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Abstract

Background: The WldS mouse mutant ("Wallerian degeneration-slow”) delays axonal degeneration in a variety of
disorders including in vivo models of Parkinson’s disease. The mechanisms underlying WldS -mediated axonal
protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing
Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that
catalytically active Nmnat1 protects dopaminergic neurons from toxin-mediated axonal injury.

Results: Using mutant mice and lentiviral transduction of dopaminergic neurons, the present findings demonstrate
that WldS but not Nmnat1, Nmnat3, or cytoplasmically-targeted Nmnat1 protects dopamine axons from the
parkinsonian mimetic N-methyl-4-phenylpyridinium (MPP+). Moreover, NAD+ synthesis is not required since
enzymatically-inactive WldS still protects. In addition, NAD+ by itself is axonally protective and together with WldS is
additive in the MPP+ model.

Conclusions: Our data suggest that NAD+ and WldS act through separate and possibly parallel mechanisms to
protect dopamine axons. As MPP+ is thought to impair mitochondrial function, these results suggest that WldS

might be involved in preserving mitochondrial health or maintaining cellular metabolism.
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Background
Parkinson’s disease (PD) is the second most common
neurodegenerative disorder in the U.S., affecting 1-2% of
people over the age of 55. Characterized by loss of
dopaminergic neurons in the substantia nigra (SN) [1,2],
the cardinal motor symptoms of PD include resting tre-
mor, bradykinesia, rigidity, and abnormal gait [3,4].
Another characteristic of PD is its late onset and pro-
gressive nature. Symptoms appear after 50-70% [5,6] of
striatal dopamine has been depleted and 30-50% [7,8] of
the nigral dopaminergic cells have died. Such studies
suggest that the extent of striatal dopamine depletion is
better correlated with the severity of PD symptoms than
the loss of dopaminergic neurons in the SN [7].
Data from PD-linked genetic mutations also support

the notion that axonal pathology and/or dysfunction
occurs prior to the loss of dopaminergic cell bodies. For
example, a-synuclein pathology is seen in neurites

before it is observed in PD-associated cell bodies [3,9].
a-synuclein mutants accumulate in the cell soma when
overexpressed in cortical neurons, suggesting impaired
axonal transport as well [10]. Moreover, transgenic
models expressing the PD-linked mutant gene leucine
rich repeat kinase 2 (LRRK2) also exhibit pronounced
axonal loss and pathology prior to cell body loss [11]. In
addition, genetic mutations in other PD-linked genes
such as Parkin, an E3 ligase [12], and PINK1 (PTEN-
induced putative kinase 1 protein) a mitochondrially-tar-
geted kinase, also alter axonal transport [13,14]. Collec-
tively, these findings have led to the idea that nigral
neurons degenerate through a “dying back” axonopathy
where degeneration starts in the distal axon and pro-
ceeds over time towards the cell body.
Environmental toxins known to mimic PD such as

rotenone and MPP+ also disrupt axonal function. These
factors not only inhibit mitochondrial Complex I activ-
ity, but also de-polymerize microtubules leading to axon
fragmentation and decreased synaptic function [15-17].
Moreover, MPP+ can directly inhibit axon transport in
the squid axoplasm [18] and DA neurons [19]. Thus,
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results from PD-associated environmental and genetic
factors support an early, critical role for axonal impair-
ment in PD.
Recent data suggest that the Wallerian degeneration

slow fusion protein (WldS) can delay axonal degeneration
about 10-fold from a wide variety of genetic and toxin-
inducing stimuli in the peripheral nervous system [20].
WldS also blocks axon degeneration in several central
nervous system (CNS) models of degeneration including
animal models of PD [21,22]. For example, we previously
found that WldS rescues 85% of dopaminergic axons for
at least 7 days post MPTP treatment in vivo [23]. Because
no other mutation or drug protects axons as robustly as
WldS, understanding how the WldS fusion protein is able
to prevent axon degeneration is the first step towards
defining an intervention that would leave axons intact.
WldS is a chimeric protein composed of the first 70

