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MOLECULAR
NEURODEGENERATION

Does a loss of TDP-43 function cause

neurodegeneration?

Zuo-Shang Xu

Abstract

for testing this hypothesis in the future.

In 2006, TAR-DNA binding protein 43 kDa (TDP-43) was discovered to be in the intracellular aggregates in the
degenerating cells in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), two fatal
neurodegenerative diseases [1,2]. ALS causes motor neuron degeneration leading to paralysis [3,4]. FTLD causes
neuronal degeneration in the frontal and temporal cortices leading to personality changes and a loss of executive
function [5]. The discovery triggered a flurry of research activity that led to the discovery of TDP-43 mutations in
ALS patients and the widespread presence of TDP-43 aggregates in numerous neurodegenerative diseases. A key
question regarding the role of TDP-43 is whether it causes neurotoxicity by a gain of function or a loss of function.
The gain-of-function hypothesis has received much attention primarily based on the striking neurodegenerative
phenotypes in numerous TDP-43-overexpression models. In this review, | will draw attention to the loss-of-function
hypothesis, which postulates that mutant TDP-43 causes neurodegeneration by a loss of function, and in addition,
by exerting a dominant-negative effect on the wild-type TDP-43 allele. Furthermore, | will discuss how a loss of
function can cause neurodegeneration in patients where TDP-43 is not mutated, review the literature in model
systems to discuss how the current data support the loss-of-function mechanism and highlight some key questions

Introduction

Amyotrophic lateral sclerosis (ALS) is a disorder where pro-
gressive degeneration of large motor neurons in the spinal
cord and cerebral cortex leads to paralysis and death [3,4].
Frontotemporal lobar degeneration (FTLD) causes degener-
ation of neurons in frontal and temporal cortices, leading to
deterioration of executive, cognitive and social functions, as
well as loss of emotional control [5]. Although clinically dis-
tinct, a significant overlap exists between these two diseases
in the patient population, resulting in a continuous spectrum
ranging from patients with one disease at either end and
patients with varying degrees of both diseases in the middle
[6,7]. Recent genetic data has reaffirmed the connection be-
tween these two diseases. Some genetic mutations cause one
disease but rarely the other, e.g. SOD1, FUS and TDP-43 for
ALS, and tau, progranulin and CHMP2B for FTLD. Other
mutations cause either or both diseases in the same patient
or family, e,g. ubiquilin 2 and CIORF72. In a significant
population of patients (~95 % ALS and ~50 % FTLD), TDP-
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43 positive intracellular inclusions are present in the CNS
even though the TDP-43 gene is not mutated [8-11], raising
the question of how wild-type TDP-43 is involved in the
pathogenesis of these cases.

TDP-43 is a RNA binding protein containing two RNA-
recognition motifs (RRM), a nuclear localization signal (NLS)
and a nuclear export signal (NES) [12]. The protein is nor-
mally concentrated in the nucleus but also shuttles back and
forth between the nucleus and cytoplasm [13]. TDP-43 is a
global regulator of gene expression and is involved in regula-
tion of transcription and multiple aspects of RNA processing
and functioning, including splicing, stability, transport, trans-
lation and microRNA maturation [14-17]. TDP-43 interacts
with many proteins and RNAs and functions in multi-
protein/RNA complexes [18-21]. TDP-43 maintains its pro-
tein expression at a constant level within a tight range by
auto-feedback mechanisms, which involve TDP-43 binding
to its own 3’ untranslated region [15,22]. Overexpression of
TDP-43 leads to down-regulation of the endogenous TDP-
43 [23,24], and blocking expression of one allele leads to a
compensatory increase in the expression of the other allele
[25-27]. The tight regulation of TDP-43 levels is suggestive
of its crucial role in the functioning of multi-protein/RNA
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complexes, where maintaining a certain stoichiometry be-
tween TDP-43 and the other components may be critical.

