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Abstract

AD related proteins.

disorders

Alzheimer's disease (AD) is neuropathologically characterized by the combined occurrence of extracellular (3-
amyloid plaques and intracellular neurofibrillary tangles in the brain. While plaques contain aggregated forms of the
amyloid B-peptide (AB), tangles are formed by fibrillar forms of the microtubule associated protein tau. All muta-
tions identified so far to cause familial forms of early onset AD (FAD) are localized close to or within the AR domain
of the amyloid precursor protein (APP) or in the presenilin proteins that are essential components of a protease
complex involved in the generation of AR. Mutations in the tau gene are not associated with FAD, but can cause
other forms of dementia. The genetics of FAD together with biochemical and cell biological data, led to the formu-
lation of the amyloid hypothesis, stating that accumulation and aggregation of AR is the primary event in the
pathogenesis of AD, while tau might mediate its toxicity and neurodegeneration.

The generation of AR involves sequential proteolytic cleavages of the amyloid precursor protein (APP) by enzymes
called 3-and y-secretases. Notably, APP itself as well as the secretases are integral membrane proteins. Thus, it is
very likely that membrane lipids are involved in the regulation of subcellular transport, activity, and metabolism of

Indeed, several studies indicate that membrane lipids, including cholesterol and sphingolipids (SLs) affect AR
generation and aggregation. Interestingly, APP and other AD associated proteins, including 3-and y-secretases can,
in turn, influence lipid metabolic pathways. Here, we review the close connection of cellular lipid metabolism and
AD associated proteins and discuss potential mechanisms that could contribute to initiation and progression of AD.
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Introduction

Alzheimer’s disease (AD) is the most common form of
dementia, and defined at the neuropathological level by
the presence of both extracellular plaques and intracellu-
lar tangles, associated with severe loss of synapses and
neurodegeneration [1-3]. While neurofibrillary tangles
(NFT) consist of paired helical filaments (PHF) of the
microtubule-associated protein tau, amyloid plaques
contain aggregated amyloid p-peptides (Ap). Strong evi-
dence from genetic, biochemical, and cell biological
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studies indicates a critical role of AP in the initiation of
AD. All mutations that cause early onset forms of FAD
affect the generation and/or aggregation property of A,
and are found either in the APP gene itself or in the pre-
senilin (PS) genes [4,5]. As the respective PS proteins are
the catalytic components of the y-secretase complex, PS
mutations are also directly linked to APP processing and
commonly increase the relative abundance of the more
aggregation prone AP42 variant as compared to AB40.
The mutations in the APP and PS genes are very rare
and represent only 1-5% of all AD cases [4,6,7]. The
causes of the much more common late onset forms of
AD appear quite complex and likely involve age-related
alterations in metabolism, repair mechanisms, immune
response, and the vascular system, together with exogen-
ous factors including brain traumata and overall life style
[8-12]. By far the strongest genetic risk factor for late
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onset AD is the €4 allele of the apolipoproteinE (apoE)
gene [13,14]. ApoE is a major lipoprotein in the brain
and mediates transport of cholesterol and other lipids
between neurons and glial cells [15,16]. However,
whether altered lipid transport in the brain via apoE
contributes to the pathogenesis of AD is not well under-
stood and requires more research [15,17]. Importantly,
apoE is also linked to the metabolism of AP by affecting
its aggregation in and clearance from the brain [18].

The importance of lipid metabolism in the brain is,
however, evident from a number of other severe neuro-
degenerative diseases, caused by impaired degradation
and transport of membrane lipids. These diseases are
commonly dubbed as lysosomal lipid storage disorders
(LLSDs) and characterized by strong accumulation of
different lipids in endolysosomal compartments, in par-
ticular cholesterol and sphingolipids. Commonly, LLSDs
are caused by loss of function mutations in genes encod-
ing lipid catabolic proteins, including enzymes, lipid ac-
tivator proteins or lipid transporters. Most of these
diseases include neurological symptoms and show simi-
larities at the cytopathological level to AD [8,19]. In the
last years, several molecular mechanisms have been
identified that connect membrane lipids to the metabol-
ism of AD related proteins, in particular A generation
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and aggregation. Studies so far have focused on the role
of cholesterol and sphingolipids that are highly enriched
in detergent-resistant membrane microdomains, also
called lipid rafts. In turn, secretases, APP and its deriva-
tives also appear to influence the membrane lipid com-
position by altering the activity of lipid metabolic
enzymes and subcellular trafficking. These findings sug-
gest a close interaction of metabolic pathways related to
APP and membrane lipids. Thus, alterations in secretase
activities as well as dysregulation of lipid metabolic en-
zymes might underlie the initiation and progression of
AD pathogenesis.