amino acids of the ubiquitination factor E4b (Ube4b)
followed by an 18-amino acid linker region and then the
entire coding sequence for nicotinamide mononucleo-
tide adenylyltransferase (Nmnat1), a nicotinamide ade-
nine dinucleotide (NAD+) synthesizing enzyme [24,25].
Most studies suggest that catalytically active Nmnat1 is
necessary for axonal protection [26,27], hence, exogen-
ous addition of NAD+ has been reported to delay Wal-
lerian degeneration in response to axotomy in dorsal
root ganglion (DRG) cells [28]. In Drosophila, however,
the picture is more complex in that Avery et al. [29],
showed that Nmnat enzymatic activity is required fol-
lowing axotomy whereas Zhai et al. [30] found that
Nmnat does not need its catalytic domain to protect
axons. In this model [30], as well as in a new study
demonstrating that Nmnat also protects dendrites [31],
Nmnat exhibits a separate chaperone-like activity which
protects axons and dendrites [30,32].
Inasmuch as most studies have been done in periph-

eral model systems and because we have previously
shown that WldS protects dopaminergic terminal fields
from MPTP in vivo, we used a dissociated midbrain cul-
ture system to determine the mechanism of WldS-
mediated neurite protection in dopamine neurons. Here,
we show that, regardless of its enzymatic activity, the
entire WldS sequence is needed for the WldS’ neuropro-
tective phenotype in dopaminergic neurons. Our data
also illustrate that NAD+ has a neuroprotective effect
that is different from WldS-mediated protection.

Results
WldS protects cell bodies and neurites from MPP+

Previously we have shown that dopaminergic terminal
fields but not cell bodies of WldS mice are protected
against MPTP injury [23]. To confirm and extend these
observations in a more tractable system, we utilized dis-
sociated cultures of midbrain neurons in which 1-5% of

the total cells plated are dopaminergic [33]. Results
show that cultures from WldS mice exhibited significant
protection of neurites not seen in wild type cultures
after MPP+ treatment (Figure 1A, C). Moreover, dopa-
minergic cell death from MPP+ treatment was also atte-
nuated in WldS cultures, unlike those seen in vivo
(Figure 1A, B). Thus WldS can effectively protect neur-
ites (dendrites and axons) as well as cell bodies from
known PD mimetics in vitro.

Cytoplasmic WldS protects cell bodies and neurites
against MPP+

Recent studies have reported that the localization of
WldS influences its neuroprotective effect. Babetto et. al.

Figure 1 Wlds protects dopaminergic neurons from MPP+

toxicity. (A) Dissociated dopaminergic cultures from both WT and
Wlds mice were treated with 2 μm MPP+ for 48 hours, and
processed for TH immunoreactivity. (B) Quantification of TH+ cell
bodies and (C) TH+ neurites was done using unbiased stereology.
Data are normalized to control cultures and denote the mean ±
SEM of representative determinations made in three separate
cultures. *p < 0.01; **p < 0.001.
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have reported that a cytoplasmic version of the WldS

protein (cyto WldS) confers a higher level of protection
than the native form of WldS [34]. In addition, Sasaki et.
al. have reported that cytoplasmic Nmnat1 (cyto
Nmnat1) and Nmnat3, which is primarily localized in
the mitochondria, also confer a higher level of protec-
tion than Nmnat1 [35,36]. To test whether cytoplasmic
localization of WldS rescued or changed the level of pro-
tection seen with nuclear WldS, primary dopaminergic
neurons were prepared from wild type and cyto WldS

mice, treated with MPP+, and analyzed as described.
Results show that cyto WldS mice exhibited a similar
level of protection of dopaminergic cell bodies and
neurites as seen in WldS mice (Figure 2). Therefore, as
reported for peripheral model systems and certain CNS
paradigms [37], redirecting most of WldS from the
nucleus to the cytoplasm protects processes equally well.

Nmnat1 does not protect against MPP+ toxicity
Many studies, especially in peripheral model systems,
have shown that Nmnat1 can at least partially mimic
the effects of WldS [26,27]. To determine whether this is
true in dopaminergic neurons, we transduced primary
midbrain cultures from wild type animals with either
GFP, Nmnat1, the 70 amino acid fragment of Ube4b
encoded within the WldS gene, or the entire WldS cod-
ing region using lentiviral vectors expressing GFP [27]
(Figure 3). We also tested the effects of Nmnat3, cyto-
plasmic Nmnat1, and enzymatically inactive Nmnat1
(Nmnat1 (W170A)) [28,38] (Figure 3D, E and Additional
File 1 Figure S1C, D). Immunofluorescence and western
blotting was done to confirm that transductions led to
similar expression levels in dissociated cultures (Figure
3B, C, Additional File 1 Figure S1B, D-E). Despite
equivalent levels of transgene expression, only neurites
transduced with the entire coding sequence of WldS

