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Abstract

Evidence has been mounting for an involvement of the prion protein (PrP) in a molecular pathway assumed to play
a critical role in the etiology of Alzheimer disease. A currently popular model sees oligomeric amyloid {3 (0AB)
peptides bind directly to PrP to emanate a signal that causes activation of the cytoplasmic tyrosine kinase Fyn, an
essential player in a cascade of events that ultimately leads to NMDA receptor-mediated excitotoxicity and hyper-
phosphorylation of tau. The model does not reveal, however, how extracellular binding of oAf to PrP is
communicated across the plasma membrane barrier to affect activation of Fyn. A scenario whereby PrP may adapt
a transmembrane topology to affect Fyn activation in the absence of additional partners is currently not supported
by evidence. A survey of known candidate PrP interactors leads to a small number of molecules that are known to

signaling.

acquire a transmembrane topology and understood to contribute to Fyn activation. Because multiple signaling
pathways converge onto Fyn, a realistic model needs to take into account a reality of Fyn acting as a hub that
integrates signals from multiple inhibitory and activating effectors. To clarify the role of PrP in oABR-dependent
excitotoxicity, future studies may need to incorporate experimental designs that can probe the contributions of Fyn
modulator pathways and rely on analogous readouts, rather than threshold effects, known to underlie excitotoxic
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Review
The concomitant accumulation of extracellular aggregates
of AP peptides and intracellular deposits of the tau protein
is a neuropathological hallmark of Alzheimer disease
(AD). The details of the molecular biology that connects
these AD signature aggregation events are not understood.
A currently popular model posits that exposure of cells
to oligomeric forms of the amyloid [ peptide (0Ap)
triggers a cascade of events that causes N-methyl-D-aspar-
tate (NMDA) receptor-mediated excitotoxicity and intra-
cellular deposition of hyperphosphorylated tau (reviewed
in [1]).

To date, arguably the most instructive data on this
topic may have emerged from the study of selected
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mouse models. As early as in 1998 it was reported that
ablation of Fyn, a non-receptor tyrosine kinase of the
larger family of Src family kinases (SFKs), diminishes
oAp toxicity [2]. Around the same time it was shown
that SFKs can bind to the N-terminal projection domain
of tau [3]. First proposed in 2002, it is now widely ac-
cepted that 0Af excitotoxicity also depends on the avail-
ability and proper cellular targeting of tau [4,5]. A recent
study connected some of the dots by showing that a tau
construct engineered to retain the projection domain
but lacking the microtubule binding domain misdirected
Fyn and prevented oA toxicity [6,7].

Any model of cellular oA toxicity needs to explain
how extracellular oA communicates its presence into
the cell. The process can be broken into two main steps:
(1) binding of 0Ap to the cellular membrane; and (2) sig-
naling across the cellular membrane when oAp binding
has taken place. A large number of theories have been
put forward that hypothesize on the nature of the first
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step and the cellular binding partner involved (see [8,9]
for recent reviews). Without a question, amongst the
many oAp candidate receptors proposed, the prion pro-
tein (PrP) has of late received the most attention. This
may in part be due to the fact that the role of PrP as a
candidate oAp interactor emerged from a hypothesis-
free screen, as opposed to conceptually more limited
approaches that suggested involvement of many other
receptor candidates. At this time, the cumulative binding
data available for the oAB-PrP interaction are the most
validated and robust for any oAP candidate receptor
[10-15]. When combined with the aforementioned
model a refined scenario emerged according to which
oA binds to PrP which, in turn, causes activation of
Fyn following its delivery to the inner face of the plasma
membrane, a step that appears to require tau (Figure 1).
However, an ongoing controversy surrounds the signifi-
cance of 0AP binding to PrP and, more specifically, the
question whether this interaction is responsible for
downstream neurotoxicity and impairment of long-term
potentiation [12,16,17], an electrophysiological surrogate
of learning and memory formation. Possible reasons for
data discrepancies have been proposed before [1,18,19]

Microtubule

Figure 1 Schematic depiction of a popular model that ties
extracellular oAB-PrP interaction to cytosolic Fyn activation.
The identity of the molecular player that communicates binding of
0AB to PrP into the cell is currently not known. Tau has been
ascribed a critical role in the delivery of Fyn to the cytosolic face of
the membrane.
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and will only be touched in the second half of this article
where we highlight aspects that may not have been ad-
equately considered in previous reports.