Secretases and cellular metabolism of APP

APP is a type I membrane protein and follows the conven-
tional secretory pathway from the endoplasmic reticulum
(ER) to the plasma membrane. During this process, APP
undergoes several co-and post-translational modifications,
including N-and O-glycosylation, tyrosine sulphation, and
phosphorylation [20,21]. Already on the way to the cell sur-
face, APP can undergo endoproteolytic processing by secre-
tases. The cleavage of full-length APP by a-or [3-secretases
within or at the N-terminus of the AP domain generates
the soluble variants APPs-a and APPs-f, respectively, that
can be secreted into the extracellular milieu (Figure 1). The
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Figure 1 Proteolytic generation of AP. APP is cleaved by 3-secretase resulting in the generation of membrane-tethered CTF-3 and secretion of
APP¢. The CTF contains the full AR domain and subsequent cleavage by y-secretase liberates AB into the extracellular milieu and the APP intra-
cellular domain (AICD) into the cytosol.
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remaining C-terminal fragments (CTFs) are still tethered to
cellular membranes via their transmembrane domain. The
CTFs generated by a-(CTFa) or [-secretase (CTEP) be-
come substrates for y-secretase that cleaves within the
transmembrane domains resulting in the secretion of the
small peptides p3 and AP, respectively, and the liberation of
the APP intracellular domain (AICD) into the cytosol
(Figure 1).

Like APDP, all secretases are integral membrane proteins.
While a-and p-secretases have also type I topology, y-
secretase is a polytopic protein complex consisting of four
individual components essential for the efficient cleavage
of protein substrates. The PS proteins are the catalytically
active components within this complex. The additional
proteins anterior pharynx defective (aph) 1, presenilin en-
hancer (pen) 2, and nicastrin exert functions in assembly,
subcellular transport, and substrate recognition [22-25].
All three secretases cleave a large number of additional
substrates beside APP, and thus, exert multiple biological
functions, including regulation of development, differenti-
ation and proliferation [26-29].

It is important to note that in addition to the proteo-
lytic processing by a-, B-, and y-secretases, APP and its
derivatives can also be metabolized in additional path-
ways including degradation by the proteasome and
within lysosomal compartments [30-34]. Extracellular
and luminal AB can also be degraded by certain mem-
bers of the metallo-, serine-, aspartyl-, cysteine-protease
families [35-38].

Membrane lipids in the regulation of AD associated
proteins

Apart of adipose tissue the mammalian brain contains
the highest amount of lipids in the body. Although the
central nervous system represents only 2% of the whole
body mass it contains about 25% of the total unesterified
body cholesterol and is the cholesterol richest organ of
the body [39]. Free brain cholesterol is associated with
the plasma membranes of neurons and glial cells on the
one hand and with the specialized membranes of myelin
on the other hand. In addition to cholesterol these mem-
branes also contain complex sphingolipids such as glyco-
sphingolipids, of which especially the sialic acid-
containing gangliosides are particularly abundant and
expressed in characteristic profiles in different neural
cell types [40]. There is convincing evidence on the role
of lipids as modulators of proteins involved in AD (see
below), however, reports on changes in lipid contents in
brains, cerebrospinal fluid and plasma of AD patients
appear inconclusive. Changes of sphingolipids and chol-
esterol during neurodegeneration have been extensively
reviewed recently and thus, will not be further described
here [8,16,41-43]. Phospholipid levels were reported to
be decreased especially in brain regions highly affected
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in AD [44]. Phospholipid changes in the brain, the cere-
brospinal fluid and also in plasma at different stages of
AD have also been recently reviewed [45].