were protected from MPP+ injury (Figure 3D, E).
Because many studies have suggested that Nmnat and in

particular cyto Nmnat or axonally targeted Nmnat can be
as effective as WldS in protecting axons from mechanical
or toxic insults, we used DRG cultures as a positive control
[34,39]. Consistent with those studies, both WldS and cyto
Nmnat rescued DRG neurites from the neurotoxin, vincris-
tine, whereas the GFP-only and inactive WldS virus did not
(Figure 4). Taken together, these data confirm previous
results showing that cyto Nmnat is necessary and sufficient
to save DRG neurites. In contrast, only WldS but not cyto
Nmnat, Nmnat1, or Nmnat3 was able to protect dopami-
nergic neurons from the neurotoxic effects of MPP+.

Inactive WldS protects cell bodies and neurites against
MPP+

To corroborate the hypothesis that Nmnat1 does not
protect dopaminergic neurons from MPP+, we

transduced dissociated primary midbrain cultures with
enzymatically inactive WldS (W258A; [27]). In contrast
to our own results in DRG cultures (Figure 4) as well as
results published by others using this same construct
[27], the inactive WldS plasmid was as effective as NAD
+-synthesizing WldS animals in protecting dopaminergic
cell bodies and neurites against MPP+ injury (Figure 5).
Therefore, the entire WldS chimeric protein, but not its
NAD+-synthesizing activity, is required for neuroprotec-
tion of dopaminergic neurons.

NAD+ protects cell bodies and neurites against MPP+

Previous studies have shown that NAD+ itself can be
neuroprotective [27]. Although Nmnat1 by itself did not
recapitulate the neuroprotective effect of WldS on dopa-
minergic neurons, we tested whether NAD+ or one of
its precursors (Figure 6A) rescued cell bodies or neurites
from MPP+ treatment. Therefore, dissociated dopami-
nergic wild type cultures were pretreated with either 1
mM of NAD+, nicotinamide mononucleotide (NMN), or
nicotinic acid mononucleotide (NaMN) 24 hours before
MPP+ treatment. Both NAD+ and NMN but not NaMN
protected cell bodies and neurites against MPP+ toxicity
(Figure 6B, C). These findings together with the results
showing that catalytically-inactive WldS was able to pro-
tect dopamine neurons (Figure 5) but catalytically active
Nmnat did not (Figure 3F) suggest that different path-
ways are being invoked in response to MPP+ toxicity.

Sirt1 is not responsible for the NAD-mediated protection
of cell bodies and neurites against MPP+

Previous studies in DRG neurons have attributed the
protective phenotype of WldS to its action on the
Nmnat1-NAD+-Sirt1 pathway [27]. To test the involve-
ment of Sirt1, we prepared dissociated dopaminergic
cultures from Sirt1 knockout mice. Following 24 hour
pretreatment with 1 mM NAD+ or vehicle control, cul-
tures were exposed to MPP+. Consistent with the notion
that NAD+ is not acting through Sirt1 but rather
through a different mechanism, NAD+ protected cell
bodies and neurites in Sirt1 knockout cultures from
MPP+ toxicity (Figure 7).

NAD+ and WldS effects are additive
The data described above suggest that WldS is acting
through a separate possibly parallel pathway from that
of NAD+ in dopaminergic neurons. If so, then adding
NAD+ to WldS cultures will enhance the neuroprotec-
tive phenotype of WldS. To see whether the NAD+

effect overlapped with WldS or was additive, dissociated
dopaminergic cultures were prepared from wild type
and WldS mice and pre-treated with and without NAD+

