
Tamayev and D’Adamio Molecular Neurodegeneration 2012, 7:19
http://www.molecularneurodegeneration.com/content/7/1/19
RESEARCH ARTICLE Open Access
Inhibition of γ-secretase worsens memory deficits
in a genetically congruous mouse model of
Danish dementia
Robert Tamayev† and Luciano D’Adamio*†
Abstract

Background: A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of
amyloid-β precursor protein (APP) processing, which is genetically linked to Alzheimer’s disease (AD) pathogenesis.
The FDD mutation leads to a loss of BRI2 protein and to increased APP processing. APP haplodeficiency and
inhibition of APP cleavage by β-secretase rescue synaptic/memory deficits of a genetically congruous mouse model
of FDD (FDDKI). β-cleavage of APP yields the β-carboxyl-terminal (β-CTF) and the amino-terminal-soluble APPβ
(sAPPβ) fragments. γ-secretase processing of β-CTF generates Aβ, which is considered the main cause of AD.
However, inhibiting Aβ production did not rescue the deficits of FDDKI mice, suggesting that sAPPβ/β-CTF, and not
Aβ, are the toxic species causing memory loss.

Results: Here, we have further analyzed the effect of γ-secretase inhibition. We show that treatment with a γ-secretase
inhibitor (GSI) results in a worsening of the memory deficits of FDDKI mice. This deleterious effect on memory correlates
with increased levels of the β/α-CTFs APP fragments in synaptic fractions isolated from hippocampi of FDDKI mice, which
is consistent with inhibition of γ-secretase activity.
Conclusion: This harmful effect of the GSI is in sharp contrast with a pathogenic role for Aβ, and suggests that
the worsening of memory deficits may be due to accumulation of synaptic-toxic β/α-CTFs caused by GSI
treatment. However, γ-secretase cleaves more than 40 proteins; thus, the noxious effect of GSI on memory may
be dependent on inhibition of cleavage of one or more of these other γ-secretase substrates. These two
possibilities do not need to be mutually exclusive. Our results are consistent with the outcome of a clinical trial
with the GSI Semagacestat, which caused a worsening of cognition, and advise against targeting γ-secretase in
the therapy of AD. Overall, the data also indicate that FDDKI is a valuable mouse model to study AD pathogenesis
and predict the clinical outcome of therapeutic agents for AD.
Background
AD is characterized by amyloid deposition of Aβ peptides
that derive from sequential cleavage of APP by β- and
γ-secretases [1,2]. Mutations in APP cause familial AD
(FAD) [3]. Familial dementia is also caused by muta-
tions in genes that regulate APP processing. These in-
clude the PSEN1/2 genes, which code for the catalytic
component of the γ-secretase, and the BRI2/ITM2b
gene, whose protein product BRI2 binds APP and inhi-
bits APP processing [3-10]. Although the familial cases
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caused by APP/PSEN mutations are classified as FAD
and those caused by mutations in BRI2/ITM2b as Familial
Danish or British dementias (FDD or FBD), recent evidence
suggest that FBD and FDD share with FAD a pathogenic
mechanism involving synaptic-toxic APP metabolites
released during memory acquisition [11-16].
The prevailing pathogenic model for these dementias,

the amyloid cascade hypothesis, posits that amyloid
peptides, in forms of either amyloid plaques or oligo-
mers, trigger dementia. In the case of AD, the amyloid
peptide is Aβ, which is a part of APP and is also present
in normal individuals; in the case of FDD and FBD the
amyloidogenic peptides, called ADan and ABri respect-
ively, are generated from the mutant BRI2 proteins
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Figure 1 Inhibiting γ-secretase does not rescue the memory
deficit of FDDKI mice. a. FDDKI and WT mice were cannulated. Four
weeks after cannulation mice were subjected to a NOR test.
Untreated WT and FDDKI mice spent the same amount of time
exploring the two identical objects on day 1. b. WT mice spent more
time exploring the novel object 24 hours later, showing normal
object recognition (discriminatory ratio=0.63), while FDDKI mice
present amnesia and do not distinguish the new object from the old
one (discriminatory ratio=0.5). c. A week after the first NOR, mice
were injected in the lateral ventricle with 1μl of PBS/3μM
compound-E. Injections were performed 1 hr prior to the training
section, which shows that both treated groups explore equally the
two identical objects. d. The following day, 1 hr before testing mice
were injected in the lateral ventricle with 1μl of PBS/3μM
compound-E. The GSI neither rescued the memory deficit of FDDKI