Cholesterol and isoprenoids

APP and the secretases are embedded in the lipid bilayer
of cellular membranes [17,46-48]. Thus, it is not surpris-
ing that the membrane lipid composition affects the pro-
teolytic processing of APP. Early studies showed that,
AP together with full-length APP, APP-CTFs, and PS1
were associated with detergent-resistant membrane mi-
crodomains (DRM) also called lipid rafts, [49-51]. Initial
studies with cultured cells showed that inhibition of
cholesterol biosynthesis by statins or cholesterol extrac-
tion from cellular membranes with B-cyclodextrin de-
creased AP production [52,53]. Notably, slight decreases
in membrane cholesterol could also promote the secre-
tion of AP [54]. Cholesterol is enriched in and affects
the dynamics of lipid rafts. Because APP and its deriva-
tives together with secretases partially distribute to rafts,
changes in rafts structure by altered cholesterol levels
might affect the localization of APP and secretases in
these microdomains [17,55-58]. Biochemical isolation of
DRMs also revealed the presence of beta-site APP cleav-
ing enzyme (BACE1l) and y-secretase proteins PS1 and
PS2, aph-1, pen-2 and nicastrin, while the a-secretase
ADAMIO is predominantly localized outside of DRMs
[59,60]. Interestingly, full-length APP also mainly distrib-
utes to non-DRM fractions, while the CTFB derived
from [-secretase mediated cleavage of APP show higher
association with DRMs [49,59]. A recent NMR study
showed the specific interaction of APP-CTEP with chol-
esterol in the AP domain [61], which might underlie the
enrichment of CTEp in cholesterol-rich rafts. Moreover,
the binding of cholesterol to CTF} might directly affect
its processing by y-secretase. Interestingly, cholesterol-
derived steroid hormones were recently shown to dir-
ectly modulate y-secretase processivity resulting in al-
tered production of A length variants, and it was
proposed that a potential interaction of the carboxyl
group of acidic steroids with a positively charged lysine
residue in APP-CTEF is responsible for the reduced pro-
duction of AP42 [62]. However, these steroids might also
affect y-secretase activity via modulation of lipid raft
composition.

The specific targeting of the P-secretase BACEL to
lipid rafts by addition of an GPI-anchor also increased
AP production, suggesting that wild-type BACE1 is not
quantitatively targeted to rafts under physiological con-
ditions [63]. The association of BACE1 as well as of the
y-secretase components aph-1 and nicastrin with rafts
might be dependent on their palmitoylation state [59].
However, further studies are required to understand the
molecular mechanisms that regulate distribution of APP
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and secretases to lipid rafts and how this might affect
AP generation.

The esterification rate of cholesterol can also affect the
proteolytic processing of APP. Inhibition of Acyl-coenzyme
A: cholesterol acyltransferase (ACAT1) decreases Af secre-
tion in cellular models [64], and also strongly reduced
plaque load in APP transgenic mice [65]. However, the mo-
lecular mechanisms underlying the beneficial effects of
ACAT1 inhibitors in vivo, remain to be identified, as no
hints for altered a-or P-secretory cleavage of APP have
been found [65].

Cholesterol levels and transport might also affect the
metabolism and aggregation of tau. Interestingly, human
brains from NPC patients also revealed abundant neuro-
fibrillary tangles very similar to that observed in AD
brains, but no extracellular amyloid plaques [66-69].
NPC disease is mainly caused by mutations in NPC1 or
NPC2 genes that encode late endosomal/lysosomal pro-
teins involved in cholesterol transport and esterification.
Thus, a primary defect in cholesterol transport in neu-
rons might induce accumulation of tau independent of
APB. In line with this notion, the deletion of NPC1 in
mice leads to accumulation of free cholesterol and in-
creased levels of hyperphosphorylated tau thereby re-
sembling molecular changes of tau in AD. However, it is
important to note that amyloidogenic CTFs of APP are
increased in human and mouse NPC brains [70-72]. The
exact molecular mechanisms underlying these observa-
tions remain to be determined in more detail. However,
accumulating evidence indicates impairment of autoph-
agy or lysosomal capacity in NPC cells which might con-
tribute to the accumulation of APP-CTFs and tau,
because both proteins can be degraded within autopha-
gic and lysosomal pathways [8,32,71]. Also the activities
of tau phosphorylating kinases, including microtubule
associated protein kinases and cdk5 are upregulated in
NPC cells [73,74]. Increased phosphorylation of en-
dogenous tau was also observed in mice fed with high
fat/cholesterol diet [75]. Moreover, high cholesterol diet
also increased hyperphosphorylated tau and ongoing tau
pathology in tau transgenic mice [76]. In turn, the dele-
tion of the tau gene exacerbates the NPC phenotype in
mice, suggesting that tau is not only degraded during au-
tophagy, but also exerts important functions in this
process, likely regulating transport and fusion of autoph-
agic vesicles [77].