Because mutations in TDP-43 lead to ALS, a causal role
of TDP-43 for neurodegeneration is firmly established
[12,28,29]. Therefore, understanding how the mutants
cause neurodegeneration offers a convenient entry point
for exploring how TDP-43 plays this role. The first ques-
tion is whether a gain, a loss of function or a dominant-
negative effect mediates neurotoxicity. A resolution to this
question is of critical importance because it sets the direc-
tion of further research on the disease mechanism and on
the design of therapeutic strategies. To answer this ques-
tion, model systems of both gain or loss of function must
be employed (Table 1). Gain-of-function models are usu-
ally achieved by gene overexpression and loss-of-function
models by gene knockout or knockdown. Based on the
phenotypic readouts, the mechanism whereby the mutants
cause neurodegeneration can be deduced (Table 1).

A gain-of-function (Table 1, GF column) mechanism
includes two scenarios: first, the mutant gene gains a novel
toxic activity that is independent of the normal function of
the gene, and second, the mutant becomes hyperactive in
one of its normal functions leading to toxicity. In the first
scenario, overexpression of the mutant gene, but not the
wild type, will cause the disease phenotype. In the second
scenario, overexpression of either the mutant or wild-type
gene will cause the disease phenotype. In both gain-of-
function scenarios, knockout or knockdown of the gene is
not expected to cause the disease phenotype.

A loss of function (haploinsufficiency; Table 1, LF col-
umn) means that the mutant gene has no function or a
reduced function but does not interfere with the function
of the wild-type allele. In this scenario, neither overexpres-
sion of the mutant nor the wild type is expected to cause
the disease phenotype. But knockout or knockdown repro-
duces the loss of function, and therefore, is expected to
generate the disease phenotype.

A dominant-negative mechanism (Table 1, DN column)
denotes the condition where the mutant allele is dysfunctional
and inhibitory to the function of the wild-type allele. In this

Table 1 Assay for disease mechanism using transgenic
animals

TDP-43
Fly(a) Fish(b) Rod.(c)

Disease mechanism
GF LF DN

Transgene expression

OE mutant + - + + + +
OE WT —/+ - —/+ + + +
KO or KD - + + + + ?

OE = overexpression; KO = knockout; KD = knockdown;

GF = Gain of function; DN = Dominant negative; LF = Loss of function
Rod. = rodents; + = positive for neurological phenotype

- = negative for neurological phenotype; ? = remains to be determined
See the text for detailed explanation and references for the models.

(a) reference [30-34]; (b) reference [35]

(c) reference [12,23-27,36-43]
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scenario, overexpression of the mutant gene is expected to
cause the disease phenotype because it dominant-negatively
inhibits the function of the endogenous wild-type protein. On
the other hand, overexpression of the wild type is generally
not expected to generate the disease phenotype because the
wild-type gene can function normally and does not inhibit the
function of the normal endogenous allele. However, there are
exceptions under certain circumstances, for example, if the
protein functions in a multi-protein complex (see details
below). Knockout or knockdown of the gene is expected to re-
produce the disease phenotype because this reduces the func-
tion of the wild-type gene. Thus, in model systems, the
dominant-negative mechanism can display characteristics of
both a gain and a loss of function—it is a loss of function in
essence, yet its effect can dominate over the endogenous wild-
type allele.

In the case of TDP-43, an abundance of gain-of-function
models have been generated in various species, including
worm, fly, fish and rodents [12]. In all models with rare
exceptions, a consistent finding is that overexpression of
both mutant and wild type TDP-43 can cause a neurode-
generative phenotype (Table 1, TDP-43 columns), thus sup-
porting a gain-of-function mechanism and a potential
overactivation of TDP-43 in the mutants [12]. Loss-of-
function models have also been generated in non-
mammalian species and all except the worm showed neuro-
logical and neurodegenerative phenotypes [30-33,35,44].
The difference between worm and the other species may
reflect some species difference, since TDP-43 is dispensable
for survival in the worm but not so in other species. In gen-
eral, the degenerative phenotypes in the loss-of-function
models appear less overwhelming than the overexpression
models and are often difficult to separate from the develop-
mental effects stemming from a lack of TDP-43 function.
Importantly, there is a lack of evidence in mammalian mod-
els that a loss of TDP-43 function causes neurodegenera-
tion. This is largely due to the failure in generating such a
model using a gene knockout approach [25-27,36]. As a re-
sult, the current literature leans towards a gain-of-function
mechanism as far as the role of TDP-43 in neurodegenera-
tion is concerned.

