

MEETING ABSTRACT

Open Access

Curcumin protects SH-SY5Y cells from oxidative stress by up-regulating HO-1 via Phosphatidylinositol 3 Kinase/Akt/Nrf-2 and down-regulating HO-2

Wenke Yin^{1,2,3†}, Xiong Zhang^{1,2†}, Xiaodong Shi^{1,2,3}, Yu Li^{1,2,3*}

From 2011 International Conference on Molecular Neurodegeneration Shanghai, China. 22-24 September 2011

Background

Oxidative stress is considered to have a causative role in the development of central nervous system diseases, such as Alzheimer's disease, Parkinson's disease, tumor, etc. Curcumin, a polyphenol extracted from rhizomes of the plant Curcuma longa, is widely reported to have diverse anti-oxidative stress effects, but the underlying mechanism has not been fully elucidated. We investigated the mechanism underlying the neuroprotective properties of curcumin in human neuroblastoma SH-SY5Y cells subjected to oxidative stress.

Methods

The cells were treated with curcumin at different concentration (0, 1.25, 5, 20 $\mu M)$ for 24, 48, 72 h, and/or with PI3K inhibitor LY294002 or Nrf-2 siRNA, the concentration- and time-dependent protection of curcumin against $H_2O_2\text{-induced}$ toxicity was measured as ROS production and reduced cell growth. RT-PCR and Western blot were applied for detecting the expression of HO-1, HO-2, PI3K, AKT and Nrf-2 at mRNA and protein levels, also, the production of ferritin was measured by WB.

Results

The expression of HO-1 and the production of ferritin were significantly increased, but the expression of HO-2 was decreased. Furthermore, curcumin could significantly induce the protein and mRNA expression of

PI3K, AKT and Nrf-2 (P<0.05), while the protective effects of curcumin were prevented by PI3K inhibitor LY294002 or Nrf-2 siRNA.

Conclusion

Taken together, the data show that the cytoprotection of curcumin against oxidative stress in SH-SY5Y cells is by up-regulating HO-1 expression via PI3K/AKT/Nrf-2 intracellular signaling pathway and down-regulating HO-2 expression. Which suggests that curcumin is beneficial in the prevention and treatment of some CNS disease.

Author details

¹Department of Pathology, Chongqing, Chongqing Medical University, 400016, China. ²Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China. ³Institute of Neuroscience, Chongqing Medical University, Yuzhong District Yuanjiagang Yixueyuan Road No.1, Chongqing, 400016, China.

Published: 7 February 2012

doi:10.1186/1750-1326-7-S1-S14

Cite this article as: Yin *et al.*: Curcumin protects SH-SY5Y cells from oxidative stress by up-regulating HO-1 via Phosphatidylinositol 3 Kinase/Akt/Nrf-2 and down-regulating HO-2. *Molecular Neurodegeneration* 2012 **7**(Suppl 1):S14.

Full list of author information is available at the end of the article

^{*} Correspondence: liyu100@163.com

[†] Contributed equally

¹Department of Pathology, Chongqing, Chongqing Medical University, 400016. China