Isoprenoids that also derive from the cholesterol bio-
synthesis pathway can affect the transport and metabol-
ism of APP as well as of tau [78-81]. The isoprenoids
farnesylpyrophosphate and geranylgeranylpyrophosphate
can be attached to certain proteins, including the small
GTPases Rho that signal to the Rho-associated kinase
(ROCK). The inhibition of HMG-CoA reductase by sta-
tins also decreases the biosynthesis of isoprenoids. This
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effect has indeed been shown to affect Rho-Rock signal-
ing to increase a-secretory processing of APP in cul-
tured cells, which might also affect Ap generation [78].
The inhibition of >Rho-Rock signaling has also been
shown to decrease the (hyper)phosphorylation of tau
[79,80].

Epidemiologic studies indicate that statin intake could
decrease the risk of developing AD [82-84]. However, a
protective role of statins against AD could not be ob-
served in other studies. Randomized controlled prospect-
ive trials with AD patients also showed inconclusive
results ranging from beneficial to ineffective [17,83]. The
use of different statins with different permeabilities for
the blood brain barrier, different sample sizes and out-
come measures could have contributed to these differing
results. It is also unclear whether the potentially prevent-
ive effects of statins involve indeed lower cholesterol
levels or also additional pleiotropic effects of these drugs.
It will thus be important to further investigate the relative
contribution of isoprenoid and cholesterol metabolic
pathways to the potentially protective role of statins in
AD pathogenesis [85,86]. It has been shown that statin
treatment of cultured cells also promotes the degradation
of AP by increasing the unconventional secretion of the
insulin-degrading enzyme [87]. The statin depended
effects were observed without changes in cellular choles-
terol concentrations and could be attributed to impair-
ment of protein farnesylation [87,88]. Thus, modulation
of isoprenoid metabolism not only affects the generation,
but also the clearance of Ap.

Sphingolipids

Sphingolipids (SLs) are closely associated with cholesterol
in lipid rafts [89]. The metabolism of SLs is closely associ-
ated with cell survival and cell death [90]. In particular, cer-
amide is a pro-apoptotic signaling molecule [91], and thus
might be involved in different neurodegenerative diseases
[92,93]. Here we focus on the molecular mechanisms
underlying SL-dependent metabolism of APP.

Ceramide, the membrane anchor of SLs was shown to
stabilize BACE1 and increase AP secretion in cultured
cells [94]. In turn, the genetic or pharmacologic inhib-
ition of SL biosynthesis decreased AP generation, likely
involving decreased forward transport and maturation of
APP in the secretory pathway [95-97]. SLs also appear to
decrease the lysosomal degradation of APP thereby pro-
viding more substrate to secretases to increase the gen-
eration of soluble APP variants and Ap [33,95,98].
However, contrasting results were observed in CHO
cells with defective SL biosynthesis that rather secreted
more APB42 [97]. Thus, lowering SL levels might affect
the proteolytic processing of APP and AP generation by
several mechanisms and effects might be dependent on
the cell type and experimental conditions.
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A potential role of ceramide in tau metabolism is also
supported by a study in PC12 cells where ceramide ana-
logs decreased the levels of tau [99]. However, addition
of the ganglioside GM1 increased levels of tau and stabi-
lized the microtubule network in neuroblastoma cells
[100]. These effects were associated with redistribution
of MAP2 and enhanced neurite outgrowth [100,101].