Yet despite the preponderance of evidence for the gain-
of-function mechanism, it has not been sufficient to rule
out the loss-of-function mechanism, because the gain-of-
function mechanism does not explain well a phenomenon
that is consistently observed in numerous pathological
studies, i.e. the nuclear clearance of TDP-43 that accom-
panies the presence of TDP-43 intracellular aggregates
[1,2,45]. The question whether the depletion of TDP-43 in
the nucleus is consequential in the pathogenesis remains
unanswered. In addition, although the aggregates in the
cytoplasm may generate gain-of-function type of toxicity, it
is also conceivable that the aggregation of TDP-43 renders
TDP-43 non-functional, and as such, causes TDP-43
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dysfunction. In this review, I propose a model that is cen-
tered on the loss-of-function mechanism whereby TDP-43
plays its role in neurodegeneration. I will highlight the evi-
dence in the current literature that is consistent with this
model and the evidence that is still needed from future
experiments to test this model.

A model for the loss of TDP-43 function as a central
mechanism of pathogenesis in human disease

The TDP-43 protein is normally expressed through tran-
scription and translation, and once produced, it regulates
its own expression by a feedback mechanism, ie., upregu-
lating its own expression when the protein level is too low
and inhibiting its expression when the protein level is too
high [15,22-27]. By this auto-regulatory mechanism, the
intracellular level of TDP-43 is maintained within a narrow
range (Figure 1, #1 normal). This tightly maintained TDP-
43 level may be important because TDP-43 functions in
multiprotein/RNA complexes [18-21], where a proper
structure and function of the complex requires a certain
stoichiometric ratio between TDP-43 and its protein and
RNA partners (Figure 1, #1 normal). Such a requirement is
not unique to TDP-43 complexes as it has been demon-
strated in other protein-RNA or protein complexes. For ex-
ample, in the primary micro RNA (pri-miRNA) processing
Drosha complex, overexpression of one subunit DGCR8
leads to an inhibition in the processing activity [46]. As
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another example, in the kinesin-2 heterotrimeric complex
that drives the antegrade transport of late endosomes and
lysosomes, overexpression of one subunit KAP3 inhibited
the transport similar to the KAP3 knockdown [47].

In the disease situation, conditions in patients’ cells be-
come conducive for TDP-43 aggregation. For example,
TDP-43 mutants and its C-terminal fragments associated
with ALS and FTLD have enhanced aggregation propensity
[48-51], and therefore, can drive TDP-43 aggregation. The
aggregation can lead to a reduction in the pool of TDP-43
that can be incorporated into the TDP-43 protein/RNA
complexes (Figure 1, #2 aggregation), thereby reducing the
complex function and leading to neurodegeneration.

In model systems where TDP-43 is overexpressed (Fig-
ure 1, #3), the function of TDP-43 can be inhibited because
an oversupply of exogenous TDP-43 mismatches with a
limited supply of its endogenous interacting protein/RNA
partners, resulting in the formation of incomplete and dys-
functional complexes. Below I highlight the evidence in the
current literature that is consistent with this model and the
future experiments that are need to test this model.

