MEETING ABSTRACT Open Access # N-cadherin-ER α -Src signal models mediate the synergistic potentiation of activation of PI3K/Akt signal pathway in injured dopaminergic neurons by GDNF and E2 Zixiao Shi, Meng Wang, Ye Xiong, Yaping Liu, Xiaozhou Wang, Jing Liu, Li Li, Dianshuai Gao* From 2011 International Conference on Molecular Neurodegeneration Shanghai, China. 22-24 September 2011 # **Background** Accumulating evidence indicates that glial cell line-derived neurotrophic factor (GDNF) synergizes with 17β-estradiol (E2) could protect dopaminergic neurons. However, the mechanisms have not yet been elucidated. Based on the fact that either E2 or GDNF can activate the intracellular PI3K/Akt signal pathway, we hypothesize that the synergic protection of dopaminergic neurons exerted by E2 and GDNF is ascribed to enhancing the activation of the cellular PI3K/Akt signal pathway in a certain way. ### Method We studied the potential mechanism under the synergistic protective effects of E2 and GDNF on dopaminergic neurons using the MN9D cell line. The MN9D cells were treated with 6-OHDA before incubating with either E2 or GDNF or both. Endogenous AKT phosphorylation and precise underlying mechanistic studies were revealed using co-immunoprecipitation(co-IP), western blot and immuno-fluorescent staining. ## Result Compared with the sole administration of GDNF or E2, the co-administration of GDNF and E2 significantly increased the Akt phosphorylation in injured dopaminergic neurons. Incubation of GDNF and E2 promoted the interaction of estrogenic α -receptor (ER α) with the intracellular N-cadherin which potentially recruited ER α to the inner surface of cell membrane. The GDNF and E2 mediated AKT phosphorylation was potentially mediated through an Src-dependent signaling pathway as inhibition of Src using specific inhibitor totally abrogated this process. # **Conclusion** The above findings indicated the potential importance of AKT in GDNF and E2 mediated synergistic protective effects in 6-OHDA injured MN9D cells. E2 recruited ER α to the inner surface of the cell membrane which could at least partially participate in the downstream AKT phosphorylation. We also proposed a role of Src as a potential mediator during this process. This study further explored the underlying protective mechanism of GDNF and E2 and has important clinical relevance. Published: 7 February 2012 doi:10.1186/1750-1326-7-S1-S35 Cite this article as: Shi et al.: N-cadherin-ER α -Src signal models mediate the synergistic potentiation of activation of PI3K/Akt signal pathway in injured dopaminergic neurons by GDNF and E2. Molecular Neurodegeneration 2012 7(Suppl 1):S35. Department of Neurobiology & Anatomy, Xu Zhou Medical College, Xuzhou Huaihaixilu No.84 Xu Zhou Medical College, Jiangsu Province, China 221002 ^{*} Correspondence: gds@xzmc.edu.cn