A number of studies showed that accumulation of SLs
increased levels of APP and secretion of A [32,95,98].
This was also observed in cellular and mouse models
with impaired degradation of SLs that therefore resem-
ble human LLSDs, including Niemann-Pick type A and
B, Tay-Sachs and Sandhoff disease (Figure 2) [32,72,102].
The accumulation of lipids can impair lysosomal func-
tion and thereby lower the capacity of cells to degrade
APP and its derivatives [32,103]. The genetic deletion of
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GD3 synthase and thereby inhibition of the biosynthesis
of b-series gangliosides reduced A deposition and im-
proved memory deficits in APP transgenic mice [104].
Mice with deleted GM2 synthase gene that lack GM1,
but have increased expression of GM3 showed more
complex changes in AP deposition [105]. Interestingly,
these mice developed in addition to a slight increase in
AP plaque load in the parenchyma, also prominent vas-
cular amyloid angiopathy [105]. Thus, gangliosides
might not only affect the general deposition, but also in-
fluence the region specific formation of AP aggregates.
Furthermore, sphingosine 1-phosphate (S1P) and cer-
tain other SLs can directly stimulate the activity of
BACE], independent of changes in the trafficking or
stabilization of the protease in cells [107,108]. The exact
mechanisms remain to be determined, but might involve
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electrostatic interactions of the lipid headgroups with
the catalytic ectodomain of BACEL. This is further sup-
ported by a stimulatory effect of certain brain ganglio-
sides on BACE1L variants lacking the tramsmembrane
domain [108]. Note that SIP was also reported to pro-
mote tau phosphorylation via a calcium/calpain and
cdk5 mediated mechanism [109].

SLs can also regulate the activity of purified y-secre-
tase [110]. The addition of exogenous SLs to purified
y-secretase complexes or to isolated cellular membranes
not only increased overall activity but also changed the
cleavage specificity of y-secretase to elevate AB42/AB40
ratio [32,110,111].

Several mechanisms might underlie the effects of chol-
esterol and SLs on secretase activities. Membrane lipids
could directly interact via their hydrophobic moieties
with the transmembrane domains of BACEI1, the sub-
units of the y-secretase complex or of their substrate
APP. Interactions with secretases or APP could also be
mediated via polar headgroups of membrane lipids. For
example, the ganglioside GM1 has been shown to dir-
ectly bind to the N-terminal domain of full-length and
secreted APP thus changing its conformation. Because
other SLs did not interact with the APP ectodomain, the
glycomoiety of GM1 might determine this interaction.
Thus, subcellular transport and proteolytic processing of
APP might also be modulated by direct interaction with
the head groups of SLs [112].

In addition, there is convincing experimental evidence
for the role of membrane lipids not only for the gener-
ation of AP (see above), but also for their particular role
in shifting its conformation from helix to beta-sheet rich
structures. Particularly raft-associated ganglioside GM1,
which is especially abundant in the hippocampus was
shown to promote conformational changes of AP [113-
115]. The initial crucial finding was the unique GMI1-
bound form of AP, the so called GAP [113]. Studies with
a specific anti-GAP antibody convincingly argued in
favor of an essential role of raft-associated-gangliosides
in the polymerization of Ap in AD [116]. GAP was de-
tected not only in human AD, but also in aged monkey
brains [117]. In addition, GAP formation could be corre-
lated with presynaptic terminal-specific AB deposition,
being favored by known AD risk factors like aging and
expression of apoE4 [118,119]. Notably, accumulation of
GAB occurred exclusively in subcellular structures of the
endocytic pathway, the main site of AP generation [120].
AP can also interact with GM3. It has has been proposed
that binding of AP to GMS3 inhibits GD3 synthase,
thereby changing cellular ganglioside profiles [121].

Phosphoglycerides
Most research related to the role of lipids in APP pro-
cessing and AP generation has been focused on
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cholesterol and sphingolipids. However, phosphoglycer-
ides (PGs) are the main constituents of biological mem-
branes. PGs not only exert structural functions, but also
are important for cellular signal transduction. PGs are
metabolized to produce potent signaling molecules, in-
cluding inositol-1,4,5-trisphosphate, diacylglycerol, and
phosphatidic acid [122-124]. These metabolites regulate
multiple pathways in cells by controlling Ca®* signaling
or kinase and phosphatase activities that are also impli-
cated in the complex regulation of APP metabolism.
However, the pleitropic roles of PGs in cellular signaling
complicate the analysis of specific effects of individual
lipids on APP processing in cellular and in vivo models
[58].

In vitro systems with liposomes or purified cellular
membranes, demonstrated direct effects of PGs on the
activites of BACE1 and y-secretase. Increasing the con-
centration of anionic glycerophospholipids stimulated
BACET1 activity in reconstituted liposomes [108]. Under
these experimental conditions, a contribution of intra-
cellular signaling pathways could be ruled out. Thus,
PGs might directly affect enzyme activity, likely involv-
ing interaction of lipid head groups with the catalytic
domain of BACEL.