TDP-43 performs functions of vital importance, but the
consequence of its dysfunction in neurodegeneration
remains unclear

A crucial piece of evidence for a loss-of-function mech-
anism would be demonstration that a loss of TDP-43
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Figure 1 Mechanisms that can cause TDP-43 dysfunction in ALS, FTLD and other neurodegenerative conditions. AD means Alzheimer's
disease, PD Parkinson'’s disease, HD Huntington’s disease, LBD Lewy body dementia, DS Down syndrome, HSD hippocampal sclerosis dementia,
FBD familial British dementia, and SCA spinal cerebellar ataxia. See the section subtitled “A model for the loss of TDP-43 function as a central
mechanism of pathogenesis in human disease” for a detailed description of this diagram.
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function can cause neurodegeneration. This has not yet
been experimentally achieved in a convincing manner,
particularly in mammalian species. Knockouts in rodents
cause early embryonic lethality [25-27,36]. Inducible
knockout in adult mice causes a rapid loss of fat tissue
and lethality [36]. These results have not been inform-
ative as to the consequences of TDP-43 dysfunction in
the nervous system. Nevertheless, the severity of the
phenotype in the knockout models suggests a critical
functional importance of TDP-43 in the health and sur-
vival of mammalian cells. Indeed, the conditional knock-
out of TDP-43 in mouse embryonic stem cells causes
cell death [36]. Therefore, it is conceivable that TDP-43
function may also be vital for the survival and function
of neurons. Supporting this notion are the experiments
where TDP-43 knockdown causes morphological abnor-
malities and cell death in cultured neurons [50,52,53]
and a large change in gene expression in cells of the
CNS [15,16].

Experimental data from non-mammalian species have
also been consistent with the critical functional import-
ance of TDP-43. In C. Elegans, TDP-43 deletion mutants
are viable, but show low fertility, slow growth and loco-
motor defects [44]. In Drosophila, TDP-43 knockout
causes abortive embryonic development and lethality
[30,31]. Although some escape the lethality and develop to
adults, they display severe locomotor defects, premature
death and abnormal neuronal morphology [30,31]. Evi-
dence for progressive axonal degeneration and locomotor
defects has also been reported in adult TDP-43 knock-
down flies [32]. In zebrafish, TDP-43 knockdown during
embryonic development causes selective defects in motor
axonal growth and results in motor behavioral abnormal-
ities [35]. These results do not conclusively demonstrate a
role of TDP-43 dysfunction in neurodegeneration in ALS
and FTLD, but do indicate that TDP-43 is important in
the development and functioning of the nervous system,
thus leaving open the possibility that TDP-43 dysfunction
could play a role in neurodegeneration.

How a loss of TDP-43 function explains the pathogenic
mechanism of TDP-43 mutants

Mutations in TDP-43 cause motor neuron degeneration
and ALS [28,29]. The overwhelming majority of the muta-
tions are located in the C-terminal glycine-rich domain
[12], which is unstructured and responsible for interac-
tions with other proteins [17,21,54]. How mutant TDP-43
causes neurodegeneration is not known. Overexpression
models support a gain of function, but the reliance of
overexpression to elicit neurodegenerative phenotypes
risks over-interpretation. A lack of convincing evidence
that TDP-43 levels are elevated in human disease leaves
open the question of whether the results from the overex-
pression models are relevant for the human disease.
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While there is room for doubt for the gain-of-function
mechanism, evidence for the loss-of-function mechanism
is also weak, primarily because few experiments have gen-
erated data directly relevant to this question, especially in
mammalian systems. Nevertheless, reasonable scenarios
for this mechanism can be formulated based on the
current, albeit fragmented and incomplete, experimental
literature. First, wild-type TDP-43 is an aggregation-prone
protein and mutant TDP-43 is even more so [48,51,55].
Therefore, TDP-43 mutants can initiate and drive protein
aggregation, leading to TDP-43 depletion from the cell
nucleus, as has been observed in patients [1,2,56]. In
addition, mutant TDP-43 may have an enhanced suscepti-
bility for polypeptide fragmentation, which generates the
patient-specific 25-kDa fragments [29,57]. These frag-
ments have a high propensity for aggregation [50,55,58]
and can coaggregate with wild-type TDP-43, thereby
sequestering wild-type TDP-43 into the aggregates and de-
pleting TDP-43 from the nucleus [50].