mice nor it changed memory of WT animals.
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[4,10] and are not present in normal individuals. Not-
ably, the FDD amyloid plaques contain both Aβ and
ADan. Based on the amyloid cascade hypothesis [17],
transgenic mice carrying mutant APP, PSEN1/2 or
BRI2/ITM2b are used to model these dementias, as
over-expression is necessary to reproduce amyloidosis
[18]. However, over-expression of mutant genes pro-
duce harmful effects unrelated to AD leading to errone-
ous information concerning pathogenesis and therapy
of human diseases.
To avoid artifacts of over-expression, we generated a

knock-in mouse model of FDD (FDDKI) that, like FDD
patients [10], carries a wild type Bri2/Itm2b allele and
the other with the Danish mutation [19]. FDDKI mice de-
velop progressive synaptic and memory deficits due to
loss of Bri2, but do not develop amyloidosis [13]. BRI2
binds to APP and inhibits cleavage of APP by secretases
[6-9]. Owing to the loss of BRI2, processing of APP is
increased in FDD [11,12]. Remarkably, memory and syn-
aptic deficits of FDDKI mice require APP [12], and more
specifically processing of APP by β-secretase during syn-
aptic plasticity and memory acquisition [15,16]. The two
products of β-processing of APP are sAPPβ and β-CTF.
The latter is processed by γ-secretase to yield Aβ. Con-
trary to the amyloid hypothesis of AD pathogenesis, in-
hibition of γ-secretase did not ameliorate synaptic/
memory deficits of FDDKI mice [15,16]. Overall, these
results provide genetic evidence that APP and BRI2
functionally interact and that APP mediates FDD neuro-
pathology, and suggest that sAPPβ and/or β-CTF, rather
than Aβ, are the toxic species causing dementia. Here,
we have evaluated further the role of γ-secretase in the
pathogenesis of memory deficits of FDDKI mice.

Results
Inhibiting γ-cleavage of APP does not rescue the memory
deficit of FDDKI mice
To test the role of γ-secretase in the pathogenesis of aging-
dependent memory deficits developed by FDDKI mice [13],
a cannula was surgically implanted in the lateral ventricle of
a cohort of 9-month-old FDDKI mice and WT littermates.
Four weeks post-surgery, we analyzed the memory deficits
of FDDKI mice using novel object recognition (NOR), a
non-aversive memory test that relies on the mouse’s natural
exploratory behavior. Prior to the NOR tests, open field
studies showed, as previously reported [13], that FDDKI

mice have no defects in habituation, sedation, risk assess-
ment and anxiety-like behavior in novel environments. First,
the mice were studied without treatments. The NOR test
showed that during training, FDDKI and WT mice spent
the same amount of time exploring two identical objects
(Figure 1a). The following day, when one of the two old
objects was replaced with a new one, WT mice preferen-
tially explored the novel object; on the other hand FDDKI
mice spent the same amount of time exploring the two
objects as if they were both novel to them, showing that
they had no memory of the objects from the previous day
(Figure 1b). This data further confirms the amnesia caused
by the FDD mutation in one of the two Bri2/Itm2b mouse
alleles.
One week later, we tested the mice again to determine

whether the GSI compound-E could rescue this amnesic
phenotype. To this end, these same animals were
injected 1 hr before the training with 1μl of a 3μM solu-
tion of compound-E in PBS. Again, both treated WT
and FDDKI mice spent similar times exploring the two
identical objects on day 1 (Figure 1c). One day later,
mice were again injected with 1μl of a 3μM solution of
compound-E in PBS 1 hr before the testing section with
the new object. In agreement with what we have previ-
ously shown [15,16] the GSI neither improved memory
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of FDDKI mice nor altered performance of WT animals
(Figure 1d).