as previously described. Both NAD+ and WldS alone
exhibited similar levels of cell body and neurite
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Figure 2 Cytoplasmic Wlds protects dopaminergic neurons from MPP+ toxicity. (A) Dissociated dopaminergic cultures from both WT and
cyto Wlds mice were co-stained with TH and Wlds antibodies to confirm the subcellular localization of Wlds. (B) Cultures were treated with 2 μm
MPP+ for 48 hours prior to fixing and staining. (C) Quantification of TH+ cell bodies and (D) TH+ neurites shows that cytoplasmic WldS protected
both cell bodies and neurites against MPP+. Data are normalized to control cultures and denote the mean ± SEM of representative
determinations made in three separate cultures. *p < 0.05.
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Figure 3 Nmnat by itself does not protect dopaminergic neurons from MPP+ toxicity. (A) Diagram of the lentiviral constructs used to
transduce WT dissociated dopaminergic neurons. (B) Western blot of cell lysates from transduced primary midbrain cultures illustrates that all
the transduced transgenes exhibit similar levels of expression. (C) Similar transduction efficiencies of the different lentiviruses were confirmed by
quantifying the number of TH+ and GFP+ cells following transduction of dopaminergic cultures. (D) Quantification of TH+ cell bodies and (E) TH
+ neurites show that only WldS-transduced cultures protected neurites against MPP+. Data are normalized to control cultures and denote the
mean ± SEM of representative determinations made in three separate cultures. *p < 0.001.
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protection (Figure 8). However, NAD+ together with
WldS generated significantly higher levels of protection
suggesting this is an additive process (Figure 8). To test
whether these effects were maximal, additional cultures
were treated with 5 mM NAD+; no significant differ-
ences in neuroprotection were observed when compared
with the lower dose of 1 mM NAD+ (Figure 8D). These
findings demonstrate that NAD+ and WldS are additive
in the MPP+ model suggesting that they are acting
through separate and possibly parallel neuroprotective
mechanisms.

Discussion
The mechanism(s) by which WldS protects axons is still
unclear. Peripheral model studies underscore the role of
Nmnat and its product, NAD+, in protecting axons from
various injuries whereas few central nervous system stu-
dies have been done. Using cellular, molecular and phar-
macological tools, the present findings show that the
chimeric WldS gene product plays a critical role in

protecting dopaminergic processes, one not dependent
upon Nmnat activity. Specifically, neither Nmnat, cyto-
plasmically-targeted Nmnat, nor Nmnat 3 were able to
prevent toxicity associated with the dopaminergic toxin
MPP+ whereas, akin to previous reports [27,28], cyto
Nmnat protected DRG axons from known axonal toxins.
In contrast, WldS, cytoplasmically-expressed WldS, and
WldS with an inactive Nmnat domain, all significantly pro-
tected dopaminergic neurites from toxin-mediated loss.
Despite the inability of Nmnat to protect dopamine pro-
cesses, NAD+ and its precursor, Nmn, were neuroprotec-
tive. As WldS and NAD+ were additive in this model

Figure 4 Wlds and cytoplasmic Nmnat1 protect DRG axons
from vincristine toxicity. (A) DRG cultures from E14 mice
transduced with GFP, Wlds, cyto Nmnat1, or inactive Wlds were
processed for acetylated tubulin immunoreactivity 24 hours after
vincristine treatment. Inserts in bottom middle panels show 40×
images of DRG cell bodies transduced with Wlds and cytoplasmic
Nmnat1, respectively, to illustrate no overt nuclear enrichment of
Nmnat1. (B) Quantification of neurites shows that both Wlds and
cyto Nmnat1 protects DRG neurites from vincristine toxicity. Data
are normalized to control cultures and denote the mean ± SEM of
representative determinations made in three separate cultures. *p <
0.05.

Figure 5 Inactive Wlds also protects dopaminergic neurons
from MPP+ toxicity. (A) Dissociated dopaminergic neurons
transduced with GFP or inactive Wlds were treated and processed as
described. (B) Quantification of TH+ cell bodies and (C) TH+
neurites. Data are normalized to control cultures and denote the
mean ± SEM of representative determinations made in three
separate cultures. *p < 0.05.
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system, current results suggest that these protectants act
through separate, possibly parallel pathways. This is in
agreement with previous findings by Wishart et. al. (2008)
[40] showing that WldS increases expression of cell cycle-
related genes through both NAD+-dependent and inde-
pendent pathways. Thus, NAD+ or its derivatives as well
as WldS and its targets protect dopamine processes and
may aid in the development of therapeutics preserving the
connections and circuitry important in PD.
The role of Nmnat and NAD+ in recapitulating the

full effect of WldS has been controversial. In vitro stu-
dies have shown that overexpression of Nmnat1 by itself
protects axons from many mechanical, genetic or toxin-
induced injuries [20,41]. In contrast, transgenic animals
expressing nuclear Nmnat1 did not replicate the effects
of WldS [42,43] whereas cytoplasmically [39] or axonally
targeted Nmnat1 [34] were equally if not more effective.
Thus, site of action plays a role in Nmnat1’s effective-
ness [20]. These data together with findings showing
that the first 16 N-terminal amino acids of the WldS

gene product are required for full WldS protection [26],
possibly by redistributing enough WldS to cytoplasmic
or axonal compartments, are consistent with the notion
that both the N-terminal portion of WldS and Nmnat1
are necessary for full axonal protection [20].