Second, the mutant may be functionally less active or in-
active but may still retain its autoregulation capability. As
a result, the overall TDP-43 level would be maintained but
the function of TDP-43 would be reduced because the
protein expressed from the mutant allele is dysfunctional.
Some experimental data support this scenario. In mice,
overexpression of mutant TDP-43 inhibited the expression
of the endogenous TDP-43 to the same extent as wild type
overexpression [23,37,38], suggesting that the disease-
causing mutants retain their autoregulatory function. In
Drosophila, wild-type TDP-43 is capable of promoting
growth of dendrites and increasing the size of synaptic
terminals at the neuromuscular junction. However, these
activities are lost in the ALS-causing mutants [31,34], sug-
gesting that the mutants have lost some of the wild-type
functions.

Third, mutant TDP-43 may form defective TDP-43 pro-
tein/RNA complexes, thereby poisoning the function of
the complex. In this capacity, the mutant TDP-43 can act
dominant-negatively to inhibit the function of the wild-
type allele. There is evidence that TDP-43 forms a homo-
dimer [59] and that multiple TDP-43 molecules are incor-
porated into each complex [19]. Therefore, if a mutant
TDP-43 molecule were capable of rendering dysfunction
to the whole complex that contains both mutant and
wild-type TDP-43 molecules, then the function of the
wild-type allele would be inhibited.

These scenarios are consistent with a model where TDP-
43 mutants cause a loss of TDP-43 function by a dominant
negative mechanism. Notably, while the first scenario
requires the formation of aggregates for cellular toxicity, the
second and third scenarios make such a requirement un-
necessary. Indeed, in both cellular and animal models, tox-
icity induced by mutant TDP-43 does not require its
aggregation [33,37,39,60].
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How TDP-43 dysfunction could contribute to
neurotoxicity from overexpression of either mutant or
wild-type TDP-43 in model systems

The prevailing interpretation for the observation that
overexpression of mutant TDP-43 causes neurodegenera-
tion is that mutant TDP-43 exert its toxicity by a gain of
function. However, these results are also consistent with a
dominant-negative mechanism, as discussed above (also
see Table 1). The dominant-negative model predicts that
overexpression of the mutant in sufficient quantities will
inhibit the function of the two endogenous wild-type
alleles in the model systems.

A puzzling observation is that overexpression of wild-
type TDP-43 causes similar neurotoxic phenotypes in
model systems [23,33,35,37,38,40-43,60,61]. Because of
the autoregulatory mechanism, overexpression of human
wild-type TDP-43 leads to a suppression of the endogen-
ous TDP-43 [23,24]. This has led to a proposal that a loss
of the endogenous TDP-43 caused neurotoxicity [24].
While this proposal can reasonably explain the toxicity of
the mutants on the premise that they are dysfunctional,
the toxicity from the wild-type TDP-43 poses a problem
because several studies have shown that the human wild-
type TDP-43 gene can substitute the function of its
homologue in species as distant as Drosophila and C. Ele-
gans [30,44]. A more plausible explanation can be derived
from the fact that TDP-43 functions in multiprotein/RNA
complexes, whose function may depend on a certain stoi-
chiometric composition of the different protein/RNA
components. Overexpression of wild-type TDP-43 pro-
vides an amount of TDP-43 in excess of the other compo-
nents that form the complexes, thereby sequestering those
components into incomplete and dysfunctional complexes
(Figure 1, #3 overexpression). Therefore, both overexpres-
sion of the mutants and the wild-type TDP-43 can cause
neurodegeneration by dominant-negatively inhibiting the
normal function of TDP-43 complexes so long as it inter-
acts with two or more components in the complexes sim-
ultaneously and with near equal binding affinities.