Inhibiting γ-secretase worsens the memory deficit of
FDDKI mice
In the NOR paradigm used, the memory for the old
objects is tested 24 hrs after the initial exposure to these
objects. With this delay, FDDKI mice show complete am-
nesia. We tested whether younger FDDKI mice show
memory deficits when the novel object is showed to the
Figure 2 Younger FDDKI mice do not present novel object
recognition deficits with short retention time. a. Also this cohort
of cannulated WT and FDDKI mice spent the same amount of time
exploring the two identical objects in the training section. b. Both
WT and FDDKI mice spent more time exploring the novel object 4
hours later, showing that 7-month-old FDDKI mice have normal
object recognition when the test trial is performed with short (4
hours) retention times. c. Both WT and FDDKI mice spent similar time
exploring the objects, showing that the genotype does not affect
the exploratory activity of the mice.
mice four hours after the training trial with the two identi-
cal objects. Cannulas were surgically implanted in the lat-
eral ventricle of a new cohort of 5/6-month-old FDDKI

mice and WT littermates. At this age, FDDKI mice already
show memory deficits [13]. Three weeks after the surgery,
we performed a NOR experiment with a 4 hours delay be-
tween the training test with the two identical objects, and
Figure 3 Inhibiting γ-secretase worsens the memory deficit of
FDDKI mice. Mice were injected in the lateral ventricle with either
1μl of PBS or 1μl of PBS/3μM compound-E. Mice where injected
once, 1 hour prior to the training. a. FDDKI mice, regardless of
whether they were injected with vehicle alone of GSI, spent the
same amount of time exploring the two identical objects in the
training trial. b. FDDKI mice injected with PBS spent more time
exploring the novel object 4 hours later, showing normal object
recognition, while FDDKI mice treated with GSI present a statistically
significant novel object recognition deficit. c. There is no statistically
significant difference in exploratory activity between treated and
untreated FDDKI mice.
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the test trial with the new object. Again, during training
FDDKI and WT mice explored the two identical objects
equally (Figure 2a). When these mice were tested four
hours later with the new object, both 6/7-month-old
FDDKI and WT mice, preferentially explored the novel ob-
ject (Figure 2b, c) and spend similar total times exploring
each object (Figure 2c). Thus, in this experimental para-
digm younger FDDKI mice show no memory deficits.
Having established that inhibition of γ-secretase does

not ameliorate memory deficits of FDDKI mice (Figure 1d
and [15,16]), we took advantage on this experimental set-
ting in which FDDKI mice perform equally well as WT
mice, to determine whether GSI could have a detrimen-
tal effect on memory. To this end, the day after the first
NOR test shown in Figure 2, FDDKI mice were injected
once, one hour before the training test, with either 1μl of
PBS or 1μl of a 3μM solution of compound-E in PBS.
GSI treated mice explored the two identical objects simi-
larly to the PBS-treated animals (Figure 3a). When these
mice were subjected to the trial test with the new object,
GSI-treated FDDKI mice showed a statistically significant
memory deficit as compared to vehicle-treated FDDKI

mice (Figure 3b, c). Overall, these data show that inhib-
ition of γ-secretase produces a worsening rather than
amelioration of the memory deficit of FDDKI mice. These
data are consistent with the Phase III clinical trial with
the GSI Semagacestat in AD patients.