Figure 6 NAD+ protects dopaminergic cells and neurites from
MPP+ toxicity. (A) NAD+ biosynthetic pathway [75]. (B) Dissociated WT
dopaminergic cultures were pretreated with NAD+, Nmn, or Namn 24
hours before addition of 2 μm MPP+. Quantification of TH+ cell bodies
and (C) TH+ neurites show that NAD+ and Nmn, but not Namn,
protected cells and neurites from MPP+. Data are normalized to control
cultures and denote the mean ± SEM of representative determinations
made in three separate cultures. *p < 0.05, **p,0.01, ***p < 0.001.

Figure 7 NAD+ does not protect dopaminergic neurons
through the Sirt1 pathway. (A) Dissociated midbrain cultures from
both WT and Sirt1 KO mice were pretreated with NAD+ 24 hours
before addition of 2 μm MPP+. (B) Quantification of TH+ cell bodies
and (C) TH+ neurites show that NAD+ protects cells and neurites
from MPP+ in both WT and Sirt1 KO cultures. Data are normalized
to control cultures and denote the mean ± SEM of representative
determinations made in three separate cultures. *p < 0.05.
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Figure 8 The protective effect of NAD+ and WldS are additive. (A) Dissociated midbrain cultures from both WT and WldS mice were
pretreated with NAD+ 24 hours before addition of 2 μm MPP+. (B) Quantification of TH+ cell bodies and (C) TH+ neurites show that NAD+

pretreatment was more effective in protecting WldS neurites from MPP+ versus untreated WldS cultures. (D) NAD+ dose response curve showing
that the protection seen with 1 mM NAD+ is maximal. Addition of 10 mM NAD+ before MPP+ treatment induced 50% cell death in
dopaminergic neurons (data not shown). Data are normalized to control cultures and denote the mean ± SEM of representative determinations
made in three separate cultures. *p < 0.05; **p < 0.001.
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The importance of Nmnat catalytic activity is reflected
in several mutational studies in which Nmnat’s active
sites have been disrupted and neuroprotection was lost
[26,27,29,43]. Moreover, NAD+ itself and/or some of its
biosynthetic precursors, protect against axonal degenera-
tion in peripheral model systems as well as in experi-
mental autoimmune encephalomyelitis (EAE); [28,44],
ischemia [45,46], Alzheimer’s disease [47], and PD
[48-50]. In at least one study however, addition of NAD
+ was not effective [42]. Moreover, Drosophila Nmnat
(dNmnat) did not require enzymatic activity for axon
protection against insults such as excitotoxicity, polyglu-
tamine-induced dysfunction, or mechanical injury [32]
leading to the suggestion that dNmnat may perform a
chaperone-like function [30]. Indeed, structural studies
of various Nmnats have revealed characteristic similari-
ties to known chaperones such as UspA and Hsp100
[51]. Consistent with this notion, dNmnat was recently
shown to function as a stress protein in response to
heat shock, hypoxia, and the mitochondrial Complex I
toxin, paraquat [52]. However, in dopaminergic neurons,
Nmnat1 does not seem to function as either an axonal
protectant or a chaperone.
Studies have indicated that MPP+ can block electron

transport by acting at the same site as the Complex I
inhibitor, rotenone, leading to the production of free
radical species and a loss of ATP production [53-55].
MPP+ affects other processes as well including the rapid
release of dopamine from vesicular stores [56,57]; depoly-
merization of microtubules [16,58]; induction of autop-
hagy [19,59], and the rapid loss of mitochondrial
membrane potential and reduction in mitochondrial
motility in dopamine axons [19]. Since many of these
effects involve mitochondrial function, conceivably the
WldS gene product is involved in preserving mitochon-
drial health or maintaining homeostatic control. Recently,
Barrientos et al. reported that WldS is able to regulate the
mitochondrial permeability transition pore (PTP) pre-
venting, amongst other things, calcium release, ATP loss,
oxidative stress and release of proteins involved in axonal
degeneration [60]. This is consistent with Wishart et al.
(2007) showing that synaptosomes isolated from WldS