The focus of this perspective will be on a related ques-
tion: How is it that PrP, a glycosylphosphatidylinositol
(GPI) anchored molecule, tethered to the outer face of
the membrane, can activate an intracellular SFK? The
need to answer this pressing question has also been
noted by others [10], and has led to a situation where
several authors of recent papers indicated this know-
ledge gap in schematic models either with conspicuous
question marks or by omitting labels for the correspond-
ing molecular entity altogether (e.g., schematic drawings
in [20-22]).

Overcoming barriers - signaling from PrP to Fyn

A natural place to begin the search for the missing link
that ties PrP to Fyn activation is to state the properties a
candidate needs to fulfill to serve in this role, namely
(i) the ability to bind to PrP; (ii) the existence of a
membrane-spanning topology; and (iii) a known role
as an activator of SFKs. Although a large number of can-
didate PrP interactors have been described [23,24], to
our knowledge only neural cell adhesion molecules
(NCAMs) [25,26], integrin/non-integrin laminin recep-
tors [27], and caveolin-1 [28,29] meet all three of the
aforementioned criteria and shall be described in more
detail in the following paragraphs. A scenario whereby a
PrP-dependent signal may traverse the plasma mem-
brane independent of other transmembrane proteins—if
the presence of oA induces a well-known but rare
transmembrane topology in PrP—will also not be
discussed here because, to date, no evidence exists that
ties these transmembrane forms of PrP to Fyn activation
[19]. Naturally, the decision to limit discussions to PrP
interactors with a known Fyn connection is not intended
to deny the possible existence of such a connection for
other proteins that have been proposed to bind to PrP.
The reader will appreciate though that the omission of
this operational restriction would have forced a more
cursory description of many PrP interactors at the ex-
pense of the more focussed perspective that was the aim
of this review.

NCAMs are members of the immunoglobulin (Ig)
superfamily of cell adhesion molecules [30] and are in
humans coded on chromosomes 11 (NCAM1) and 21
(NCAM2). Whereas NCAMI1 is widely expressed
throughout the human brain, NCAM?2 is primarily ob-
served in the olfactory bulb. Additional complexity of
NCAM expression profiles emerges from alternative
splicing and gives rise to both GPI-anchored (p120-
NCAM]1) and transmembrane forms (p140-NCAM1 and
p180-NCAM1) with short cytoplasmic tails. The
ectodomain of NCAM1 or NCAM2 comprises five N-
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terminal Ig-like domains and two membrane-adjacent
fibronectin-type 3 (FN3) domains. Given their shared
mode of GPI-dependent membrane attachment, it is
not surprising to find p120-NCAM1 in proximity of
PrP, and even pl40-NCAMI1 has been shown to be
recruited to raft-like domains upon acylation of its cyto-
plasmic domain [31]. NCAMI1 was initially shown to
co-immunoprecipitate with PrP following in vivo
crosslinking of mouse Neuroblastoma cells (Neuro2a)
and the direct interaction was shown to depend on a
protein-protein interface that mapped to B-strands C
and CO within the two consecutive FN3 modules of
NCAMI and the N-terminus and helix A (residues 144—
154) within PrP [26]. Subsequent large-scale interactome
studies confirmed not only that NCAM1 is a prominent
molecular neighbor of PrP in both cultured neuronal
cells and the brain [27,32] but further established that
the interaction may recruit NCAMI1 into raft-like do-
mains and trigger a signal that leads to activation of Fyn
[25], a finding that had partly been foreshadowed by data
which indicated that NCAM1 acts in certain experimen-
tal paradigms upstream of Fyn [33]. A hint at the mech-
anism by which NCAMIl-lacking an SFK activation
domain of its own—may activate Fyn then emerged from
studies that documented a dependency of NCAMI-
mediated neuritic outgrowth on receptor-type tyrosine-
protein phosphatase o (PTPRA), also known as RPTP«
[34]. The finding complemented prior data which had
documented that PTPRA can activate SEKs by removing
their inhibitory C-terminal tyrosine phosphorylation
[35,36] and was operative in transmembrane Fyn activa-
tion emanating from contactins [35] or integrins [37].
PTPRA may itself get activated in this context by phos-
phorylation at two serine acceptor sites (S180/204)
[38,39]. One scenario suggests PTPRA is phosphorylated
by protein kinase C in this manner once this kinase has
been recruited through PrP“-dependent clustering of
NCAM1 [40] (Figure 2A).