Inhibiting γ-secretase causes accumulation of
APP-COOH-terminal fragments
The dose of GSI injected (1μl of a 3μM solution) was
chosen based on the following rationale. The IC50 for com-
pound-E is ~240/370 pM (see manufacturer’s website). We
Figure 4 Inhibition of γ-secretase causes an accumulation of β-CTF an
synaptosomes preparations from 4 FDDKI mice treated with GSI for 5 hrs an
APP and CTFs. b. Graph representing quantization of quadruplicate sample
an arbitrary value of 100. The amounts of β-CTF and α-CTF in treated samp
fractions from GSI treated FDDKI mice express significantly more α-CTF (P=0
levels of mAPP are present in both groups. c. The α-CTF/mAPP and β-CTF/m
samples (P=0.035 and P=0.02, respectively. d. Synaptic fractions from both
mBri2. e. Quantization of mBRI2 levels in quadruplicate samples.
have estimated that after injection compound-E is diluted
in the CSF of the lateral ventricles ~ 200 folds (to approxi-
mately 15 nM, which is ~ 50 folds the IC50). Considering
that clearance and distribution of the drugs in various area
of the CNS further dilutes the GSI, it can be safely pre-
sumed that the concentration of the GSI in the hippocam-
pus of mice during the course of the experiment was not
excessively high. To determine whether this GSI dosage was
sufficient to yield some level of inhibition of γ-secretase ac-
tivity, we measured β-CTF and α-CTF, which increase when
γ-secretase is inhibited. Because novel object recognition is
a hippocampal-dependent memory task and synaptic activ-
ity is associated with learning and memory, we measured
the levels of these APP fragments in purified hippocampal
synaptosomes. As shown in Figure 4a, b, the levels of both
β-CTF and α-CTF were significantly increased in mice trea-
ted for 5h with compound-E as compared to untreated ani-
mals. In contrast, the levels of mature APP (mAPP,
Figure 4a, b) and mature Bri2 (mBri2, Figure 4d, e) were
unaffected by the GSI. The increase in APP-CTFs in hippo-
campal synaptic preparations resulted in significantly higher
β-CTF/mAPP and α-CTF/mAPP ratios in GSI treated mice
as compared to control mice (Figure 4c). These data indi-
cate that injection of 1μl of a 3μM solution of compound-E
was sufficient to measurably inhibit γ-secretase activity and
processing of β-CTF and α-CTF by γ-secretase.

Discussion
We have previously shown that the synaptic plasticity
and memory deficits in FDD are mediated through pro-
duction of sAPPβ and/or β-CTF during LTP and mem-
ory acquisition. The failure of GSI to rescue the deficits
of 9/10-month-old FDDKI mice ([15,16] and Figure 1d)
d α-CTF in hippocampal synaptic preparations. a. Hippocampal
d 4 FDDKI vehicle-treated animals (Control) were analyzed by WB for
s. The levels of β-CTF and α-CTF in vehicle-treated mice were assigned
les were expressed as a % of the levels in the control. Synaptic
.0004) and β-CTF (P=0.0047) than vehicle-treated samples. Similar
APP ratios are increased in treated mice compared to vehicle-treated

GSI treated and vehicle-treated FDDKI mice express similar levels of
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suggests that Aβ, P3 and AID/AICD, the metabolites
derived from γ-cleavage of APP (Figure 5a, b), are not
involved in these pathogenic processes. Younger FDDKI

mice showed no memory deficits when subjected to
NOR tests with a shorter (4 hours) retention time.
Interestingly, GSI treatment of these mice provoked a
memory deficit, which correlates with an accumulation
of β-CTF and α-CTF. Altogether, the data indicate that
reducing γ-secretase activity is detrimental rather than
beneficial in our mouse model of dementia. The evi-
dence that PSEN1 and PSEN2 FAD mutations cause
loss of γ-secretase function and that loss of Presenilins’
function cause synaptic plasticity deficits, memory
Figure 5 Models explaining how GSI treatment leads to
memory deficits. GSI treatment causes accumulation of β-CTF (a)
and α-CTF (b). One or both of these APP metabolites may exert a
synaptic-toxic activity leading to worsening of memory. This model
also suggests that the products of γ-processing of β-CTF and α-CTF
(Aβ, the APP intracellular domain AID/AICD, and P3) do not play a
major role in the pathogenesis of memory loss. (c) γ-secretase
cleaves more than 40 substrates (indicated as GSS). These cleavages
release an Aβ/P3 like soluble peptide (GSS-sP) and an intracellular
domain peptide (GSS-ICD). The inhibition of γ-cleavage of these
other substrates will lead to a reduction in GSS-sP and GSS-ICD and
an accumulation of GSS. These changes for one or more of these
other GSS may participate in or cause the worsening of memory loss
in FDDKI mice.
defects and neurodegeneration in mice [20-23] is con-
sistent with these results.
The accumulation of β-CTF and α-CTF caused by GSI