versus wild type animals expressed higher levels of var-
ious mitochondrial proteins including the PTP protein,
VDAC2 [61]. Barrientos et al. suggested that WldS is part
of a regulatory cascade that also involves JNK activation
upstream of PTP opening [60]. Although JNK is a known
regulator of axon degeneration in DRGs [62], it has been
reported to not play a role in 6-OHDA-mediated degen-
eration of the striatum [7]. In addition, we have recently
showed that the JNK inhibitor, SP600125, did not prevent
MPP+ effects on dopaminergic mitochondria [19]. Thus
diverse, unknown, regulatory steps appear to mediate
WldS effects in dopamine axons.

Given its role as a ubiquitous cofactor, NAD+ influ-
ences many cellular decisions such as DNA damage
repair [63] and transcriptional regulation and differentia-
tion [64]. Earlier studies suggested that increased NAD+

levels led to SIRT activation which, in turn, activated a
transcription factor that induced genes involved in neu-
roprotection [27,32]. Although an attractive hypothesis,
subsequent studies using SIRT1 knock out animals did
not support this notion for DRG neurons [65], or as in
the present study, for dopaminergic neurons (Figure 8).
Unlike what we have reported in vivo [23], dopaminer-

gic cell death from MPP+ treatment was also attenuated
in WldS cultures (Figure 1). Given that WldS is known
to protect axons and synapses from injury, it is possible
that it can also indirectly protect cell bodies. Similar
indirect effects on cell bodies have been reported by Gil-
lingwater et. al. (2004) in both the caudate nucleus and
hippocampus of WldS mice following transient global
ischemia [66]. More recently, a cytoplasm-targeted
Nmnat transgenic mouse protected cell bodies and pro-
cesses from NMDA-mediated excitotoxicity [37].
Authors of the latter study speculate that Nmnat can
potentially influence a common pathway, albeit one not
tied to caspase 3 activation, in certain neurons. Perhaps
a similar pathway is activated in other systems as well
since WldS also protects motoneuron cell bodies in a
mouse model of progressive motor neuropathy [67].
Why are results in dopamine neurons different than

other systems? Because many of the studies published
have been performed in peripheral model systems with
dramatically over-expressed protein, there may be neu-
ronal-specific or expression level-related effects that
might account for the differences. For example, WldS

has shown protection in several central nervous system
models, but few have been further tested with only
Nmnat1 even in dissociated neuronal models [37]. Then
too, dopaminergic axons may have intrinsic differences
that contribute to the WldS effect. For instance, dopa-
mine neurons have fewer [68], smaller and slower mito-
chondria than non-dopaminergic neurons [19].
Moreover, dopamine neurons produce a neurotransmit-
ter prone to oxidation [69], exhibit a greater dependence
on L-type Ca2+ channels with subunits that result in
deleterious amounts of intracellular calcium and ensuing
mitochondrial dysfunction [70], and extend long, thin
lightly-myelinated processes which are selectively vul-
nerable in PD [71]. This suggests that dopaminergic
neurons may be more vulnerable to insults that affect
mitochondrial function. Given that enzymatically inac-
tive WldS is able to protect dopaminergic, but not DRG
neurons, it is possible that WldS also protects mitochon-
dria in a manner independent of its NAD+-synthesizing
ability. This as yet unknown function of WldS may be
unmasked in dopaminergic neurons due to their unique
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phenotype. In contrast, NAD+ may contribute more to
WldS-mediated protection in non-DA neurons.

Conclusions
In support of our previous in vivo study showing that
WldS protects dopaminergic terminal fields from MPTP,
the current results demonstrate in dissociated dopamine
cultures that the entire WldS sequence is needed for
axonal protection, regardless of its NAD+-synthesizing
activity. Indeed, NAD+ and WldS act through separate,
possibly parallel, mechanisms to protect dopamine
axons. As MPP+ is thought to impair mitochondrial
function, in agreement with other studies, our results
suggest that WldS might be involved in preserving mito-
chondrial health or maintaining cellular metabolism.
Given that Parkinson’s disease is the second most com-
mon neurodegenerative disorder, our findings support
the idea that studies expanding therapeutic efforts
towards maintaining connections as well as saving the
cell body will help in developing better interventions for
PD.

