary α-cleavage by α-secretase; (2)
increased intramembranous γ-cleavage by γ-secretase and/
or (3) diminished clearance of transmembrane-derived
fragments such as p3-Alcα. Because Aβ, a product of pri-
mary β-cleavage of APP by β-secretase, is also increased in
this subpopulation, and because we have previously linked
PS1 mutations to variant p3-Alc speciation [5], we have
argued on the basis of parsimony, that the molecular path-
ology was more likely attributable to dysfunction of γ-
secretase. However, in light of the new data herein, it is
possible that both p3-Alcα speciation and also p3-Alcα
levels may be affected. When these observations are taken
together with the model of altered CSF peptide clearance
[23], and the evidence that clearance of Aβ from CSF is
modulated in an APOE-isoform-specific manner [13], we
now must consider it equally likely that altered p3-Alcα
levels and speciation could be attributable to a defect in
clearance from CSF of transmembrane domain metabolite
peptides.

A stratification of the current (this paper) and prior
data [14] according to APOE genotype, followed by re-
analysis, is underway. We have attempted a preliminary
APOE genotype-dependent analysis using cohort 3 sam-
ples. ApoE4 carriers tended to show higher values of
both p3-Alcα and Aβ40 in MCI (CDR 0.5) and AD (CDR
1) patients but not in more advance AD (CDR 2–3) or in
FTLD patients (Additional file 3, Figure S2). However, the
increase of p3-Alcα and Aβ40 in APOE4 carriers did not
reach statistical significance when compared to the
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corresponding levels in non-APOE 4 carriers. Because this
was a small scale pilot analysis, we consider unresolved
the issue of whether APOE4 genotype influences the level
of p3-Alcα in AD. In order to address this issue directly,
analysis of the p3-Alcα levels in the identical samples stud-
ied by Castellano et al. [13] is under consideration.
It is interesting to note that both the quality and quan-

tity of p3-Alcα accumulation in CSF may be transient,
occurring in MCI and mild AD but not evident in later
stages (see ref 14 and this paper). Serial examinations of
CSF from the same subjects at different stages of AD will
be required in order to establish whether or not such a
phenomenon truly exists within the same individual. The
Biomarker Core of the Alzheimer’s Disease Neuroima-
ging Initiative (ADNI) [24] should be a useful resource
in pursuing this hypothesis.
Since p3-Alcα is not incorporated into cerebral or cere-

brovascular amyloid, the decrease in p3-Alcα levels in
later stage AD subjects (CDR 2 or more) may be due to
progressive neuronal degeneration, thereby eliminating
the main cellular source of p3-Alc peptides. This is also
consistent with other data suggesting that AD may be
divisible into an early Aβ-driven phase (beginning pre-
symptomatically and extending into mild stages of de-
mentia) and a later phase that may be driven by
inflammation and/or tauopathy [25]. Consistent with this
formulation are the recent reports that fibrillar amyloid
burden, as indicated by [11 C]PiB signal, begins accumu-
lating perhaps 10–15 years before symptoms are evident
[26] and then plateaus [27]. This reformulation of AD
pathogenesis also fits with recent data from Rinne and
colleagues, showing that a reduction in the fibrillar amyl-
oid burden caused by ~1.5 yrs of bapineuzumab infusion
had no obvious impact on cognition [28].
If the apparent transient elevation of levels of p3-Alcα

and/or Aβ is due, at least in part, to transient γ-secretase
dysfunction, the identification of this “spike” of dysfunc-
tion could be important for the timing and nature of
interventions aimed at this enzyme. For example, ele-
vated CSF p3-Alcα levels (or the coordinate elevation of
CSF Aβ40 and p3-Alcα levels) could be used as an endo-
phenotype that marks a subpopulation of sporadic MCI/
CDR 0.5/prodomal AD and mild AD subjects that might
be especially amenable to γ-secretase modulators [29].
Again, serial CSF examinations of normal elderly and
presymptomatic and prodromal AD (such as those per-
formed by the ADNI [24]) will be required in order to
determine precisely if and when any CSF p3-Alcα spike
exists and whether the beginning of the p3-Alcα spike
heralds the onset of the Aβ accumulation phase. If so,
then periodic determination of a panel of CSF biomar-
kers (including Aβ42, Aβ40, and p3-Alcα) in populations
at risk might be useful in determining when to initiate
clinical trials of Aβ−lowering agents [25]. This concept
dovetails well with recent evidence showing that dra-
matic changes in CSF Aβ42/Aβ40 are observed in some
subjects, and these dramatic outlier values can be used
to reveal subjects with spontaneous PS1 mutations [30].
Plasma levels of p3-Alcα were parallel to CSF levels in
preclinical stages of disease of subjects (Figure 5). There-
fore peripheral sampling may be informative, thereby
avoiding the inconvenience of serial CSF sampling, al-
though we have not examined the correlation in MCI/
CDR 0.5/prodromal AD and AD subjects. Finally, if the
addition of CSF p3-Alcα determination turns out to con-
tribute useful information about clinical state or patho-
genesis, one might consider adding additional γ-
secretase reaction products to the panel (e.g., ephrin B
[31], ephrin B receptor [32]) in order to establish
whether many or all γ-secretase substrates are implicated
in this putative stage in the molecular pathogenesis of
AD that is characterized by γ-secretase dysfunction,
impaired transmembrane domain peptide clearance, or
both.