Non-integrin- and integrin-based laminin interactions:
PrP€ has repeatedly been shown to interact with riboso-
mal protein SA (RPSA), also known as the 67 kDa lam-
inin receptor [41], a cellular non-integrin receptor of
laminin. The link to the extracellular matrix protein
laminin was further strengthened when a quantitative
interactome analysis revealed PrP to co-purify with
VLA-6 [27], a heterodimeric a6fl integrin complex
also known to mediate cellular attachment to laminin
(Figure 2B). Integrins represent a large family of trans-
membrane receptors with well-established roles in medi-
ating cellular contacts with extracellular matrices.
Mammalian genomes code for 18 o and 8 B subunits of
integrins that assemble into more than 24 known func-
tional a/p heterodimers with specialized roles in extracel-
lular matrix recognition [42]. In addition to the a6f1
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complex, PrP was shown to also co-enrich with oV, an in-
tegrin subunit with a role in vitronectin recognition [27].
Although no direct connection of RPSA to SEK has been
established, in addition to having been independently
identified as laminin and PrP interactors, RPSA and
integrins are known to interact with each other [43-45]
and integrins are well-known to signal through SFKs. The
exact mechanisms by which integrin heterodimers, lacking
conspicuous intracellular signaling domains, activate
SFKs are less well understood. It is, however, known that
extracellular matrix interactions of integrin complexes
trigger conformational rearrangements within the integrin
heterodimers that expose cytosolic epitopes which, in
turn, may sequester signaling factors. A more indirect
mechanism of a6P1 integrin signaling may rely on its as-
sociation with L1. Similar to NCAM, L1 is a cell adhesion
molecule of the immunoglobulin superfamily that was
shown to co-enrich with PrP [27]. The existence of macro-
molecular complexes comprising integrins and L1 is no
controversial issue [46] and has been shown to rely on the
affinity of integrins toward an RGD-amino acid motif
within the Ig-like domain 6 in L1 [47]. However, the pre-
cise mechanism by which the complex activates Fyn or
other SFKs is still somewhat unclear. Some authors have
suggested activation may be based on the aforementioned
tyrosine phosphatase PTPRA [48,49] (as in Figure 2A).

Caveolins are small membrane-embedded proteins
that assemble into clathrin-like lattices and give shape to
so-called caveolae, 50-100 nanometer diameter mem-
brane domains enriched in cholesterol and sphingolipids
[50]. Caveolae play a role in diverse biological activities,
including receptor-independent endocytosis, transcytosis
and the docking of viruses and toxins, and also serve as
integration hubs for cell signaling [50]. Of the three
known caveolins (caveolin-1, -2 and -3) the caveolin-1
gene product has been implicated in PrP“-dependent
signaling to Fyn. Early work indicated that a cytosolic
membrane-proximal region of caveolin-1 (residues 82—
100) can bind Src or Fyn, leading to suppression of
tyrosine kinase activity [51]. Subsequent reports de-
scribed that antibody-mediated crosslinking of PrP< in
a cell model of neuronal differentiation (1C11) [28] or
in a hypothalamic neuronal cell line (GN11) [52] can
lead to caveolin-1 dependent Fyn activation. A more re-
cent study conducted with the PC12 cell model sug-
gested yet another twist to the role of caveolin-1 in
PrP¢-dependent Fyn signaling. The authors proposed
PrP-mediated crosslinking may rely on integrins for
signal transmission across the membrane but that a
phosphoepitope generated on caveolin-1 serves in this
process as a docking site to recruit Src kinase and in-
activate Fyn [53] (Figure 2C).