Materials and methods
Cell culture and toxin treatment
For primary midbrain cultures, the ventral mesencepha-
lon was removed from embryonic day 14 (E14) murine
embryos as previously described [33,72]. Wild-type
(C57/Bl6) and WldS (C57Bl/OlaHsd-WldS) mice were
ordered from Harlan (Bichester, UK). Sirt1 knockout
mice were obtained from Dr. Christian Sheline (Louisi-
ana State University - Health Science Center, New
Orleans, LA). Cyto WldS mice were obtained from Dr.
Michael Coleman (Babraham Institute, UK) [73]. Ani-
mals were treated in accordance with the National Insti-
tutes of Health Guide for the Care and Use of
Laboratory Animals. All procedures were approved by
the Washington University School of Medicine animal
experimentation committee. Plates were pre-coated
overnight with 0.2 mg/ml poly-D-lysine (Sigma-Aldrich,
St. Louis, MO). Cells were plated at a density of
approximately 125,000 cells/cm2 and maintained in
serum-free Neurobasal medium (Invitrogen, Carlsbad,
CA) supplemented with 1× B27 supplement (Invitro-
gen), 0.5 mM L-glutamine (Sigma-Aldrich), and 0.01 μg/
ml streptomycin plus 100 U penicillin. Half of the cul-
ture medium was replaced with fresh Neurobasal med-
ium after 5 days in vitro (DIV). Cultures were pretreated
with 1 mM NAD+, 1 mM NMN, 1 mM nicotinic acid
mononucleotide (NaMN), or a comparable volume of
vehicle 24 hours before toxin treatment. Cultures were
treated with either 1 μM 1-methyl-4-phenylpyridinium
(MPP+), the active metabolite of MPTP or vehicle on
DIV 7. Dorsal root ganglion (DRG) cells were obtained
from E14 murine embryos as previously described [74].

Cells were plated on coverslips precoated with 0.1 mg/
ml poly-L-ornithine (Invitrogen) and 32 μg/ml laminin-
1 (Invitrogen) and maintained in DRG media which
consisted of Eagle Minimal Essential Media (Invitrogen)
supplemented with chick embryo extract (Invitrogen),
10% fetal calf serum (Invitrogen), 50 ng/ml Nerve
Growth Factor (Harlan Biosciences, Madison, WI) and
50 U/ml penicillin-50 g/ml streptomycin. Half of the
culture medium was replaced with fresh DRG medium
after DIV 5. After transduction with lentivirus on DIV
2, DRG cultures were treated with 0.4 μM vincristine or
vehicle on DIV 7. NAD+, NMN, NaMN, MPP+, and vin-
cristine were all obtained from Sigma-Aldrich.

Lentiviral infection of dopaminergic neurons
The lentiviral expression plasmids FUGW, FCIV-WldS,
FCIV-Nmnat1, FCIV-Ube4b, FCIV-Nmnat3, FCIV-
Nmnat1(W170A), FCIV-cytNmnat1, and FCIV-WldS

(W258A) were obtained from Dr. Jeffrey Milbrandt
(Washington University, Saint Louis). Lentiviruses
expressing transgenes were generated by the Hope Cen-
ter for Neurological Disorders Viral Core (Washington
University, Saint Louis). For infection of DRG and pri-
mary midbrain neurons, 50 μl lentivirus (105 infectious
units/μl) was added to the well of a 7-mm dish contain-
ing approximately 70,000 neurons on DIV 2. Trans-
duced primary midbrain and DRG neurons were treated
with MPP+ and vincristine, respectively, on DIV 7. Viral
infection and transgene expression was monitored using
the GFP reporter via fluorescent microscopy.