Conclusions
The causes of sporadic AD may be various, and some clin-
ical populations with sporadic mild cognitive impairment
(also known as CDR0.5 and prodromal AD) and mild AD
showed an increase in the CSF levels of transmembrane
domain peptides derived from integral membrane proteins
such as Alc and APP. The CSF p3-Alcα levels paralleled the
plasma levels, indicating that peripheral information might
reflect the pathological state in brain, at least where γ-
secretase malfunction is concerned. This endophenotype
may caused by (1) disturbed processing of APP and Alc by
γ-secretase; (2) a reduction in clearance mechanism of
these peptides; or (3) both. Patients in this category might
be especially responsive to drug therapeutics aimed at
modulation of γ-secretase function and/or transmembrane
domain peptide clearance.

Methods
CSF collection
CSF collection was approved by the ethical board at each
institution, and each subject underwent a standard lumbar
puncture (LP) while in the lateral decubitus position. The
subjects at Washington University in St Louis underwent
lumbar puncture at a specific time of day (8 AM) and after
an overnight fast. After the disposal of the first 1 mL of
CSF, the remaining fluid was collected in polypropylene
tubes. Tubes were subjected to centrifugation (1,000 x g
for 10 min at 4°C) to remove any debris and then stored in
small aliquots at −80°C. Alzheimer's disease was clinically
diagnosed based on two major criteria: Diagnostic and
Statistical Manual Disorders; 4th Edition (DSM-IV) and
the National Institute of Neurological and Communica-
tional Disorders and Stroke - Alzheimer's Disease and
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Related Disorders Association (NINCDS-ADRDA) criteria.
In one US cohort (Table 1; Cohort 2), complete details of
collection protocols were provided in a previous report
[14]. CDR 0 subjects in this US cohort were verified as
controls with CSF Aβ42 >500 pg/mL, which suggests ab-
sence of amyloid plaques [19]. In cohort 3 (Table 3), the
clinical diagnoses of patients with FTLD were made on the
basis of established clinical criteria [7].
Subject characteristics and data are summarized in

Table 1. A detailed description of all subjects (including
their clinical descriptions and raw values for p3-Alcα,
Aβ42 and Aβ40) are provided in the (Additional file 3,
Tables S1, Additional file 3, Tables S2, Additional file 3,
Tables S3, Additional file 3, Tables S4).

Quantification of p3-Alcα and Aβ in CSF with ELISA
We used a quantitative ELISA system for total p3-Alcα
as described [15]. In brief, a 25 μL aliquot of CSF was
diluted 10-fold for the measurement of p3-Alcα and
Aβ42, and 10 μL of CSF was diluted 25-fold for measure-
ment of Aβ40. Diluent was PBS containing 1% (w/v)
BSA and 0.05% (v/v) Tween-20. To remove debris, the
samples (250 μL) were centrifuged at 15,000 x g for
10 min. The supernatant (100 μL) was assayed in du-
plicate using synthetic p3-Alcα35 peptide as a standard.
Aβ40 and Aβ42 levels were measured according the
instructions of the respective manufacturers (IBL,
Fujioka Japan for cohort 1; INNOTEST, Innogenetics,
Ghent Belgium for cohort 2; Wako Pure Chemical In-
dustries, Osaka Japan for cohort 3). All analyses were
performed with operators blinded to diagnosis until data
tables were generated. Diagnoses and data tables were
exchanged among the authors at the time of unblinding.

Additional files

Additional file 1 Figure S1. Difference between male and female
subjects for p3-Alcα and Aβ40 levels. Subjects in respective cohorts are
analyzed for p3-Alcα and Aβ40 levels in different gender. F, female
subjects; M, male subjects. Bars indicate average. No significance, using
the Dunn's multiple comparisons test following the Kruskal-Wallis test,
was detected for p3-Alcα and Aβ40 levels between male and female
subjects in respective CDR and OND.

Additional file 2 Figure S2. Difference between ApoE4 carriers and
non-carriers for p3-Alcα and Aβ40 levels of cohort 3. ApoE4 carriers
(+) and non-carriers (−) are compared for p3-Alcα and Aβ40 levels.
Nosignificance, using the Dunn's multiple comparisons test following the
Kruskal-Wallis test, was detected for p3-Alcα and Aβ40 levels between ApoE4
carriers and non-carriers.

Additional file 3 Table S1. Details of individual subjects in Cohort 1
(Japanese cohort) Table S2. Details of individual subjects in Cohort
2 (US cohort) Table S3. Details of individual subjects in Cohort 3
(Japanese cohort) Table S4. Details of individual subjects in Cohort
4 (Australian cohort).
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