A systematic analysis on the influence of membrane
thickness revealed that C18 and C20 fatty acids in phos-
phatidylcholine potently stimulated purified y-secretase
as compared to phosphatidylcholine with shorter C16
and C14 or longer C22 and C24 fatty acids. Notably, in-
creased membrane thickness decreased the ratio of
AP42 to total AP [125]. Together these data indicate that
membrane thickness not only affects the overall activity,
but also the cleavage specificity of y-secretase. As the
chain length of fatty acids in membrane lipids is also af-
fecting membrane fluidity, these effects might reflect
changes in membrane thickness, but also in the lateral
mobility of enzymes and protein substrates. However, as
membrane thickness differs between distinct subcellular
compartments, these characteristics of different mem-
brane systems could strongly affect the generation of
different AP species. Inhibitory effects on purified
y-secretase were observed for phosphoinosites [126] and
plasmalogens [127]. From the phosphatidylinositols
tested, phosphatidylinositol(4,5)bisphosphate was most
potent in y-secretase inhibition, while phosphatidylinositol
and phosphatidylinositol(3,4,5)trisphosphate had negli-
gible effects.

AD associated proteins and the metabolism of membrane
lipids

As described so far, membrane lipids exert multiple ef-
fects on APP processing. Interestingly, recent studies
also revealed a regulatory role of APP and its derivatives
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as well as of secretases in cellular lipid metabolism
[8,47].

APP and its derivatives generated by y-secretase can
contribute to the regulation of lipid metabolic pathways
(Figure 3). A itself can alter the activity of enzymes in-
volved in sphingolipid and cholesterol metabolism. A[42
increased the activity of neutral SMase and thereby de-
creased SM levels in cultured cells, while AB40 inhibited
HMG-CoA reductase and lead to decreased cholesterol
biosynthesis [128]. Alternatively, AB-dependent increases
in ceramide and cholesterol levels might be mediated by
membrane-associated oxidative stress [129-131]. In line
with the effect of FAD associated mutations in PS pro-
teins on AP42/40 ratios, expression of FAD mutant PS1
increased cholesterol levels, but decreased SM levels. In-
creased cholesterol levels were also observed in cells
from PS KO mice and in brains of mice expressing
FAD-mutant PS1 [132,133]. However, the studies pro-
posed alternative mechanisms underlying the changes in
cellular cholesterol levels. The y-secretase cleavage prod-
uct AICD could act as a transcriptional regulator of the
LDL receptor related protein 1(LRP1). As AICD negatively
regulates LRP1 transcription, LRP1 protein expression was
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increased in PS1 deficient cells where AICD production
by y-secretase is inhibited. Thus, extracellular cholesterol
complexed with apoE could be internalized more effi-
ciently in PS deficient cells thereby increasing cellular
cholesterol levels [132]. However, own work demonstrated
that the uptake of lipoproteins is rather decreased in PS
deficient FAD mutant cells and mouse brain [133]. The
deficit in the internalization of extracellular cholesterol in
turn upregulated cholesterol biosynthetic genes including
SREBP2 and CYP51, resulting in an overproduction of
cholesterol [133]. A recent study demonstrated that a sig-
nificant pool of PS protein is localized in membrane-asso-
ciated mitochondria (MAM), sites with close contacts of
mitochondrial and ER membranes [134,135]. MAM struc-
tures were increased in PS KO or PS1 FAD mutant cells,
suggesting that PS proteins and associated y-secretase ac-
tivity negatively regulated MAM contacts. PS deficient
cells also showed increased biosynthesis of cholesterol
[135]. Interestingly, MAMs appear to be important for the
generation of cholesterol esters and their storage in lipid
droplets. In line with an increased number and size of
MAMs, cholesterol esters and lipid droplets were found to
be significantly increased in PS deficient cells. While