While the above interpretation of the literature remains
to be confirmed by further experimentation, some of the
predictions from this loss-of-function/dominant-negative
hypothesis are supported by observations in the current lit-
erature. First, overexpression of mutant should be more po-
tent in causing neurodegeneration than overexpression of
the wild type, which has been the case in several overex-
pression models [35,40,60,61]. Although this finding is not
inconsistent with the gain-of-function mechanism, the re-
sult can also be explained readily by the dominant-negative
mechanism outlined above. Overexpression of mutants can
inhibit normal TDP-43 function by three mechanisms: (1)
displacing the endogenous TDP-43 through the autoregula-
tion mechanism, (2) inserting itself into the TDP-43 com-
plexes in the place of the wild-type protein, and (3) forming
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dysfunctional complexes by disruption of the stoichiometry
between TDP-43 and other protein/RNA components. In
contrast, overexpression of the wild-type TDP-43 can in-
hibit TDP-43 function only through the third mechanism
because unlike the mutant protein, it has full function.
Therefore, to inhibit TDP-43 function to the same degree, a
higher level of expression will be required for the wild-type
TDP-43 than the mutant.

Second, if the dominant-negative hypothesis is correct,
overexpression and knockout or knockdown of the gene
can cause similar phenotypes. Currently, data from mam-
malian species is lacking to address this point. However,
evidence can be drawn from other species. For example,
overexpression of either mutant or the wild-type TDP-43 in
Drosophila motor neurons causes progressive locomotor
defects and a shortening of lifespan [33]. These phenotypes
are similar to those caused by TDP-43 knockdown [33]. As
another example, expression of human TDP-43 mutants
but not the wild type in zebrafish embryos compromised
motor axonal growth and caused locomotor defects. Simi-
larly as in flies, knocking down the endogenous TDP-43
caused the same phenotypes [35]. Importantly, the pheno-
types in the knockdown fish are rescued by the expression
of human wild-type TDP-43 but not the mutants. These
results are consistent with the view that the ALS-relevant
TDP-43 mutants are dysfunctional and are capable of inhi-
biting TDP-43 function in a dominant negative manner.

Third, the loss-of-function/dominant-negative hypoth-
esis predicts that ALS-causing mutants should be loss-of-
function alleles. As discussed above, the observations that
the mutants lost their ability to stimulate the growth of
dendrites and axons in flies [31,34,35] and their inability
to rescue phenotypes from TDP-43 knockdown in zebra-
fish [35] supports the loss-of-function proposition. How-
ever, key evidence from mammalian species remains to be
produced.

While the case for a loss of function by a dominant-
negative mechanism can be argued for, it may be overly
simplistic to argue that a gain of function does not contrib-
ute to the phenotypes caused by TDP-43 overexpression in
the model systems. Some evidence indicate that TDP-43 is
capable of causing cellular toxicity by a gain of function
under ectopic and overexpressed conditions. For example,
TDP-43 causes toxicity in yeast, which does not possess an
endogenous TDP-43 homologue [62]. Similarly, TDP-43 is
not essential in C. Elegans, yet overexpression of human
TDP-43 can still cause toxicity that is not observed in
knockouts [44,61,63,64]. Therefore, in model systems where
TDP-43 performs vital functions, phenotypes caused by
TDP-43 overexpression are likely derived from both an
interference of endogenous TDP-43 function and a gain of
function. Given the complexity in the protein/RNA inter-
action networks of TDP-43, perhaps this would not be sur-
prising. Overexpression is likely to generate new aberrant
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interactions as well as to disrupt the authentic interactions
that are vital for the cell. Therefore, disentangling these
effects will be complex in the overexpression models.

What is the role of wild type TDP-43 in human
neurodegeneration

While the case for a loss of function in the TDP-43
mutants and in the overexpression model systems can be
made, can the loss-of-function mechanism play a role in
patients where TDP-43 is not mutated and not overex-
pressed? This is an important question because the vast
majority of patients with ALS and FTLD-TDP do not have
TDP-43 mutations. The answer to this question is yes be-
cause even though the primary trigger of the degenerative
process lies not in TDP-43 but elsewhere, the same kind
of TDP-43 aggregation and nuclear clearance is observed
in the CNS of these patients [1,2,45] (Figure 1). The loss-
of-function/dominant-negative model will predict that the
nuclear clearance and the cytoplasmic aggregation of
TDP-43 are probably a significant contributor to neurode-
generation by causing a loss of TDP-43 function. However,
the experimental data for testing this prediction is scarce.
In Drosophila and zebrafish, knockout or knockdown of
TDP-43 produced similar neurodegenerative phenotypes
[33,35]. However, further analysis is needed to differentiate
the effects of TDP-43 dysfunction on neurodegeneration
from those on neurodevelopment, and the relevance of
these observations to human neurodegeneration remains
to be established. A mammalian model with TDP-43 dys-
function in the mature CNS is urgently needed to under-
stand the effects from a loss of TDP-43-function.