Needless to say, the short list of molecules discussed
in the preceding paragraphs may not yet contain the
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Figure 2 Possible scenarios and molecular players that may be operative in overcoming the membrane barrier required for PrP-to-Fyn
signaling. (A) PrP may recruit NCAM into raft domains causing its association with PTPRA, a known activator of Fyn. (B) PrP may influence
cellular attachment to laminin by interacting with multiple molecules known to play key roles in this cell-to-extracellular matrix interaction. A sub
complex of integrins and L1 is known to activate SFKs, again possibly through interaction with PTPRA. (C) PrP may modulate activity of Fyn by
interacting with Caveolin-1. The consequence of this interaction with regard to Fyn activity status is currently unclear or may not be consistent
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missing link responsible for oAP-mediated signaling
from PrP to Fyn. Therefore, efforts to validate the role
of these candidates need to be pursued in parallel to
unbiased searches for novel interactors of PrP in its
0AP-bound state based on hypothesis-free discovery
platforms (e.g., affinity capture followed by mass spec-
trometry or mammalian two-hybrid system derivatives).
Conclusive evidence that a given PrP interactor repre-
sents the missing link will not come easy as the field is
lacking robust experimental paradigms. Even some of
the most widely used experimental setups that recapitu-
late 0AP-dependent tau hyperphosphorylation, i.e., the
treatment of rodent primary neurons or hippocampal
slice cultures with oA, are far from trivial and relatively
refractory to manipulations. A first meaningful step,
however, would be to show that the knockdown of a
missing link candidate protein in these paradigms re-
duces oAp-dependent Fyn activation. These studies
should be complemented with efforts to map the precise

protein-protein interfaces that mediate binding of a can-
didate missing link to PrP and Fyn. Once this hurdle has
been taken, candidate genes will need to be validated in
rodent AD models, an objective made easier with recent
advances in gene targeting strategies [54]. Aside from
the challenge to identify a suitable AD model, these ex-
periments could, however, be confounded by develop-
mental or compensatory systems biology. To be able to
correlate the knockout of a candidate gene with a reduc-
tion in oAP-dependent Fyn activation experimental ap-
proaches need to be either sensitive (if analyses are
undertaken on brain tissue homogenates) or, preferably,
offer single-cell resolution, because the molecular
phenotype is likely to manifest in only a subset of cells.

Overcoming thresholds — molecular networks, signaling
hubs and cellular programs

So far in this article protein-protein interactions that
PrP€ engages in have been described as if they existed in
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isolation or followed a strictly linear and sequential sig-
naling logic. Although useful at a certain level, this ap-
proach does not do justice to a reality of a highly
intricate cell biology governed by molecular networks,
convergence and branching of signaling pathways and
highly coordinated cellular programs than can choreo-
graph the molecular biology of a large number of pro-
teins concomitantly [55,56]. In the second part of this
review an attempt is made to capture some of this
complexity.

Although many proteins that PrP< is surrounded by in
the brain have been identified by large-scale PrP-cen-
tric interactome studies in mice [32,57], little is known
about the authentic molecular neighborhood of this
protein in a given brain cell relevant for AD. In the ab-
sence of this information, data from a quantitative PrP®
interactome analysis in mouse neuroblastoma cells may
offer the next best glimpse into the molecular environ-
ment of PrP® in a specific cell type [58]. According
to this study PrPC resides sufficiently close to a few
dozen different proteins to facilitate its covalent inter-
molecular crosslinking to them. As expected for a pro-
tein that is inserted into the plasma membrane by a
glycosylphosphatidylinositol anchor, the PrP interactome
is dominated by ER- and Golgi-resident proteins, as well
as other membrane proteins. Of note, a body of litera-
ture suggests that a substantial proportion of PrP€ re-
sides within cells in membrane (lipid) rafts [59,60],
detergent-resistant membrane domains rich in choles-
terol and sphingolipids, and it has been proposed that
this localization of PrP€ is critical for its ability to medi-
ate 0Ap toxicity [61]. Although the organizing principles
that drive the composition of membrane rafts are still a
matter of debate [62], it is likely that the molecular
neighborhood of PrP® within these raft domains is not
only governed by PrP“-lipid interactions but also by the
relative affinity of PrP“ towards other raft-resident pro-
teins [63]. On the basis of these considerations it may
not surprise that a majority of the aforementioned PrP“
interactors (e.g., NCAM [31], the laminin recepetor pre-
cursor [64], integrins [65] and caveolin-1 [28]) have also
been localized—at least transiently—in membrane rafts
or in the aforementioned caveolae, a specialized subset
of membrane rafts. Consequently, signals emanating
from PrP€ and leading to Fyn activation are unlikely to
solely rely on the interaction of PrP with just one type
of binding partner but, instead, when circumstances are
permissive (see below), may involve, to varying degrees,
and in parallel, multiple of the signaling scenarios
outlined above (Figure 2).