APP
APP-CTF

Figure 3 Cross-talk of membrane lipids and Alzheimer-associated proteins. Alterations in membrane lipid composition affect secretase
activities, thereby modulating APP processing and generation of AR. Alternatively, membrane lipids can directly interact with AR and modulate its
aggregation. In addition, membrane lipids impair the metabolism of tau. Thus, both neuropathological hallmarks of AD could be triggered by
age-dependent changes in lipid metabolism. Conversely, membrane lipid composition is affected by APP and its derivatives AB and CTF3, which
were shown to modulate lipid metabolic enzymes and directly bind membrane lipids including cholesterol and gangliosides. Tau also affects
membrane lipid composition, likely via regulation of vesicular transport. ApoE as a major lipoprotein in the brain could also affect lipid compos-
ition, but also AR clearance and aggregation. Solid arrows indicate a direct interaction of the respective components whereas dotted arrows indi-
cate potential modulations by yet undefined mechanisms. See text for further details.
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further studies are required to dissect the molecular path-
ways, it is evident that y-secretase activity is closely related
to cellular cholesterol metabolism.

y-Secretase has also been linked to phosphatidylinositol
metabolism [136]. In cells expressing PS1 FAD mutants,
the level of AP42 showed inverse correlation to phos-
phatidylinositol(4,5)bisphosphate. This effect was attrib-
uted to increased degradation of this phosphatidylinositol
by phospholipase C to inositol-1,4,5-trisphosphate and
diacylglycerol [136]. However, whether phospholipase C
activity is directly affected by AP in these models or other
mechanisms are also involved remains to be determined.
Most studies so far have been carried out in non-neuronal
cell lines. Thus, it will be important to investigate the
functional role of AD associated proteins in lipid metabol-
ism in neurons. A recent study revealed that the pharma-
cologic inhibition of y-secretase selectively increased
ganglioside concentration in neuritic terminals of differen-
tiated PC12 cells [137]. Whether impaired metabolism of
APP was involved in these effects remained unclear. A dir-
ect involvement of APP in neuronal lipid metabolism
came from studies with primary rat cortical neurons [138].
Overexpression of human APP decreased cholesterol de
novo synthesis associated with decreased expression of
HMG-CoA reductase and SREBP1, while down-regulation
of endogenous APP expression had opposite effects result-
ing in increased cholesterol synthesis. These effects were
attributed to a direct interaction of APP with SREBP1
and negative regulation of SREBP1 target genes. Surpris-
ingly, the interaction of both proteins and regulation of
cholesterol biosynthesis was not observed in astrocytes,
suggesting a neuron specific role of APP in cholesterol
metabolism.

The role of tau in the regulation of lipid metabolism is
much less characterized. In human AD brains, tangle
bearing neurons showed increased immunoreactivity for
the lipid raft associated protein flotilin-1 in lysosomes,
suggesting accumulation of cholesterol and sphingolipids
in these compartments [139]. Hyperphosphorylated tau
has also been shown to be associated with lipid rafts in
APP transgenic mice. In addition, small amounts of
cholesterol, sphingolipids and phosphatidylcholine were
also found in purified paired helical filaments [140].
Given its role in subcellular transport of vesicles along
microtubules, it is likely that the effects of tau on mem-
brane lipids involve altered vesicular transport of lipids
and/or [141] lipid metabolizing proteins.

Conclusion

AD is associated with complex changes in the metabol-
ism of membrane lipids. However, the available data
suggest that changes in cellular lipid metabolism could
not only be a consequence of, but also trigger or at least
promote, AD pathogenesis (Figure 3). Thus, impaired
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homeostasis of membrane lipid composition could be an
initial event in the etiology of AD. One of the earliest
cytopathological changes in AD is an increased number
and size of endolysosomal compartments, suggesting im-
pairment of the lysosomal clearance capacity [71,141].
These changes are highly similar to LLSDs, were the pri-
mary defect causes strong accumulation of membrane
lipids in endolysosomal compartments [8,142]. Notably,
characteristic AD related changes, including increased
levels of AP and amyloidogenic fragments of APP, hyper-
phosphorylated tau and neurofibrillary tangles together
with neuroinflammation were also observed in mouse
models as well as human brain samples of certain LLSDs
[143,144].

Taken together, the targeting of lipid metabolism could
represent a promising strategy in AD therapy and pre-
vention. Moreover, lipids could also be explored further
for their potential as biomarkers for early diagnosis or
even prognosis of AD. Thus, it will be interesting to un-
ravel the complex interplay of lipid and protein metabol-
ism and their relevance in neurodegenerative diseases in
the future.
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