Based on the loss-of-function/dominant-negative hy-
pothesis outlined above, what triggers TDP-43 aggregation
will be one of the most intriguing and important questions
in understanding the pathogenic mechanisms in ALS and
FTLD. Recent investigations have shown that multiple
causes can trigger secondary TDP-43 aggregation and nu-
clear clearance. These causes can be classified into several
categories: (1) Gene mutations that enhance the mutant
protein aggregation propensity and cause ALS-FTLD with
TDP-43 aggregation. Examples in this category include
VCP, optineurin, dynactin, ataxin 2 and ubiquilin 2. All
the mutant proteins form aggregates and some form coag-
gregates with wild-type TDP-43 [9,65-69]. The mechanism
whereby these mutants cause TDP-43 aggregation is not
understood. One possibility is that the aggregation of
these proteins weakens the capacity of cellular proteostasis
[70], which creates an environment conducive for
aggregation-prone proteins such as TDP-43 to aggregate.
Some of the proteins such as VCP and ubiquilin may be
involved in TDP-43 degradation [71,72]. Therefore, muta-
tions in these proteins may directly alter the TDP-43
economy and cause TDP-43 aggregation. (2) Gene muta-
tions that cause ALS and FTLD with TDP-43 aggregation,
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but the mutant proteins are not involved in protein aggre-
gation themselves. Examples in this category include pro-
granulin, angiogenin and CO9ORF72 [1,11,73,74]. At
present, it is not known how these mutations lead to
TDP-43 aggregation. (3) Traumatic brain injury that lead
to ALS-FTLD without gene mutations. Repetitive trau-
matic brain injury has been shown to be associated with
ALS and FTLD with intracellular TDP-43 aggregation
[75,76]. (4) Other neurodegenerative diseases that are not
ALS-FTLD but trigger secondary TDP-43 aggregation.
Examples of this category include some of the most com-
mon neurodegenerative diseases such as Alzheimer’s dis-
ease, Parkinson’s disease and numerous others [8,77,78]
(Figure 1). Aggregation of TDP-43 in these cases may also
be attributed to a disruption of proteostasis environment
due to the aggregation of other proteins, although direct
experimental evidence for this hypothesis is not yet in ex-
istence. (5) Unknown causes in sporadic ALS and FTLD
cases. Some of the speculated causes include genetic pre-
disposition in combination with environmental stress, e.g.
environmental toxins, trauma and high physical activity
[79-82].

Recent studies have suggested that a redistribution of
TDP-43 to the cytoplasm may be a precursor to TDP-43
aggregation. In ALS and FTLD patients, some neurons
show an increase in cytoplasmic TDP-43 immunoreactiv-
ity with diffused or granular appearance, which may repre-
sent an early stage of TDP-43 aggregation [83-86]. The
cause for the cytoplasmic redistribution is not clear. How-
ever, a recent study demonstrate that a single traumatic
brain injury can be followed by a persistent increase in the
cytoplasmic levels of TDP-43 [87], suggesting that injuries
to the CNS can be an initial trigger for increased levels of
cytoplasmic TDP-43. In model systems, the redistribution
of TDP-43 can be triggered by various stresses, including
neuronal injury [88-90], overexpression of disease-
associated mutant TDP-43 and VCP [91-93], oxidative
stress [93,94] and proteasome inhibition [53]. The func-
tional consequence of the cytoplasmic localization of
TDP-43 will require further characterization. Neverthe-
less, some studies suggest that the cytoplasm-localized
TDP-43 is recruited to stress granules before being trans-
formed into aggregates that can persist independent of
stress granules [93-95]. Another study demonstrated that
a modest knockdown of TDP-43 exacerbated, rather than
alleviated, cell death that is induced by proteasome inhib-
ition and associated with TDP-43 cytoplasmic transloca-
tion [53], suggesting that any toxicity that might be
associated with TDP-43 cytoplasmic translocation is
derived from a loss of TDP-43 function. These data are
consistent with the hypothesis that an increased cytoplas-
mic level of TDP-43, which follows the initial cellular
stress, can lead to TDP-43 aggregation and nuclear
depletion.
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Therapeutic implications from the dominant-negative
model