treatment may prompt worsening of memory in FDDKI

mice (Figure 5a, b). However, γ-secretase cleaves more than
40 substrates. Therefore, the toxic effect caused by GSI
treatment may arise from inhibition of processing of other
γ-secretase substrates (Figure 5c). These two hypotheses do
not need to be mutually exclusive. Our data are concordant
with two other set of evidence. First, a phase III clinical trial
with Semagacestat, a γ-secretase inhibitor, was halted be-
cause Semagacestat rather than slowing disease progression
caused a worsening of clinical measures of cognition and
the ability to perform activities of daily living. Second, pro-
longed (8 days) treatment with GSIs produced no positive
effects on memory deficits of older APP transgenic mice,
and induced cognition deficits in both young APP trans-
genic mice and mice. These effects also correlated with ac-
cumulation of α/β-CTFs [24].
In conclusion, this study suggests that targeting Aβ

production may be ineffective or, perhaps, detrimental.
Importantly, our results once more show that our FDDKI

model is useful to study pathogenic mechanisms of de-
mentia and to test in preclinical studies the efficacy of
candidate disease modifying drugs for AD.

Material and methods
Mice
Mice were generated and maintained at the Animal facility
of the Albert Einstein College of Medicine. Mice were
handled according to the Ethical Guidelines for Treatment
of Laboratory Animals of Albert Einstein College of Medi-
cine. The procedures were described and approved in ani-
mal protocol number 200404.

Reagents
Compound-e was purchased from (Calbiochem).

Brain cannulation and injections
Dr. Xiaosong Li at the Animal Physiology core of the Albert
Einstein College of Medicine surgically implanted the can-
nula. Compound-E or PBS was delivered at the rate of 1 ml
per minute using a CMA 400 syringe pump.

Open field and novel object recognition
The mice were acclimated to the testing room for 30 min
after being moved. Each mouse was placed into a 40 cm X
40 cm open field chamber with opaque walls, 2ft high.
Each mouse was allowed to habituate to the normal open
field box for 10 min, and repeated again 24 h later, in
which the video tracking system (HVS 2020; HVS Image)
quantified various locomotor parameters: total distance
travelled, number of entries into, distance travelled in, and
time spent in the centre of the locomotor arena. As
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previously reported [13], open field studies showed that
FDDKI mice have no defects in habituation, sedation, risk
assessment and anxiety-like behavior in novel
environments.
Novel object recognition began 24 h after the second

open field session, and was performed as previously
described [13,25]. Briefly, NOR consisted of two sessions,
either 24 h (Figure 1) or 4 h (Figures 2 and 3) apart. In the
first session, the mice were placed into the open field cham-
ber with two identical, non-toxic objects, 12 cm from the
back and sidewalls of the open field box, and 16 cm apart
from each other. A 8 min session, in which the time explor-
ing each object was recorded; an area 2 cm2 surrounding
the object is defined such that nose entries within 2 cm of
the object were recorded as time exploring the object. The
animal was then returned to its home cage, and either 24 or
4 h later, placed into the open field box again. This time,
there were two new objects, one identical to the previous
objects, and one novel object. The mice were given another
6 min to explore, and the amount of time exploring each
object was recorded. Mice that spent <7 s exploring the
objects were omitted from the analysis [25]. Results were
recorded as an object discrimination ratio (ODR), which is
calculated by dividing the time the mice spent exploring a
novel object, divided by the total amount of time exploring
the two objects.
Synaptosomes preparations and Western blot analysis
For synaptic preparations, isolated hippocampi were
homogenized (w/v= 10 mg tissue/100ml buffer) in
Hepes-sucrose buffer (20 mM Hepes/NaOH pH 7.4, 1
mM EDTA, 1 mM EGTA, 0.25 M sucrose) supplemen-
ted with protease and phosphatase inhibitors. Homoge-
nates were centrifuged at 800 g for 10 min. The
supernatant (S1) was separated into supernatant (S2) and
pellet (P2) by spinning at 9,200 g for 15 min. P2 contains
the crude synaptosomal fraction. Synaptosomes fractions
were analyzed by western blot using the following anti-
bodies: α-APP (22C11/Chemicon) to detect mAPP and
imAPP; α-APPCTF (Invitrogen/Zymed) to detect α–CTF
and β-CTF; α-BRI2 (Santa Cruz) to detect mBri2.
Image scanning and analysis
WB images were scanned with Epson perfection 3200
Photo scanner and were analyzed with NIH ImageJ
software.
Statistical analysis
All data are shown as mean s.e.m. Statistical tests
included two-way ANOVA for repeated measures and
t-test when appropriate.
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