Immunocytochemistry
Primary dopaminergic cultures and DRGs were plated in
7 mm microwell plates (MatTek Corp., Ashland, MA).
Cells treated with MPP+ were fixed with 4% paraformal-
dehyde (PFA) in PBS after 48 hours. Cultures were
stained with sheep polyclonal anti-tyrosine hydroxylase
(TH) (Novus Biologicals, Littleton, CO) and Cy3 a-
sheep (Molecular Probes, Carlsbad, CA). Localization of
cytoplasmic WldS was confirmed using rabbit WldS anti-
body (gift of M.P. Coleman) and Alexa488 a-rabbit
(Molecular Probes). TH+ cells and neurites were
counted using unbiased stereological methods (Stereo
Investigator, MicroBrightField, Williston, VT). DRG cul-
tures treated with vincristine were subsequently stained
with mouse acetylated tubulin (Sigma-Aldrich) and Cy3
a-mouse (Molecular Probes). Neurites were counted as
described above. All images were acquired by confocal
microscopy (Olympus Fluoview 500, Olympus, Center
Valley, PA) and processed in ImageJ (NIH).

Western Blotting
Primary midbrain cultures were plated in 48-well plates
and transduced with the transgene of interest as
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described above. Lysates were collected in RIPA buffer
(150 mM NaCl, 1% Nonidet P-40, 0.5% NaDoc, 0.1%
SDS, 50 mM Tris pH 8.0) with protease inhibitor mix-
ture (Roche, Mannheim, Germany) and incubated on ice
for 30 minutes. Insoluble cell debris was removed by
centrifugation and the protein concentration of each cell
lysate was determined by Bradford protein assay
(BioRad, Hercules, CA). Equal amounts of protein were
run on SDS-polyacrylamide gels and transferred to poly-
vinylidene diflouride (PVDF) membranes (BioRad).
PVDF membranes were probed with either rabbit WldS

antibody or chicken polyclonal anti-GFP antibody (Aves
Labs, Tigard, OR). As a control, PVDF membranes were
also probed with goat polyclonal anti-HRP60 antibody
(Santa Cruz Biotechnology, Santa Cruz, CA). The sec-
ondary antibodies used were either a HRP-linked rabbit
antibody or HRP-linked anti-chicken antibody and a
HRP-linked anti-goat antibody (Jackson Immunore-
search, West Grove, PA). Membranes were developed
with enhanced chemiluminescence (Amersham Bios-
ciences), imaged with either a Storm PhosphorImager
(Molecular Dynamics) or a ChemiDoc XRS System (Bio-
Rad, Hercules, CA) and band intensities were deter-
mined using ImageQuant software (Amersham
Biosciences).

Quantification of Cells and Neurites
TH+ cells and neurites were counted using unbiased
stereological methods [75] (Stereo Investigator (Micro-
Brightfield, Williston, VT), in combination with a Zeiss
Axioplan2 microscope (Thornwood, NY) and an Optro-
nics Microfire camera. The number of counting sites
necessary to achieve a coefficient of error < 0.1 was
determined by preliminary experiments. The total num-
ber of TH+ cell bodies was calculated using the Fractio-
nator function on Stereo Investigator by dividing the
estimated number of cells by the estimated volume
(μm3) of the dish sampled. Using the Petrimetrics func-
tion on Stereo Investigator, TH+ neurites intersecting
the boundary of the Petrimetric probe were counted.
Neurite length was derived by dividing the total esti-
mated neurite length (μm) by the estimated volume
(μm3) of the dish sampled

Statistical analysis
GraphPad Prism software (San Diego, CA) was used for
statistical analysis. All data was collected from a mini-
mum of three independent experiments done in tripli-
cate. The significance of effects between control and
experimental conditions was determined by a Student t-
test or one-way ANOVA with Bonferroni Multiple
Comparisons tests.

Additional material

Additional file 1: Figure S1 - Transduction efficiency of WldS,
Nmnat1 and Ube4b lentiviruses. (A) Diagram of constructs used to
transduce WT dissociated dopaminergic neurons. (B) Western blot of cell
lysates from transduced primary midbrain cultures using the quantitative
chemidoc imaging system with MAP2 as a loading control. Transduced
constructs exhibited similar levels of expression. (C) Diagram of Nmnat1,
inactive Nmnat1, cyto Nmnat1 and Nmnat3 lentiviral constructs used to
transduce WT dissociated dopaminergic neurons. (D) Quantification of
the western blots illustrates that these transgenes exhibit similar levels of
expression. (E) Quantification of the western blots from the primary
midbrain culture lysates of either WT mice, native WldS mice, of WT mice
transduced with WldS virus. (E) Quantification of the western blots of
brain lysates taken from either the substantia nigra (SN) or striatum (STR)
of WT, native WldS mice, or Cyto WldS mice.
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