Discussion on therapeutic implication based on the loss-
of-function hypothesis may be premature since the hy-
pothesis remains to be tested. However, such an exercise
may be helpful for illustration of the critical importance
for a resolution of this question. In the case of a gain of
function, strategies that reduce the function should be ef-
fective. This may be achieved by lowering the protein
levels through an inhibition of its synthesis or a stimula-
tion of its degradation. If the toxic activity is known, strat-
egies that inhibit the specific toxic activity may also be
effective. In the case of a loss of function, on the other
hand, strategies that increase the function should be ef-
fective. This may be achieved by increasing expression
and stability of the protein, or stimulating its activity.

The therapeutic strategy for the dominant negative
mechanism differs from both purely gain- or loss-of-
function mechanisms and will be most challenging. We
cannot simply increase the level of TDP-43 because un-
controlled increase of TDP-43 may inhibit the function
of TDP-43 rather than improving it. High levels of TDP-
43 could also further accelerate its aggregation and pro-
duce aberrant interactions with other proteins and RNA.
Moreover, we do not understand why TDP-43 stays in
the cytoplasm and becomes depleted from the nucleus
in the disease. Therefore, it is not clear whether a simple
increase of TDP-43 will replenish its level in the nucleus.
In the case of mutant TDP-43, allele-specific inhibition
of the mutant TDP-43 may be helpful but may not be
sufficient to compensate for the lost function of the mu-
tant allele. If the hypothesis that TDP-43 aggregation
drives nuclear depletion of the TDP-43 is correct, pre-
venting or reversing the aggregation may be a rational
and safe approach to mitigate the loss of TDP-43 func-
tion. To achieve this, we need to understand how TDP-
43 aggregation is triggered and propagated. We also
need to understand the TDP-43 aggregation process at
molecular and structural levels. Alternatively, strategies
that enhance the function of TDP-43 without resorting
to increase the protein level, or retain TDP-43 in the nu-
cleus may also be effective.

Conclusions

TDP-43 aggregation and nuclear depletion have been
observed widely in neurodegenerative diseases. The role
of TDP-43 in neurodegeneration remains to be defined.
Chief among the questions is whether a gain of function, a
loss of function or a dominant-negative mechanism is re-
sponsible for neurotoxicity. The answer to this question is
of critical importance because it guides the future direc-
tion of research and sets the foundation for therapeutic
strategies. Current experimental data from model systems
has been predominantly invoked to support the gain-of-
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function mechanism. However, a careful review of the data
suggests that a loss of TDP-43 function caused by its
mutations, its aggregation and nuclear depletion, and the
inhibition of TDP-43 function by a dominant-negative
mechanism in the overexpression models, are at least as
plausible as the gain-of-function theory, if not more so.
Therefore, in our future research, we need to gain a more
detailed understanding of the normal function of TDP-43,
particularly in the cells of the CNS. We need models of
loss of TDP-43 function in the CNS, particularly in mam-
malian species, to understand the consequence of TDP-43
dysfunction. In such a pursuit, models with a partial loss
of TDP-43 function may be especially desirable because in
humans, it is unlikely that the TDP-43 function is totally
lost. We need evidence from human diseases to determine
whether the conditions are more in tune with a gain or a
loss of TDP-43 function. Lastly, we need to design strat-
egies to address the difficult problem of how to restore
the normal levels of TDP-43 function as a therapy.
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