A first indication that concerted action of multiple PrP
molecules might be needed for Fyn activation provided
the aforementioned antibody-mediated PrP crosslinking
data in the 1C11 neuronal differentiation cell model
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[28]. A more general role of receptor clustering in Fyn
activation came to the fore when it was subsequently
shown that several other receptors could similarly
only activate Fyn when clustered and associated with
membrane rafts [40,66,67]. Whereas there is general
agreement that only oAp, not mAp, binds to PrP
[12,13,29,68], less clear is whether oligomeric forms of
AP illicit neurotoxicity chiefly on account of their
multi-valency and, thus, ability to promote Fyn activa-
tion through clustering of PrP.

Because Fyn itself acts as a molecular hub on which sig-
nals from multiple pathways converge, a realistic evalu-
ation of its activation state needs to consider additional
inputs known to modulate Fyn activity. Thus, the signal-
ing outcome of 0Ap binding to PrP“ will also be impacted
by the status of STEP2, Shp2 and a few other kinases/
phosphatases that, taken together, influence the activity
level of Fyn (see Figure 3). When viewed in this light, a
number of seemingly disconnected observations may
begin to make sense. It has, for example, been reported
that antibodies specific for the p1 subunit of integrins can
block oAfB-mediated toxicity in primary neuronal cultures
[69]. In light of the signal hub role of Fyn and an absence
of evidence that 0Ap can bind to integrins, this observa-
tion could reflect an influence of integrin biology on Fyn-
related signaling (see Figure 2B). Similarly, inhibitors of
amylin receptors have repeatedly been shown to prevent
0AB-dependent toxicity but there is no compelling data
that oAP can bind to amylin receptors [70,71]. Amylin re-
ceptors, however, are known to initiate a signaling cascade
that utilizes the second messenger cAMP to activate
protein kinase A (PKA) [72-74], which in turn would be
predicted to alter the activity of STEP2 and, thereby,
modulate the activation status of Fyn [75].

A similar integration of inhibitory and activating signals
likely occurs at multiple points of convergence of path-
ways involved in NMDA receptor-mediated excitotoxicity,
including an increasingly understood but highly intricate
biology that underlies the modulation of expression levels,
subcellular positioning and posttranslational activation of
NMDA receptors themselves [75,80]. For example, the
ability of PKA to modulate NMDA receptor activation
may not only operate by impacting Fyn activity through
regulation of STEP2 but may, in addition, influence Fyn-
dependent activation of NMDA channels by controlling
its association with Rackl. To this end, it has been dem-
onstrated that PKA phosphorylation of Rackl causes its
translocation, thereby freeing cytosolic phospho-acceptor
sites within the channel’s NR2B subunit from a steric hin-
drance to Fyn phosphorylation (reviewed in [75]). Thus,
the restricted focus on Fyn signal integration in this review
does not reflect a view that Fyn is the only, or even the
most important, signal integration hub on pathway to
excitotoxic signaling in AD.
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assessing role of PrP in oAf excitotoxicity paradigms. (A) Fyn belongs to the family of non-receptor-type protein tyrosine kinases referred to
as Src family kinases (SFKs), of which five members (Src, Fyn, Yes, Lck and Lyn) are known to be expressed in the human brain, and Fyn and Src
are of primary interest in the context reviewed here [76]. All SFKs share a modular domain organization composed of a Src homology 2 (SH2)
domain sandwiched between an N-terminal Src homology 3 (SH3) domain and a C-terminal tyrosine kinase domain. The inactive state of these
kinases can be stabilized by an intramolecular interaction that forms when the SH2 domain binds to a C-terminal tyrosine-phosphate (Y527). Full
activation requires dephosphorylation of this inhibitory phosphate and autophosphorylation within the activation loop in the tyrosine kinase
domain. Various tyrosine kinases and phosphatases have been shown to control occupancy of these critical acceptor sites. Thus, SFK activity is
negatively regulated through Y527 phosphorylation by C-terminal Src Kinase (CSK) or CSK homologous kinase (CHK) and through
dephosphorylation of Y416 by striatal-enriched tyrosine phosphatase (STEP) [77]. Positive effectors of SFK activity are the receptor-type protein
tyrosine phosphatases Shp-2 [78,79] and PTPRA [35,36] that were shown to selectively remove the inhibitory Y527 phosphate. (B) Cellular
programs known to modulate Fyn activation levels. Upon 0AB binding to PrP“ and signaling to Fyn, the cumulative Fyn activation level will be
reflective of the cell type, its developmental status and the programs executed in the cell.

Given that Fyn is considered to exist in cells predom-  The kinase has been linked to diverse biological func-
inantly in an inactive state, the question arises as to  tions. Whereas early work on Fyn emphasized possible
which broader cellular programs cause its activation. neurological and immunological functions, interest has
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shifted toward other roles that include its involvement
in neurite elongation in oligodendrocytes [81] and neu-
rons [34], myelination [82,83], and the cellular repro-
gramming that can lead to epithelial-to-mesenchymal
transition [84,85] or cancer [86,87]. Interestingly, the
molecular biology underlying a subset of these cellular
programs is surprisingly similar. Commonalities are a re-
liance on signaling through membrane lipid raft do-
mains, morphogenetic rearrangements that depend on
cell-to-substrate adhesion and even the shared involve-
ment of a strikingly overlapping set of molecular players.
It is, for example, increasingly being understood that the
cellular program which drives myelination depends on
an intricate molecular network that includes GPI-
anchored molecules, a subset of integrins, L1 and Fyn
[82,83,88,89]. Similarly, the transient interactions that a
motile cell forms toward its substrate or that a growing
neurite engages in as it is probing its environment have
been known for some time to make use of signaling
through rafts and strongly depend on Fyn activation
[25,33,81]. Finally, it is emerging that many of the same
proteins are also involved in the execution of epithelial-
to-mesenchymal transitions, cellular programs relevant
for both normal development during ontogenesis and
abnormal motility of cells seen during invasive stages of
cancers [84,86,87]. It is not known at this time if the
molecular overlaps of these cellular programs also offer
a starting point for understanding why PrP deficiency
leads to a myelin maintenance defect affecting peripheral
nerves in mice [90] but causes a defect in epithelial-to
-mesenchymal transition during the early developmental
gastrula stage in zebrafish [91].

Returning to the main theme of this article, the ques-
tion arises if a cell that is executing one of the cellular
programs which involve Fyn activation is more suscep-
tible to oAp toxicity. Similarly, can testable hypotheses
be derived from the aforementioned considerations that
may bridge the seemingly irreconcilable positions of the
two camps of scientists who either insist PrP to be crit-
ical or not necessary at all for oAp-mediated neurotox-
icity? It is noteworthy that the apparent controversy
surrounding the involvement of PrP€ in mediating oA
toxicity is based on models that measure threshold ef-
fects, i.e., the excitotoxic activation of NMDA receptors
in similar but non-identical experimental paradigms. In
such a scenario, small differences in Fyn activation levels
can manifest as dramatic differences in outcome. A pro-
ductive path forward to reconcile the apparent contra-
dictions in observations, therefore, might be to base
future analyses on read-outs that are by their nature
analogous and quantifiable, e.g., the ratio of levels of ac-
tivated Fyn to total Fyn. A first step in this direction
might be to establish the relative contributions conver-
ging pathways exert on the cumulative overall Fyn
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activation levels. In other words, does the 0Ap effect on
PrP represent a dominant or minor Fyn activation path-
way? Future attempts to push back oAp-mediated
neurotoxicity may be futile if therapeutic interventions
concentrate on only one of multiple pathways that con-
verge on Fyn. Unless the overall level of Fyn activation is
reduced, its excitotoxic threshold may be overcome
through cellular changes that manifest with age or al-
tered metabolism, or an acute imbalance of a given Fyn-
activation pathway based on inflammation or injury.

Conclusions

The ongoing debate surrounding the proposed involve-
ment of PrP in a central signaling pathway thought to
connect 0AB exposure of cells to Fyn activation has
repolarized the AD research field. Insights into the mo-
lecular mechanism by which PrP may communicate oAp
binding into the cell are urgently needed. This review
distilled from a broad literature on PrP protein-protein in-
teractions NCAM, integrins and, possibly, caveolin-1 as
molecules worth investigating for a possible involvement
in this step. Validation efforts for these proteins could be
pursued in parallel to research aimed at revealing add-
itional candidates. A revised model should also consider
the role clustering of PrP may play in oAB-mediated Fyn
activation. Finally, a reality of Fyn operating as a signal in-
tegration hub demands experimental designs that can
more fully capture the level of Fyn activation and suggests
attention should also be paid to alternative pathways and
cellular programs Fyn participates in.
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